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Exercise 1

1 2 Exercise

12 13 25 Points

1. (a) The impulse response is given by (2p)

K(t) = CΦ(t)B +Dδ(t) =
(
1 2

)(e−2t 0
0 e−3t

)(
1
1

)
= e−2t + 2e−3t.

Both poles of the system appear in the impulse response. (1p) The laplace trans-
form of the impulse response is the transfer function. As both poles appear in
the transfer function, we can conclude that there is no pole-zero-cancellation
(1p) and therefore, the system is completely observable and controllable. (1p)

(b) The transfer function G(s) is the Laplace-transform of the impulse response
and given by (3p)

G(s) = L(K(t)) =
1

s+ 2
+

2

s+ 3
=

3s+ 7

s2 + 5s+ 6

Alternative solution: The transfer function can directly be computed, as the
system matrices are known.

G(s) = C(sI −A)−1B

=
(
1 2

)( 1
s+2 0

0 1
s+3

)(
1
1

)
=

1

s+ 2
+

2

s+ 3

=
3s+ 7

s2 + 5s+ 6

(c)

y(t) = CΦ(t− t0)x(t0) +

∫ t

t0

K(τ)u(t− τ)dτ

=

∫ t

0
2(e−2τ + 2e−3τ )dτ

=
[
2e−2τ + 4e−3τ

]t
0

= − e−2t +−4

3
e−3t +

7

3
(4p)

2. (a) The characteristical polynomial is given by

(s+ 1)(s− 2)(s+ 3) = s3 + 2s2 − 5s− 6 = s3 + a1s
2 + a2s+ a3 (2p)

and therefore the observable canonical form reads the following:

A =

0 0 −a3

1 0 −a2

0 1 −a1

 =

0 0 6
1 0 5
0 1 −2

 , B =

b3b2
b1

 =

−1
1
0

 , C =
(
0 0 1

)
. (2p)
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(b) The differential equation for the error dynamics is given by

ė(t) = ẋ(t)− ˙̃x(t)

= Ax(t) +Bu(t)− [Ax̃(t) +Bu(t) + Ly − LCx̃]

= A(x(t)− x̃)− LC(x(t)− x̃(t)

= (A− LC)e(t). (3p)

(c) The desired polynomial is given by

(s+ 1)(s+ 2)(s+ 3) = s3 + 6s2 + 11s+ 6. (1p)

The A-matrix of the system with observer is

A−

l1l2
l3

(0 0 1
)

= A−

0 0 l1
0 0 l2
0 0 l3

 . (2p)

One can see, that it is still in canonical observable form, (1p) which makes the
computation of the observer gains very easyl1l2

l3

 =

p1 − a3

p2 − a2

p3 − a1

 =

 6 + 6
11 + 5
6− 2

 =

12
16
4

 , (2p)

with pi the coefficients of the desired characteristical polynomial.
For the coefficient matching, you can also compute:

s3 + (l3 + 2)s2 + (l2 − 5)s+ (l1 − 6)

3



Signal and System Theory II, BSc, Spring Term 2015 Solution

Exercise 2

1 2 3 4 5 Exercise

4 6 5 7 3 25 Points

1. The eigenvalues of the matrix are λ1,2 = 1 and λ3 = 1
2 . They are independent of

the value of a. Because there exist eigenvalues on the unit circle, the system is not
asymptotically stable.

2. The controllability matrix is given as

P =
(
B AB A2B

)
=

2 4 6
0 −2 −4
0 2a 5a

 .

For a = 0, the set of reachable states is given as

range(P ) = span


1

0
0

 ,

0
1
0

 .

For a 6= 0 we have
det(P ) = 2(−10a+ 8a) = −4a 6= 0,

hence, the system is controllable for a 6= 0 and all states are reachable.

3. The observability matrix is given as

Q =

 C
CA
CA2

 =

1 0 0
2 1 0
3 2 0

 .

Obviously, det(Q) = 0 for all values of a, hence, the system is never observable.

4. The system is unobservable for all values of a, hence, there will be at least one pole-
zero cancellation in the transfer function, i.e. the transfer function will have less than
three poles.

To determine whether the transfer function has one or two pole-zero-cancellations,
we have to determine for which values of λ the matrices(

C
λI −A

)
and

(
B λI −A

)
lose rank.

It is easy to see that

(
C

λI −A

)
=


1 0 0

λ− 1 −1 0
1 λ 0
−a 0 λ− 1

2


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loses rank for λ = 1
2 for all values of a (the last column is identically zero). Similarly,

the matrix (
B λI −A

)
=

2 λ− 1 −1 0
0 1 λ 0
0 −a 0 λ− 1

2


only loses rank for a = 0 and λ = 1

2 (the last row is identically zero).

Hence, the only mode being cancelled in the transfer function for all values of a is
λ3 = 1

2 and the transfer function will always have exactly two poles λ1,2 = 1.

5. From the controllability matrix P in part 1 it is clear that only adding0
0
1

u3(k)

would make the system controllable for all values of a (P is full rank).

5



Signal and System Theory II, BSc, Spring Term 2015 Solution

Exercise 3

1 2 3 4 5 6 Exercise

4 3 3 5 3 7 25 Points

1. The differential equation is

mz̈(t) = mg − C u(t)

(z(t) + z̄)2

[2 points]. It is not linear [1 point], but it is time invariant [1 point].

2. In order to find the equilibrium, we simply set z(t) and all its derivatives to zero,
leading to [2 points]

0 = mg − C ū

z̄2
⇐⇒ ū =

mgz̄2

C

3. The state-space form of the system is given as [3 points]

d

dt

[
x1(t)
x2(t)

]
=

[
x2(t)

g − C
m

u(t)
(x1(t)+z̄)2

]
y(t) = x1(t)

4. The linearized system equations with x(t) =
[
z(t) ż(t)

]T
are

d

dt
δx(t) =

[
0 1

2Cu(t)
m(z(t)+z̄)3

0

]∣∣∣∣∣z(t)=0
u(t)=ū

δx(t) +

[
0

− C
m(z(t)+z̄)2

]∣∣∣∣∣z(t)=0
u(t)=ū

δu(t)

=

[
0 1

2Cū
mz̄3

0

]
δx(t) +

[
0

− C
mz̄2

]
δu(t)

=

[
0 1
2g
z̄ 0

]
δx(t) +

[
0

− C
mz̄2

]
δu(t)

Grading: [2 points] for A matrix, [1 point] point for B matrix, [2 points] for
properly substituting equilibrium point values.

5. Since ū, C, z̄ > 0 holds, the eigenvalues given by the characteristic equation

λ2 − 2g

z̄
= 0

are λ1,2 = ±
√

2g
z̄ [1 point], and the considered equilibrium point is unstable

[1 point]. That means a disturbance will drive it away from there, making it useless
as a suspension system with an unknown force acting on the wheel [1 point].
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6. Applying the input δu(t) = k1x1(t) + k2x2(t) to the linearized system yields

d

dt
δx(t) =

[
0 1
2g
z̄ 0

]
δx(t) +

[
0

− C
mz̄2

]
δu(t)

=

[
0 1
2g
z̄ 0

]
δx(t) +

[
0

− C
mz̄2

] [
k1 k2

]
δx(t)

=

[
0 1

2g
z̄ −

Ck1
mz̄2

−Ck2
mz̄2

]
δx(t)

[2 points] for equations, [1 point] for arriving at a form ˙δx(t) = Aδx(t). The
characteristic polynomial of the state transition matrix is

λ2 +
Ck2

mz̄2
λ+

(
Ck1

mz̄2
− 2g

m

)
and hence

λ1,2 =
−Ck2
mz̄2
±
√(

Ck2
mz̄2

)2
− 4

(
Ck1
mz̄2
− 2g

m

)
2

[2 points]. This leads to the following conditions for asymptotic stability (i.e. all
eigenvalues have real part < 0):

• k2 > 0 [1 point]

• k1 ≥ 2gz̄2

C [1 point]

7. No, since we saw in the previous task that k2 > 0 is required for asymptotic stability
[1 point].
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Exercise 4

1 2 3 4 Exercise

3 9 8 5 25 Points

1. The system is linear (0.5p) and time invariant (0.5p). For u(t) = 0, (??) is a scalar
linear system with eigenvalue λ = a. (0.5p) Therefore, it is asymptotically stable if
a < 0, stable if a = 0 and unstable if a > 0. (1.5p)

2. (a) (1p) [
ż(t)

k̇(t)

]
=

[
(a− k(t))z(t)

z2(t)

]
(1)

(b) The extended system (??) is not linear, because for example we have the term
z2(t), but is time-invariant. (2p)

(c) The equilibrium points of system (??) are all the points in the set E := {(z, k) |
z = 0}. (1p)

(d) The linearized matrix computed at the equilibrium points is[
a− k −z

2z 0

]
(0,b)

=

[
a− b 0

0 0

]
,

whose eigenvalues are Λ = {0, a − b}. (2p) Therefore, if b < a the equilibrium
is unstable, if b ≥ a the linearization technique is inconclusive. (3p)

3. (a) The Lie derivative of Vb(z, k) according to the dynamics given in system (??)
is (2p)

V̇b(z, k) = zż + (k − b)k̇ = z2(a− k) + (k − b)z2 = z2(a− b).

(b) Consider the equilibrium point x̂ = (0 b)> and let S be an open ball centered
at x̂ with radius ε.(0.5p) Notice that Vb(x) > 0 for all x ∈ S\{x̂} (0.5p)and
Vb(x̂) = 0 (0.5p).

• For b > a, according to the previous subtask V̇b(x) ≤ 0 for all x ∈ S, hence
the equilibrium x̂ is stable.(1.5p)

• For b = a, according to the previous subtask V̇b(x) = 0 for all x ∈ S, hence
the equilibrium x̂ is stable.(1.5p)

• For b < a, according to linearization method studied above, the equilibrium
x̂ is unstable.(1.5p)

4. (a) First of all note that the value of k(t) is monotonically non-decreasing (0.5p).
We are going to prove that z(t)→ 0 (1p).
Consider the trajectory generated by an arbitrary initial point (z0, k0). There
are three possible cases.

• z0 = 0, then (z0, k0) is an equilibrium point and z(t) = 0 for all t > 0.
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z

Figure 1: Trajectories of system (??). In red are the equilibrium points.

• z0 6= 0 and k0 > a, then k(t) > a for all t > 0. Consequently, (a−k(t)) < 0
for all t > 0 and therefore z(t)→ 0. (0.5p)

• z0 6= 0 and k0 ≤ a, then both k(t) and |z(t)| increases until a time t̄ > 0
when k(t̄) > a. Since the system is time-invariant we can analyze what
happens for t > t̄ by considering what happens to a trajectory starting
from time t = 0 in (z0, k0) = (z(t̄), k(t̄)). From the previous case, we can
therefore conclude that z(t)→ 0. (0.5p)

(b) All the points in the axis z = 0 are equilibrium points hence trajectories starting
from there remain there. (0.5p) Along the axis k = a, ż = 0 therefore the
trajectories must be perpendicular to this axis. Moreover the sign of ż is as
given in Figure 1. Finally, V̇a(z, k) = 0 for all (z, k). Which means that
z2 + (k − a)2 = const. In other words the trajectories are semicircles around
the point (z, k) = (0, a) (1p), with the direction given by the sign of ż. (1p)
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