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Exercise 1

1.

2.

(a)

(a)

1 2 Exercise
12 | 13 | 25 Points

The impulse response is given by (2p)

K(t) = CO()B + Dé(t) = (1 2) (ef 693t> G) = 4 9e

Both poles of the system appear in the impulse response. (1p) The laplace trans-
form of the impulse response is the transfer function. As both poles appear in
the transfer function, we can conclude that there is no pole-zero-cancellation
(1p) and therefore, the system is completely observable and controllable. (1p)

The transfer function G(s) is the Laplace-transform of the impulse response
and given by (3p)

1 2 3s+7
512513 £15516
Alternative solution: The transfer function can directly be computed, as the
system matrices are known.

G(s) = C(sI-A)'B

- el 0

1 2
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3s+ 7

s24+55+6

y(t) = CO(t —to)x(to) + tt K(r)u(t — 7)dr

t
= / 2(e72" 4 273 dr
0
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= [26*27 + 46*37] 0
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The characteristical polynomial is given by
(s+1)(s—2)(s+3) =5>+25 =55 —6 = 5> +a15> + ass +az (2p)

and therefore the observable canonical form reads the following:

0 0 —as 0 0 6 b3 -1
A=[1 0 —az|=(10 5|, B=[b|=|1], C=(0 0 1).
01 —a 01 -2 by 0

2

(2p)
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(b) The differential equation for the error dynamics is given by

et) = i(t) — x(t)
= Ax(t) + Bu(t) — [AZ(t) + Bu(t) + Ly — LCz]
= A(z(t) — ) — LC(z(t) — Z(t)
= (A—LC)e(t). (3p)
(¢) The desired polynomial is given by
(s+1)(s+2)(s+3) =5>+65°+11s+6. (1p)

The A-matrix of the system with observer is

ll 0 O ll
A—|[l] (0 0 1)=A4-10 0 la]. (2p)

One can see, that it is still in canonical observable form, (1p) which makes the
computation of the observer gains very easy

I p1 —as 6+6 12
lo| =|p2—az | =[114+5| =116, (2p)
I3 p3 — a1 6—2 4

with p; the coefficients of the desired characteristical polynomial.
For the coefficient matching, you can also compute:

83 + (lg + 2)82 + (lQ — 5)8 + (ll — 6)
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Exercise 2

1/2|3|4| 5| Exercise
416|5| 7| 3|25 Points

1. The eigenvalues of the matrix are A\j2 = 1 and A3 = % They are independent of

the value of a. Because there exist eigenvalues on the unit circle, the system is not
asymptotically stable.

2. The controllability matrix is given as

2 4 6
P=(B AB A’B)=(0 —2 —4
0 2a 5a

For a = 0, the set of reachable states is given as

1 0
range(P) =spanq (0], |1
0 0

For a # 0 we have
det(P) = 2(—10a + 8a) = —4a # 0,

hence, the system is controllable for a # 0 and all states are reachable.

3. The observability matrix is given as

C 10
Q=ca]l=(2 1
C A2 3 2

o O O

Obviously, det(Q) = 0 for all values of a, hence, the system is never observable.

4. The system is unobservable for all values of a, hence, there will be at least one pole-
zero cancellation in the transfer function, i.e. the transfer function will have less than
three poles.

To determine whether the transfer function has one or two pole-zero-cancellations,
we have to determine for which values of A the matrices

(AICLA) and (B A - A)

lose rank.

It is easy to see that

1 0 0

C _[A-1 -1 0

()\I—A>— 1 A 0
—a 0 )\—%
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loses rank for A\ = % for all values of a (the last column is identically zero). Similarly,
the matrix
2 A-1 -1 0
(B M[—A)=(0 1 A 0
0 —a 0 X-— %
only loses rank for a = 0 and A = 3 (the last row is identically zero).

Hence, the only mode being cancelled in the transfer function for all values of a is
A3 = % and the transfer function will always have exactly two poles A\j 2 = 1.

5. From the controllability matrix P in part 1 it is clear that only adding

0
0 U3(k‘)
1

would make the system controllable for all values of a (P is full rank).
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1. The differential equation is

.. u(t)

mZ(t) =mg —C———"—5

N DR

[2 points]. It is not linear [1 point], but it is time invariant [1 point].

2. In order to find the equilibrium, we simply set z(¢) and all its derivatives to zero,
leading to [2 points]

= =2
():mg—C’g2 — =
z

C
3. The state-space form of the system is given as [3 points]

T
are
d 0 1 0
d—&x(t) = 2Cu(t) 0 ox(t) + C ou(t)
t M=) +2)3 zggfq m(z(+2)? | | 2(1)=0

“[3 o

Y mc] Su(t)

Grading: [2 points| for A matrix, [1 point] point for B matrix, [2 points] for
properly substituting equilibrium point values.
5. Since u,C, z > 0 holds, the eigenvalues given by the characteristic equation

2
A2 -2 g
Z
are A2 =

+ 259 [1 point], and the considered equilibrium point is unstable
[1 point]. That means a disturbance will drive it away from there, making it useless

as a suspension system with an unknown force acting on the wheel [1 point].

6
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6. Applying the input du(t) = ki1x1(t) + koxa(t) to the linearized system yields
d [0 1 0
aéw(t) = _2?9 0] ox(t) + [_ mgz] du(t)
[0 1 0
= |29 0:| (SIL’(t) + |:_C’:| [kl kg] 51’(75)
Lz mz2
[ 0 1
= |29 Cky _Ck2:| (1)
Lz mz? mz?

[2 points] for equations, [1 point] for arriving at a form dx(t) = Adx(t). The
characteristic polynomial of the state transition matrix is

2y Chy (Ckl 29)

mz? mz?2 m

and hence

2
Ck Ck Ck 2
_mZ% + \/(m2%> —4 (mié B Eg>
2

[2 points]. This leads to the following conditions for asymptotic stability (i.e. all
eigenvalues have real part < 0):

A2 =

e ko >0 [1 point]

o kb > 2952 [1 point]

7. No, since we saw in the previous task that ks > 0 is required for asymptotic stability
[1 point].
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Exercise 4

1/ 2|3]|4]| Exercise
319|8|5]| 25 Points

1. The system is linear (0.5p) and time invariant (0.5p). For w(t) = 0, (??) is a scalar
linear system with eigenvalue A = a. (0.5p) Therefore, it is asymptotically stable if
a < 0, stable if a = 0 and unstable if a > 0. (1.5p)

2. (a) (Ip)

[ A(t) ] 3 [ (a — k(t))z(t) ] (1)

(b) The extended system (?7) is not linear, because for example we have the term
22(t), but is time-invariant. (2p)

(¢) The equilibrium points of system (?7) are all the points in the set E := {(z, k) |
z=0}. (1p)

(d) The linearized matrix computed at the equilibrium points is

[a—k‘ —z] [a—b O]

2z 0 o) 0 0|’
whose eigenvalues are A = {0,a — b}. (2p) Therefore, if b < a the equilibrium
is unstable, if b > a the linearization technique is inconclusive. (3p)

3. (a) The Lie derivative of Vj(z, k) according to the dynamics given in system (?7?)
is (2p)

Vi(z, k) = 22 + (k= b)k = 22 (a — k) + (k — b)2® = 2%(a — b).

(b) Consider the equilibrium point # = (0 b) " and let S be an open ball centered
at & with radius €.(0.5p) Notice that Vy(z) > 0 for all z € S\{z} (0.5p)and
Vi(#) = 0 (0.5p).

e For b > a, according to the previous subtask Vj(z) < 0 for all # € S, hence
the equilibrium & is stable.(1.5p)

e For b = a, according to the previous subtask %(33) =0 for all z € S, hence
the equilibrium z is stable.(1.5p)

e For b < a, according to linearization method studied above, the equilibrium
Z is unstable.(1.5p)

4. (a) First of all note that the value of k(¢) is monotonically non-decreasing (0.5p).
We are going to prove that z(t) — 0 (1p).
Consider the trajectory generated by an arbitrary initial point (zp, ko). There
are three possible cases.
e 29 =0, then (2, ko) is an equilibrium point and z(¢) = 0 for all ¢ > 0.

8
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Figure 1: Trajectories of system (?7). In red are the equilibrium points.

e 29 # 0 and kg > a, then k(t) > a for all t > 0. Consequently, (a —k(t)) <0
for all ¢ > 0 and therefore z(t) — 0. (0.5p)

e 2y # 0 and ko < a, then both k(¢) and |z(t)| increases until a time ¢ > 0
when k(t) > a. Since the system is time-invariant we can analyze what
happens for ¢t > t by considering what happens to a trajectory starting
from time ¢ = 0 in (20, ko) = (2(¢), k(t)). From the previous case, we can
therefore conclude that z(t) — 0. (0.5p)

(b) All the points in the axis z = 0 are equilibrium points hence trajectories starting
from there remain there. (0.5p) Along the axis k = a, Z = 0 therefore the
trajectories must be perpendicular to this axis. Moreover the sign of Z is as
given in Figure 1. Finally, V,(z,k) = 0 for all (z,k). Which means that
22 + (k — a)? = const. In other words the trajectories are semicircles around

the point (z,k) = (0,a) (1p), with the direction given by the sign of Z. (1p)



