Signal and System Theory II 4. Semester, BSc

Solutions

Solution for exercise 1

1	2	3	4	5	Exercise
6	3	6	4	6	25 Points

1. The system can be written as

$$
\frac{d}{d t}\left[\begin{array}{l}
x_{1}(t) \tag{1}\\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{v_{\text {in }}}{A_{1}}-\frac{C_{v} u_{1}(t)}{A_{1}} \sqrt{2 g x_{1}(t)} \\
\frac{C_{v} u_{1}(t)}{A_{2}} \sqrt{2 g x_{1}(t)}-\frac{C_{v} u_{2}(t)}{A_{2}} \sqrt{2 g x_{2}(t)}
\end{array}\right]
$$

2. For the steady state, the derivatives are 0 and we exchange $x_{1}(t)$ with α_{1} as well as $x_{2}(t)$ with α_{2} :

$$
\left[\begin{array}{l}
0 \tag{2}\\
0
\end{array}\right]=\left[\begin{array}{c}
\frac{v_{\text {in }}}{A_{1}}-\frac{C_{v} \overline{u_{1}}}{A_{1}} \sqrt{2 g \alpha_{1}} \\
\frac{C_{v} \overline{u_{1}}}{A_{2}} \sqrt{2 g \alpha_{1}}-\frac{C_{v} \overline{u_{2}}}{A_{2}} \sqrt{2 g \alpha_{2}}
\end{array}\right]
$$

which implies

$$
\overline{u_{1}}=\frac{v_{\text {in }}}{C_{v} \sqrt{2 g \alpha_{1}}} .
$$

With this, the second equation becomes

$$
0=\frac{v_{\text {in }}}{A_{2}}-\frac{C_{v} \overline{u_{2}}}{A_{2}} \sqrt{2 g \alpha_{2}}
$$

which means

$$
\overline{u_{2}}=\frac{v_{\text {in }}}{C_{v} \sqrt{2 g \alpha_{2}}} .
$$

3. The matrices are as follows:

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
-\frac{C_{v} \sqrt{2 g} u_{1}(t)}{A_{1}} \frac{1}{2 \sqrt{x_{1}(t)}} & 0 \\
\frac{C_{v} \sqrt{2 g} u_{1}(t)}{A_{2}} \frac{1}{2 \sqrt{x_{1}(t)}} & -\frac{C_{v} \sqrt{2 g} u_{2}(t)}{A_{2}} \frac{1}{2 \sqrt{x_{2}(t)}}
\end{array}\right] \\
& B=\left[\begin{array}{ll}
-\frac{C_{v}}{A_{1}} \sqrt{2 g x_{1}(t)} & 0 \\
\frac{C_{v}}{A_{2}} \sqrt{2 g x_{1}(t)} & -\frac{C_{v}}{A_{2}} \sqrt{2 g x_{2}(t)}
\end{array}\right]
\end{aligned}
$$

Putting in the constants from the previous task leads to:

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
-\frac{v_{\mathrm{in}}}{2 A_{1} \alpha_{1}} & 0 \\
\frac{v_{\mathrm{in}}}{2 A_{2} \alpha_{1}} & -\frac{v_{\mathrm{in}}}{2 A_{2} \alpha_{2}}
\end{array}\right] \\
& B=\left[\begin{array}{cc}
-\frac{C_{v}}{A_{1}} \sqrt{2 g \alpha_{1}} & 0 \\
\frac{C_{v}}{A_{2}} \sqrt{2 g \alpha_{1}} & -\frac{C_{v}}{A_{2}} \sqrt{2 g \alpha_{2}}
\end{array}\right]
\end{aligned}
$$

4. The system is stable: Because all the constants are >0, the eigenvalues have real parts smaller than 0 (we can read them from the diagonal of A). This means the non-linear system is locally asymptotically stable around this equilibrium.
5. Since the system does not have any unstable poles (because it is stable), we need the point $-1 / K$ to be encircled 0 times for stability. The inadmissible K are therefore in the range $-1 / K \in\left[-\frac{1}{3}, 0\right.$) (approximately), meaning $K \geq 3$ renders the system unstable. Since the question asks about when the stability properties change (i.e. when it becomes unstable), the range of K asked for is $K \geq 3$.

Solution for exercise 1

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	Exercise
X	X	X	X	X	$\mathbf{2 5}$ Points

1. Setting $\operatorname{det}(\lambda I-A)=0$,

$$
\operatorname{det}\left(\left[\begin{array}{cc}
\lambda & -a \\
a & \lambda
\end{array}\right]\right)=0
$$

Thus, the characteristic equation is $\lambda^{2}+a^{2}=0$, and the eigenvalues are $\lambda= \pm a j . \lambda=$ $+a j$ has an eigenvector of $[1 j]^{T}$, while $\lambda=-a j$ has an eigenvector of $[j 1]^{T}$. Since the eigenvalues have linearly independent eigenvectors, the matrix is diagonalizable.
2. We write $A=W \Lambda W^{-1}$, with W the matrix of eigenvectors and Λ the matrix with the eigenvalues on the diagonal.

$$
A=\left[\begin{array}{ll}
1 & j \\
j & 1
\end{array}\right]\left[\begin{array}{cc}
a j & 0 \\
0 & -a j
\end{array}\right]\left[\begin{array}{ll}
1 & j \\
j & 1
\end{array}\right]^{-1}
$$

As we saw in lecture, $e^{A t}=W \Lambda^{t} W^{-1}$. Thus,

$$
e^{A t}=\left[\begin{array}{ll}
1 & j \\
j & 1
\end{array}\right]\left[\begin{array}{cc}
e^{a j t} & 0 \\
0 & e^{-a j t}
\end{array}\right]\left[\begin{array}{ll}
1 & j \\
j & 1
\end{array}\right]^{-1}=1 / 2\left[\begin{array}{cc}
e^{a j t}+e^{-a j t} & -j e^{a j t}+j e^{-a j t} \\
j e^{a j t}-j e^{-a j t} & e^{a j t}+e^{-a j t}
\end{array}\right]=\left[\begin{array}{cc}
\cos (a t) & \sin (a t) \\
-\sin (a t) & \cos (a t)
\end{array}\right]
$$

3. Since A is diagonalizable, with eigenvalues that have zero real parts, the system is stable, but not asymptotically stable, for all a.
4. To determine controllability, we form the controllability matrix $P=[B A B]=$ $\left[\begin{array}{cc}b_{1} & a b_{2} \\ b_{2} & -a b_{1}\end{array}\right]$. Looking at the determinant of this matrix, P is invertible iff $-a b_{1}^{2}-a b_{2}^{2} \neq$ 0 . If $a=0$, then the system is not controllable for any b_{1}, b_{2}. If $a \neq 0$, the system is controllable iff $b_{1} \neq 0, b_{2} \neq 0$.
5. Since $x_{0}=\left[\begin{array}{ll}0 & 0\end{array}\right]^{T}, \frac{Y(s)}{U(s)}=C(s I-A)^{-1} B+D=\frac{s}{s^{2}+a^{2}}+1$. Since we want the step response of this system, $U(s)=1 / s$, and thus $Y(s)=\frac{1}{s^{2}+a^{2}}+\frac{1}{s}$. Taking the inverse Laplace transform, $y(t)=1+\frac{1}{a} \sin (a t)$.

Exercise 3

1	2	3	4	5	Exercise
5	3	5	5	7	25 Points

1.

$$
\begin{gathered}
A=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
-a_{N} & -a_{N-1} & -a_{N-2} & \cdots & -a_{1}
\end{array}\right) \\
B=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
b_{0}
\end{array}\right) \\
C=\left(\begin{array}{llll}
0 & 0 & \cdots & 0 \\
1
\end{array}\right) \\
D=0
\end{gathered}
$$

2.

$$
\begin{gathered}
A=\left(\begin{array}{cc}
0 & 1 \\
-\frac{1}{8} & \frac{3}{4}
\end{array}\right) \\
B=\binom{0}{2} \\
C=\left(\begin{array}{ll}
0 & 1
\end{array}\right) \\
D=0
\end{gathered}
$$

3. a) Stability: the eigenvalues of the system matrix A are $\lambda_{1}=\frac{1}{4}$ and $\lambda_{2}=\frac{1}{2}$. Since the magnitudes of both eigenvalues are strictly smaller than 1 , the autonomous system is asymptotically stable.
b) Controllability: the controllability matrix P has full rank and thus the system is controllable.

$$
P=\left(\begin{array}{ll}
B & A B
\end{array}\right)=\left(\begin{array}{ll}
0 & 2 \\
2 & \frac{3}{2}
\end{array}\right)
$$

c) Observability: the observability matrix O has full rank and thus the system is observable

$$
O=\binom{C}{C A}=\left(\begin{array}{cc}
0 & 1 \\
-\frac{1}{8} & \frac{3}{4}
\end{array}\right)
$$

4. No, since the system matrix A does not have both eigenvalues at zero, it is not nilpotent and the ZIT $x_{k}=A^{k-N} x_{N} \quad k=N, N+1, \ldots$ does not reach $[00]^{\top}$ in a finite number of steps and remain there.
5. Since the pair (A, B) is controllable, there exists a state feedback law $u_{k}=F_{k} x_{k}$ such that the closed-loop system matrix $A+B F$ has deadbeat behavior. Therefore, we have to find $F=\left[f_{1} f_{2}\right] \in \mathbb{R}^{1 \times 2}$ such that the matrix $A+B F$ has both eigenvalues at zero. We can achieve this by computing the characteristic polynomial of $A+B F$ as a function of f_{1} and f_{2} and comparing coefficients:

$$
\begin{gathered}
A+B F=\left(\begin{array}{cc}
0 & 1 \\
-\frac{1}{8}+2 f_{1} & \frac{3}{4}+2 f_{2}
\end{array}\right) \\
\operatorname{det}((A+B F)-\lambda I)=\lambda^{2}-\lambda \cdot\left(\frac{3}{4}+2 f_{2}\right)-2 f_{1}+\frac{1}{8}
\end{gathered}
$$

By comparing coefficients with the polynomial $1 \lambda^{2}+0 \lambda+0$ (i.e. both eigenvalues of $A+B F$ at zero), we obtain $f_{1}=\frac{1}{16}$ and $f_{2}=-\frac{3}{8}$ and

$$
F=\left(\begin{array}{ll}
f_{1} & f_{2}
\end{array}\right)=\left(\begin{array}{ll}
\frac{1}{16} & -\frac{3}{8}
\end{array}\right)
$$

Sanity check:

$$
A+B F=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

is indeed nilpotent.

Exercise 4

1	2	3	4	5	Exercise
7	5	5	3	5	25 Points

1. a) State-space form is given by

$$
\left[\begin{array}{l}
x_{1} \tag{3}\\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
x \\
\dot{x}_{1}
\end{array}\right]=\left[\begin{array}{c}
x \\
\frac{1}{m}\left(-c\left(x_{1}\right)-d\left(x_{2}\right)\right)
\end{array}\right]
$$

b) It depends on the functions $c(x)$ and $d(\dot{x})$:

If they are linear (for example $c(x)=k x$ and $d(\dot{x})=g \dot{x}$), the system is linear, as it can be written as $\dot{x}=A x$ with constant coefficient A (for example $A=$ $\left[\begin{array}{cc}0 & 1 \\ -\frac{k}{m} & -\frac{g}{m}\end{array}\right]$).
If one or both of $c(x)$ and $d(\dot{x})$ are nonlinear, the system is also nonlinear, as it cannot be written as $\dot{x}=A x$ with constant coefficient A.
c) No, the system is time-invariant, as there is no time-dependency: $\dot{x}=f(x) \neq$ $f(x, t)$.
d) Yes, the system is autonomous, as there is no input to the system, i.e. $\dot{x}=$ $f(x) \neq f(x, u)$.
2. At an equilibrium point, it holds:

$$
\left[\begin{array}{l}
\dot{x}_{1} \tag{4}\\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Rightarrow[c\left(x_{1}\right)-\underbrace{x_{2}=0}_{0} \begin{array}{l}
d\left(x_{2}=0\right)
\end{array}=0] \Rightarrow c\left(x_{1}\right)=0, x_{1}=0 .
$$

The only equilibrium point of the system is the origin $(0,0)$.
3. We use Theorem 7.2 from the Lecture Notes, with the Lyapunov function $V=$ $\frac{1}{2} m x_{2}^{2}+\int_{0}^{x_{1}} c(s) d s$ (energy of the system) and $S=\mathbb{R}^{2}$:
i) $V(0,0)=0$
ii) $V(x)>0, \forall x \in \mathbb{R}^{2} \backslash(0,0)$
iii) $\dot{V}(x)=m x_{2} \dot{x}_{2}+c\left(x_{1}\right) \dot{x}_{1}=m x_{2} \frac{1}{m}\left(-c\left(x_{1}\right)-d\left(x_{2}\right)\right)+c\left(x_{1}\right) x_{2}=-x_{2} d\left(x_{2}\right) \leq$ $0, \forall x \in \mathbb{R}^{2}$
4. Theorem 7.3 from the Lecture Notes, with the Lyapunov function candidate $V=$ $E=\frac{1}{2} m x_{2}^{2}+\int_{0}^{x_{1}} c(s) d s$ (as before) and $S=\mathbb{R}^{2}$:
i) $V(0,0)=0$
ii) $V(x)>0, \forall x \in \mathbb{R}^{2} \backslash(0,0)$
iii) $\dot{V}(x)=-x_{2} d\left(x_{2}\right) \stackrel{?}{<} 0, \forall x \in \mathbb{R}^{2}$? No, this is not true! As $\dot{V}(x)=0$ for $x_{2}=0$

As iii) does not hold, asymptotic stability cannot be shown.
5. Can you use LaSalle (Theorem 7.4 in the Lecture Notes) to show global asymptotic stability of the origin?
i) Take $S=\left\{x \in \mathbb{R}^{2} \mid V(x) \leq \xi\right\}$, with any $\xi \in \mathbb{R}^{+} \backslash\{0\}$

Then, $V(0)=0, V(x)>0, \forall x \in S \backslash 0$ and S is closed and bounded and thus compact.
ii) $\dot{V}(x)=-x_{2} d\left(x_{2}\right) \leq 0, \forall x \in S \Rightarrow S$ invariant
iii) $\bar{S}=\{x \in S \mid \dot{V}(x(t))=0\}$, given as $\bar{S}=\left\{x \in \mathbb{R}^{2} \mid x_{2}=0\right\}$
iv) We show, that the largest invariant set M in \bar{S} is the origin:
$x_{2}=0 \Rightarrow \dot{x}_{1}=0 \Rightarrow c\left(x_{1}\right)+0=0 \Leftrightarrow x_{1}=0$
v) By Theorem 7.4: All trajectories starting in S approach $M=\{(0,0)\}$ at $t \rightarrow \infty$.

Due to stability of the system (Theorem 7.2) from part 4. from this exercise and LaSalle (Theorem 7.4), we know that for $S=\mathbb{R}^{2}$, the origin $x=(0,0)$ is globally asymptotically stable.

