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Signal and System Theory II, BSc, Spring Term 2014 Solution

Exercise 1

1 2 3 4 5 Exercise

4 5 4 7 5 25 Points

1. A is triangular, hence the eigenvalues are λ1 = α and λ2 = α2. If α ∈ {0, 1}, then
α = α2. In this case A is in Jordan canonical form, not diagonalizable and there
exists only one eigenvector v1 = [1 0]>. If α /∈ {0, 1}, the eigenvalues of A are
distinct and A is diagonalizable. The eigenvectors in this case are

v1 =

[
1
0

]
and v2 =

[
1

α2 − α

]
.

2. Let α < 0. Then A is diagonalizable with

A = WΛW−1, where W =

[
1 1
0 α2 − α

]
and W−1 =

1

α2 − α

[
α2 − α −1

0 1

]
.

We obtain

eAt = WeΛtW−1 =
1

α2 − α

[
1 1
0 α2 − α

] [
eαt 0

0 eα
2t

] [
α2 − α −1

0 1

]
=

=
1

α2 − α

[
eαt eα

2t

0 (α2 − α)eα
2t

] [
α2 − α −1

0 1

]
=

=
1

α2 − α

[
(α2 − α)eαt eα

2t − eαt

0 (α2 − α)eα
2t

]
.

Alternative solution:

To show that the given matrix is indeed the matrix exponential eAt we can show
that it fulfills the differential equation d

dte
At = AeAt and that eA0 = I. The latter

statement clearly holds. For the former, differentiating the given matrix exponential
we obtain

d

dt
eAt =

1

α2 − α

[
α(α2 − α)eαt α2eα

2t − αeαt

0 α2(α2 − α)eα
2t

]
.

Further, we find that

AeAt =
1

α2 − α

[
α(α2 − α)eαt αeα

2t − αeαt + (α2 − α)eα
2t

0 α2(α2 − α)eα
2t

]

=
1

α2 − α

[
α(α2 − α)eαt α2eα

2t − αeαt

0 α2(α2 − α)eα
2t

]
.

For α = 0, A is not diagonalizable but it is nilpotent and we find

eAt =

[
1 0
0 1

]
+

[
0 1
0 0

]
t =

[
1 t
0 1

]
.

2



Signal and System Theory II, BSc, Spring Term 2014 Solution

3. Since α2 > 0 ∀ α 6= 0 it is immediately clear that the system cannot be stable for
α 6= 0. For α = 0 we can see from the matrix exponential that the system is also
not stable. Hence, the system is unstable for all α.

4. It is easy to see that for α = 0 the system is controllable, hence such an input must
exist. To find one we can, for instance, use the minimum energy input which we can
compute with the controllability gramian

WC(1) =

∫ 1

0
eAtBB>eA

>tdt =

=

∫ 1

0

[
1 t
0 1

] [
0
1

] [
0 1

] [1 0
t 1

]
dt =

=

∫ 1

0

[
t2 t
t 1

]
dt =

[
1
3

1
2

1
2 1

]
.

With this we obtain

u(t) = B>eA
>(1−t)WC(1)−1x(1) =

=
[
0 1

] [ 1 0
1− t 1

]
12

[
1 −1

2
−1

2
1
3

] [
1
0

]
= 12

[
1− t 1

] [ 1
−1

2

]
= 12

(
1

2
− t
)

= 6− 12t.

5. For α = −1, B contains only zeros and the input does not influence the system at all.
The state transition is therefore given by eAtx0. Using the results from subquestion
2 we obtain

x(t) = eAtx0 =
1

2

[
2e−t et − e−t

0 2et

] [
1
0

]
=

[
e−t

0

]
.

Hence, at t = 1 the desired state will be reached for any input u(t).
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Exercise 2

1 2 3 4 Exercise

9 6 4 6 25 Points

1. • [3 points] Mechanical system: m · ẍ(t) = κ · I(t)− f · x(t)− d · v(t)

• [3 points] Electrical system: L · ddtI(t) = −R · I(t)− κ · v(t) + u(t)

• Faraday’s law: (F (t) = B · n ·D · π · I(t) = κ · I(t))

• Lorentz’ law: (Uind(t) = B · n ·D · π · v(t) = κ · v(t))

With state vector z = [I(t), x(t), v(t)]T , u(t) = F (t) and y(t) = x(t), the system
matrices read:

• [2 points] A =

−R
L 0 − κ

L
0 0 1
κ
m − f

m − d
m


• [1 point] B =

 1
L
0
0


• C =

[
0 1 0

]
2. With L = m = f = d = κ = 1 and R = 2, the state space matrices read

A =

−2 0 −1
0 0 1
1 −1 −1

 and B =

1
0
0


Stability: [2 points]

det(sI −A) = (s+ 2) (s(s+ 1) + 1) + s (1)

= (s+ 2)(s2 + s+ 1) + s (2)

= s3 + 3s2 + 4s+ 2 (3)

= (s+ 1)(s2 + 2s+ 2) (4)

Use the hint for the last step.

s1 = −1 (5)

s2,3 =
−2±

√
4− 8

2
(6)

= −1± i (7)

All Re[si] ≤ 0, i.e., the system is stable.

Controllability: [2 points] P:=
[
B AB A2B

]
=

1 −2 3
0 0 1
0 1 −3

. Since det(P )

6= 0, P has full rank, and therefore the system is controllable.
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Observability: [2 points] O:=

 C
CA
CA2

 =

0 1 0
0 0 1
1 −1 −1

. Since det(O) 6= 0, O

has full rank, and therefore the system is observable.

3. [4 points] The transfer function is defined as G(s) = C(sI − A)−1B +D. Because

B =

1
0
0

 and C =
[
0 1 0

]
, we only need the (first column, second row)-element

of (sI−A)−1. Consequently, G(s) = fg−di
det(A) = 1

(s+1)(s+1−i)(s+1+i) (with f, g, d, i being

some of the original elements of sI −A).

4. To derive an expression for y(t) we need to perform an inverse Laplace transform,
hence we expand the transfer function in partial fractions.

1

(s+ 1)(s+ 1− i)(s+ 1 + i)
=

A

s+ 1
+

B

s+ 1− i
+

C

s+ 1 + i
(8)

=
A(s2 + 2s+ 2) +B(s2 + (s+ i)s+ 1 + i) + C(s2 + (2− i)s+ 1− i)

(s+ 1)(s+ 1− i)(s+ 1 + i)
(9)

=
(A+B + C)s2 + (2A+ (2 + i)B + (2− i)C)s+ (2A+ (1 + i)B + (1− i)C)

(s+ 1)(s+ 1− i)(s+ 1 + i)
(10)

By comparison of coefficients, we obtain A=1, B=C=-0.5 [3 points]. Hence, the
Laplace transform of the output is

Y (s) =
1

s+ 1
+
−0.5

s+ 1− i
+
−0.5

s+ 1 + i
. (11)

The inverse Laplace transform is [3 points]

y(t) = e−t − 0.5e(−1+i)t − 0.5e(−1−i)t (12)

= e−t − e−t
(
eit + e−it

2

)
(13)

= e−t − e−t cos(t) (14)

= e−t(1− cos(t)). (15)

Alternative derivation:

1

(s+ 1)(s+ 1− i)(s+ 1 + i)
=

A

s+ 1
+

Bs+ C

(s+ 1)2 + 1
(16)

=
A(s2 + 2s+ 2) +B(s2 + s) + C(s+ 1)

(s+ 1) ((s+ 1)2 + 1)
(17)

=
(A+B)s2 + (2A+B + C)s+ (2A+ C)

(s+ 1) ((s+ 1)2 + 1)
(18)
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By comparison of coefficients, we obtain A=1, B=C=-1 [3 points]. Hence, the
Laplace transform of the output is

Y (s) =
1

s+ 1
− s+ 1

(s+ 1)2 + 1
. (19)

The inverse Laplace transform is [3 points]

y(t) = e−t − e−t cos(t) (20)

= e−t(1− cos(t)). (21)
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Exercise 3

1 2 3 4 Exercise

6 6 6 7 25 Points

1. The equilibrium points are the solutions of

0 = (x2 + y2 − 1)x− y, (22)

0 = (x2 + y2 − 1)y + x. (23)

It is immediate to see that the point (x, y) = (0, 0) satisfies (22) and (23), therefore
the origin is the unique equilibrium point of the system. The linearization of the
system around the origin is

A =

 ∂[(x2+y2−1)x−y]
∂x

∂[(x2+y2−1)x−y]
∂y

∂[(x2+y2−1)y+x]
∂x

∂[(x2+y2−1)y+x]
∂y


(0,0)

=

[
−1 −1
1 −1

]
. (24)

The eigenvalues are λ1,2 = −1 ±
√
−1. Since Re(λ1,2) < 0 we can conclude, from

Theorem 7.1, that the origin is locally asymptotically stable.

2. Note that r2(t) = x2(t) + y2(t), hence

d

dt
r2(t) =

d

dt
(x2(t) + y2(t))

2r(t)ṙ(t) = 2x(t)ẋ(t) + 2y(t)ẏ(t)

2r(t)ṙ(t) = 2x(t)
[
(x2(t) + y2(t)− 1)x(t)− y(t)

]
+ 2y(t)

[
(x2(t) + y2(t)− 1)y(t) + x(t)

]
2r(t)ṙ(t) = 2x2(t)(r2(t)− 1)− 2x(t)y(t) + 2y2(t)(x2(t) + y2(t)− 1) + 2x(t)y(t)

2r(t)ṙ(t) = 2r2(t)(r2(t)− 1).

Therefore ṙ(t) = r(t)(r2(t)− 1).

To compute θ̇(t) we can differentiate both sides of y(t) = r(t) sin(θ(t)).

d

dt
y(t) =

d

dt
(r(t) sin(θ(t)))

ẏ(t) = ṙ(t) sin(θ(t)) + r(t) cos(θ(t))θ̇(t)

(x2(t) + y2(t)− 1)y(t) + x(t) = r(t)(r2(t)− 1) sin(θ(t)) + r(t) cos(θ(t))θ̇(t)

(r2(t)− 1)r(t) sin(θ(t)) + r(t) cos(θ(t)) = r(t)(r2(t)− 1) sin(θ(t)) + r(t) cos(θ(t))θ̇(t)

r(t) cos(θ(t)) = r(t) cos(θ(t))θ̇(t)

1 = θ̇(t).

Hence the system in polar coordinates is

ṙ(t) = r(t)(r2(t)− 1), (25)

θ̇(t) = 1. (26)
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3. Note that equations (25) and (26) are decoupled. The angle θ(t) is constantly in-
creasing over time irrespective of the value of r(t). On the other hand, if r(t) < 1
then ṙ(t) < 0, if r(t) > 1 then ṙ(t) > 0 and ṙ(t) = 0 if r(t) = 1. Therefore if
r(t) < 1 it will decrease towards zero, if r(t) > 1 it will increase towards infinity
and if r(t) = 1 it will stay constant. Therefore the trajectories are as illustrated in
Figure 1.

x	
  

y

1

1

Figure 1: Three sample trajectories. Green: r(0) < 1. Blue: r(0) = 1. Red: r(0) > 1.

From this analysis we can conclude that the circle of radius one is a periodic orbit.
Moreover, the equilibrium point in the origin is a trivial periodic orbit.

4. From the analysis of part 3 it is clear that any circle Cρ of radius ρ ≤ 1 is an invariant
set. In fact r is non-increasing for any value of r ≤ 1 therefore any trajectory starting
inside a set Cρ of radius ρ ≤ 1 cannot leave it. The sets Cρ are the level sets of the
function

V (x, y) = x2 + y2.

To prove that this is a local Lyapunov function for the origin we need to prove that
there exists an open set S containing the origin such that:

(a) V (x, y) > 0 for any (x, y) ∈ S 6= (0, 0);

(b) V̇ (x, y) < 0 for any (x, y) ∈ S 6= (0, 0).
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To this end, we can use the suggested set S = {(x, y)|x2 + y2 < 1}. Condition (a) is
always true. The time derivative of V (x(t), y(t)) is

V̇ (x(t), y(t)) = 2x(t)ẋ(t)+2y(t)ẏ(t) = 2(x2(t)+y2(t))(x2(t)+y2(t)−1) = 2r2(t)(r2(t)−1),

which is strictly negative on S\(0, 0). Therefore also Condition (b) holds and V (x, y)
is a local Lyapunov function. The asymptotic stability of the origin follows from
Theorem 7.3.
Finally, we can conclude that S is contained in the domain of attraction of the
origin. Actually, from the analysis done in part 3, we can conclude that S is the
entire domain of attraction.

9
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Exercise 4

1 2 3 4 Exercise

7 6 7 5 25 Points

1. The output after k time-steps is given by

y(k) = Cx(k) +Du(k)

= C

(
Akx(0) +

k−1∑
i=0

Ak−i−1Bu(i)

)
+Du(k)

= CAkx(0) +
k−1∑
i=0

CAk−i−1Bu(i) +Du(k)

[1 point for providing this formula]

Stacking the outputs for k = 0, . . . , N − 1 to make use of U and Y , this can be
written in terms of a large system of linear equations as follows:

y(0)
y(1)

...
y(N − 1)


︸ ︷︷ ︸

Y

=


C
CA

...
CAN−1


︸ ︷︷ ︸

Q

x(0) +


D 0 . . . 0
CB D . . . 0

...
...

. . .
...

CAN−2B CAN−3B . . . D


︸ ︷︷ ︸

H


u(0)
u(1)

...
u(N − 1)


︸ ︷︷ ︸

U

[3 points for stacking the vectors correctly]

Collecting all known quantities on the right-hand side, we can rewrite this as

Qx(0) = Y −HU, (27)

which can be solved for the only unknown x(0) under some assumptions (see next
part). [1 point for writing the system of linear equations in the required
form]

In the notation of the exercise, M = Q ∈ RpN×n and q = Y −HU ∈ RpN . [2
points for the correct dimensions]

2. Because N = n, the coefficient matrix of the system of equations (27) is exactly the
observability matrix Q, i.e. we have to solve (27) to find x(0). [2 points for
noticing that M = Q]

Since p = 1, it follows that Q is square. Therefore (27) has a unique solution if and
only if Q has full rank. Equivalently (for square matrices), det(Q) 6= 0, Q−1 has to
exist, or R(Q) = Rn. [3 points for a unique solution condition + 1 point
for making the connection to rank(Q) = n]

10



Signal and System Theory II, BSc, Spring Term 2014 Solution

3. Using the given values in (27) leads to the system of linear equations [3 points for
the correct system][

1 0.9
2.8 2.4

]
x(0) =

[
2.9
9.9

]
︸ ︷︷ ︸
Y

−
[

0 0
1.9 0

]
︸ ︷︷ ︸
M

[
1
−2

]
︸ ︷︷ ︸
U

=

[
2.9
8

]
,

which is solved by

x(0) =

(
2
1

)
.

[4 points for the correct solution]

4. In the presence of measurement noise, it might be impossible to reliably reconstruct
the initial state. [1 point]

In order to get a good estimate of the system state, it is therefore better to design
a state estimator such as a Luenberger Observer or Kalman Filter. [2 points]

In order for such estimation methods to work, the system has to be detectable. Note
that this is a slightly weaker condition than observability, i.e. detectable systems can
be unobservable but an observer will still work. [1 point]

When the state estimator for a detectable system is properly designed, the estimation
error will tend to zero, providing a very good estimate of the system state in the
long run. [1 point]
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