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Solution for exercise 1

1 2 3 4 5 Exercise

6 3 6 4 6 25 Points

1. The system can be written as

d

dt

[
x1(t)

x2(t)

]
=

 vin
A1
− Cvu1(t)

A1

√
2gx1(t)

Cvu1(t)
A2

√
2gx1(t)− Cvu2(t)

A2

√
2gx2(t)

 (1)

2. For the steady state, the derivatives are 0 and we exchange x1(t) with α1 as well as
x2(t) with α2: [

0

0

]
=

[ vin
A1
− Cvu1

A1

√
2gα1

Cvu1
A2

√
2gα1 − Cvu2

A2

√
2gα2

]
(2)

which implies

u1 =
vin

Cv
√

2gα1
.

With this, the second equation becomes

0 =
vin
A2
− Cvu2

A2

√
2gα2

which means
u2 =

vin
Cv
√

2gα2
.

3. The matrices are as follows:

A =

−Cv
√
2gu1(t)
A1

1

2
√
x1(t)

0

Cv
√
2gu1(t)
A2

1

2
√
x1(t)

−Cv
√
2gu2(t)
A2

1

2
√
x2(t)


B =

[
−Cv
A1

√
2gx1(t) 0

Cv
A2

√
2gx1(t) −Cv

A2

√
2gx2(t)

]

Putting in the constants from the previous task leads to:

A =

[
− vin

2A1α1
0

vin
2A2α1

− vin
2A2α2

]

B =

[
−Cv
A1

√
2gα1 0

Cv
A2

√
2gα1 −Cv

A2

√
2gα2

]

4. The system is stable: Because all the constants are > 0, the eigenvalues have real
parts smaller than 0 (we can read them from the diagonal of A). This means the
non-linear system is locally asymptotically stable around this equilibrium.
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5. Since the system does not have any unstable poles (because it is stable), we need the
point −1/K to be encircled 0 times for stability. The inadmissible K are therefore
in the range −1/K ∈ [−1

3 , 0) (approximately), meaning K ≥ 3 renders the system
unstable. Since the question asks about when the stability properties change (i.e.
when it becomes unstable), the range of K asked for is K ≥ 3.
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Solution for exercise 1

1 2 3 4 5 Exercise

X X X X X 25 Points

1. Setting det(λI −A) = 0,

det

([
λ −a
a λ

])
= 0

Thus, the characteristic equation is λ2+a2 = 0, and the eigenvalues are λ = ±aj. λ =
+aj has an eigenvector of [1 j]T , while λ = −aj has an eigenvector of [j 1]T . Since
the eigenvalues have linearly independent eigenvectors, the matrix is diagonalizable.

2. We write A = WΛW−1, with W the matrix of eigenvectors and Λ the matrix with
the eigenvalues on the diagonal.

A =

[
1 j
j 1

] [
aj 0

0 −aj

] [
1 j
j 1

]−1
As we saw in lecture, eAt = WΛtW−1. Thus,

eAt =

[
1 j
j 1

] [
eajt 0

0 e−ajt

] [
1 j
j 1

]−1
= 1/2

[
eajt + e−ajt − jeajt + je−ajt

jeajt − je−ajt eajt + e−ajt

]
=

[
cos(at) sin(at)
−sin(at) cos(at)

]
3. Since A is diagonalizable, with eigenvalues that have zero real parts, the system is

stable, but not asymptotically stable, for all a.

4. To determine controllability, we form the controllability matrix P =
[
B AB

]
=[

b1 ab2
b2 −ab1

]
. Looking at the determinant of this matrix, P is invertible iff−ab21−ab22 6=

0. If a = 0, then the system is not controllable for any b1, b2. If a 6= 0, the system
is controllable iff b1 6= 0, b2 6= 0.

5. Since x0 = [0 0]T , Y (s)
U(s) = C(sI − A)−1B + D = s

s2+a2
+ 1. Since we want the step

response of this system, U(s) = 1/s, and thus Y (s) = 1
s2+a2

+ 1
s . Taking the inverse

Laplace transform, y(t) = 1 + 1
asin(at).
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Exercise 3

1 2 3 4 5 Exercise

5 3 5 5 7 25 Points

1.

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−aN −aN−1 −aN−2 · · · −a1



B =


0
...
0
b0


C =

(
0 0 · · · 0 1

)
D = 0

2.

A =

(
0 1
−1

8
3
4

)

B =

(
0
2

)

C =
(
0 1

)
D = 0

3. a) Stability: the eigenvalues of the system matrix A are λ1 = 1
4 and λ2 = 1

2 . Since
the magnitudes of both eigenvalues are strictly smaller than 1, the autonomous
system is asymptotically stable.

b) Controllability: the controllability matrix P has full rank and thus the system
is controllable.

P =
(
B AB

)
=

(
0 2
2 3

2

)
c) Observability: the observability matrix O has full rank and thus the system is

observable

O =

(
C
CA

)
=

(
0 1
−1

8
3
4

)
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4. No, since the system matrix A does not have both eigenvalues at zero, it is not
nilpotent and the ZIT xk = Ak−NxN k = N,N + 1, . . . does not reach [0 0]> in a
finite number of steps and remain there.

5. Since the pair (A,B) is controllable, there exists a state feedback law uk = Fkxk such
that the closed-loop system matrix A + BF has deadbeat behavior. Therefore, we
have to find F = [f1 f2] ∈ IR1x2 such that the matrix A+BF has both eigenvalues
at zero. We can achieve this by computing the characteristic polynomial of A+BF
as a function of f1 and f2 and comparing coefficients:

A+BF =

(
0 1

−1
8 + 2f1

3
4 + 2f2

)
det
(
(A+BF )− λI

)
= λ2 − λ · (3

4
+ 2f2)− 2f1 +

1

8

By comparing coefficients with the polynomial 1λ2 + 0λ+ 0 (i.e. both eigenvalues of
A+BF at zero), we obtain f1 = 1

16 and f2 = −3
8 and

F =
(
f1 f2

)
=
(

1
16 −3

8

)
Sanity check:

A+BF =

(
0 1
0 0

)
is indeed nilpotent.
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Exercise 4

1 2 3 4 5 Exercise

7 5 5 3 5 25 Points

1. a) State-space form is given by[
x1
x2

]
=

[
x
ẋ1

]
=

[
x

1
m(−c(x1)− d(x2))

]
(3)

b) It depends on the functions c(x) and d(ẋ):
If they are linear (for example c(x) = kx and d(ẋ) = gẋ), the system is linear,
as it can be written as ẋ = Ax with constant coefficient A (for example A =[

0 1

− k
m − g

m

]
).

If one or both of c(x) and d(ẋ) are nonlinear, the system is also nonlinear, as
it cannot be written as ẋ = Ax with constant coefficient A.

c) No, the system is time-invariant, as there is no time-dependency: ẋ = f(x) 6=
f(x, t).

d) Yes, the system is autonomous, as there is no input to the system, i.e. ẋ =
f(x) 6= f(x, u).

2. At an equilibrium point, it holds:

[
ẋ1
ẋ2

]
=

[
0
0

]
⇒

 x2 = 0
c(x1)− d(x2 = 0)︸ ︷︷ ︸

0

= 0

⇒ c(x1) = 0, x1 = 0. (4)

The only equilibrium point of the system is the origin (0, 0).

3. We use Theorem 7.2 from the Lecture Notes, with the Lyapunov function V =
1
2mx

2
2 +

∫ x1
0 c(s)ds (energy of the system) and S = R2:

i) V (0, 0) = 0

ii) V (x) > 0, ∀x ∈ R2 \ (0, 0)

iii) V̇ (x) = m x2 ẋ2+c(x1) ẋ1 = m x2
1
m (−c(x1)−d(x2))+c(x1) x2 = −x2 d(x2) ≤

0, ∀x ∈ R2

4. Theorem 7.3 from the Lecture Notes, with the Lyapunov function candidate V =
E = 1

2mx
2
2 +

∫ x1
0 c(s)ds (as before) and S = R2:

i) V (0, 0) = 0

ii) V (x) > 0, ∀x ∈ R2 \ (0, 0)

iii) V̇ (x) = −x2 d(x2)
?
< 0, ∀x ∈ R2? No, this is not true! As V̇ (x) = 0 for x2 = 0
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As iii) does not hold, asymptotic stability cannot be shown.

5. Can you use LaSalle (Theorem 7.4 in the Lecture Notes) to show global asymptotic
stability of the origin?

i) Take S = {x ∈ R2|V (x) ≤ ξ}, with any ξ ∈ R+ \ {0}
Then, V (0) = 0, V (x) > 0, ∀x ∈ S \ 0 and S is closed and bounded and thus
compact.

ii) V̇ (x) = −x2 d(x2) ≤ 0, ∀x ∈ S ⇒ S invariant

iii) S̄ = {x ∈ S|V̇ (x(t)) = 0}, given as S̄ = {x ∈ R2|x2 = 0}
iv) We show, that the largest invariant set M in S̄ is the origin:

x2 = 0⇒ ẋ1 = 0⇒ c(x1) + 0 = 0⇔ x1 = 0

v) By Theorem 7.4: All trajectories starting in S approach M = {(0, 0)} at t→∞.

Due to stability of the system (Theorem 7.2) from part 4. from this exercise and
LaSalle (Theorem 7.4), we know that for S = R2, the origin x = (0, 0) is globally
asymptotically stable.
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