Signal and System Theory II 4. Semester, BSc

Solutions

Exercise 1

1	2	3	4	5	Exercise
4	5	4	7	5	25 Points

1. A is triangular, hence the eigenvalues are $\lambda_{1}=\alpha$ and $\lambda_{2}=\alpha^{2}$. If $\alpha \in\{0,1\}$, then $\alpha=\alpha^{2}$. In this case A is in Jordan canonical form, not diagonalizable and there exists only one eigenvector $v_{1}=\left[\begin{array}{ll}1 & 0\end{array}\right]^{\top}$. If $\alpha \notin\{0,1\}$, the eigenvalues of A are distinct and A is diagonalizable. The eigenvectors in this case are

$$
v_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \text { and } v_{2}=\left[\begin{array}{c}
1 \\
\alpha^{2}-\alpha
\end{array}\right] .
$$

2. Let $\alpha<0$. Then A is diagonalizable with

$$
A=W \Lambda W^{-1}, \text { where } W=\left[\begin{array}{cc}
1 & 1 \\
0 & \alpha^{2}-\alpha
\end{array}\right] \text { and } W^{-1}=\frac{1}{\alpha^{2}-\alpha}\left[\begin{array}{cc}
\alpha^{2}-\alpha & -1 \\
0 & 1
\end{array}\right] .
$$

We obtain

$$
\begin{aligned}
e^{A t}=W e^{\Lambda t} W^{-1} & =\frac{1}{\alpha^{2}-\alpha}\left[\begin{array}{cc}
1 & 1 \\
0 & \alpha^{2}-\alpha
\end{array}\right]\left[\begin{array}{cc}
e^{\alpha t} & 0 \\
0 & e^{\alpha^{2} t}
\end{array}\right]\left[\begin{array}{cc}
\alpha^{2}-\alpha & -1 \\
0 & 1
\end{array}\right]= \\
& =\frac{1}{\alpha^{2}-\alpha}\left[\begin{array}{cc}
e^{\alpha t} & e^{\alpha^{2} t} \\
0 & \left(\alpha^{2}-\alpha\right) e^{\alpha^{2} t}
\end{array}\right]\left[\begin{array}{cc}
\alpha^{2}-\alpha & -1 \\
0 & 1
\end{array}\right]= \\
& =\frac{1}{\alpha^{2}-\alpha}\left[\begin{array}{cc}
\left(\alpha^{2}-\alpha\right) e^{\alpha t} & e^{\alpha^{2} t}-e^{\alpha t} \\
0 & \left(\alpha^{2}-\alpha\right) e^{\alpha^{2} t}
\end{array}\right] .
\end{aligned}
$$

Alternative solution:

To show that the given matrix is indeed the matrix exponential $e^{A t}$ we can show that it fulfills the differential equation $\frac{d}{d t} e^{A t}=A e^{A t}$ and that $e^{A 0}=I$. The latter statement clearly holds. For the former, differentiating the given matrix exponential we obtain

$$
\frac{d}{d t} e^{A t}=\frac{1}{\alpha^{2}-\alpha}\left[\begin{array}{cc}
\alpha\left(\alpha^{2}-\alpha\right) e^{\alpha t} & \alpha^{2} e^{\alpha^{2} t}-\alpha e^{\alpha t} \\
0 & \alpha^{2}\left(\alpha^{2}-\alpha\right) e^{\alpha^{2} t}
\end{array}\right] .
$$

Further, we find that

$$
\begin{aligned}
A e^{A t} & =\frac{1}{\alpha^{2}-\alpha}\left[\begin{array}{cc}
\alpha\left(\alpha^{2}-\alpha\right) e^{\alpha t} & \alpha e^{\alpha^{2} t}-\alpha e^{\alpha t}+\left(\alpha^{2}-\alpha\right) e^{\alpha^{2} t} \\
0 & \alpha^{2}\left(\alpha^{2}-\alpha\right) e^{\alpha^{2} t}
\end{array}\right] \\
& =\frac{1}{\alpha^{2}-\alpha}\left[\begin{array}{cc}
\alpha\left(\alpha^{2}-\alpha\right) e^{\alpha t} & \alpha^{2} e^{\alpha^{2} t}-\alpha e^{\alpha t} \\
0 & \alpha^{2}\left(\alpha^{2}-\alpha\right) e^{\alpha^{2} t}
\end{array}\right] .
\end{aligned}
$$

For $\alpha=0, A$ is not diagonalizable but it is nilpotent and we find

$$
e^{A t}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\underset{2}{\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] t=\left[\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right] .}
$$

3. Since $\alpha^{2}>0 \forall \alpha \neq 0$ it is immediately clear that the system cannot be stable for $\alpha \neq 0$. For $\alpha=0$ we can see from the matrix exponential that the system is also not stable. Hence, the system is unstable for all α.
4. It is easy to see that for $\alpha=0$ the system is controllable, hence such an input must exist. To find one we can, for instance, use the minimum energy input which we can compute with the controllability gramian

$$
\begin{aligned}
W_{C}(1) & =\int_{0}^{1} e^{A t} B B^{\top} e^{A^{\top} t} d t= \\
& =\int_{0}^{1}\left[\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
t & 1
\end{array}\right] d t= \\
& =\int_{0}^{1}\left[\begin{array}{cc}
t^{2} & t \\
t & 1
\end{array}\right] d t=\left[\begin{array}{cc}
\frac{1}{3} & \frac{1}{2} \\
\frac{1}{2} & 1
\end{array}\right] .
\end{aligned}
$$

With this we obtain

$$
\begin{aligned}
u(t) & =B^{\top} e^{A^{\top}(1-t)} W_{C}(1)^{-1} x(1)= \\
& =\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
1-t & 1
\end{array}\right] 12\left[\begin{array}{cc}
1 & -\frac{1}{2} \\
-\frac{1}{2} & \frac{1}{3}
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& =12\left[\begin{array}{ll}
1-t & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
-\frac{1}{2}
\end{array}\right]=12\left(\frac{1}{2}-t\right)=6-12 t .
\end{aligned}
$$

5. For $\alpha=-1, B$ contains only zeros and the input does not influence the system at all. The state transition is therefore given by $e^{A t} x_{0}$. Using the results from subquestion 2 we obtain

$$
x(t)=e^{A t} x_{0}=\frac{1}{2}\left[\begin{array}{cc}
2 e^{-t} & e^{t}-e^{-t} \\
0 & 2 e^{t}
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
e^{-t} \\
0
\end{array}\right] .
$$

Hence, at $t=1$ the desired state will be reached for any input $u(t)$.

Exercise 2

1	2	3	4	Exercise
9	6	4	6	25 Points

1. - [3 points] Mechanical system: $m \cdot \ddot{x}(t)=\kappa \cdot I(t)-f \cdot x(t)-d \cdot v(t)$

- [3 points] Electrical system: $L \cdot \frac{d}{d t} I(t)=-R \cdot I(t)-\kappa \cdot v(t)+u(t)$
- Faraday's law: $(F(t)=B \cdot n \cdot D \cdot \pi \cdot I(t)=\kappa \cdot I(t))$
- Lorentz' law: $\left(U_{\text {ind }}(t)=B \cdot n \cdot D \cdot \pi \cdot v(t)=\kappa \cdot v(t)\right)$

With state vector $z=[I(t), x(t), v(t)]^{T}, u(t)=F(t)$ and $y(t)=x(t)$, the system matrices read:

- [2 points] $A=\left[\begin{array}{ccc}-\frac{R}{L} & 0 & -\frac{\kappa}{L} \\ 0 & 0 & 1 \\ \frac{\kappa}{m} & -\frac{f}{m} & -\frac{d}{m}\end{array}\right]$
- [1 point $] B=\left[\begin{array}{c}\frac{1}{L} \\ 0 \\ 0\end{array}\right]$
- $C=\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$

2. With $L=m=f=d=\kappa=1$ and $R=2$, the state space matrices read $A=\left[\begin{array}{ccc}-2 & 0 & -1 \\ 0 & 0 & 1 \\ 1 & -1 & -1\end{array}\right]$ and $B=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$

Stability: [2 points]

$$
\begin{align*}
\operatorname{det}(s I-A) & =(s+2)(s(s+1)+1)+s \tag{1}\\
& =(s+2)\left(s^{2}+s+1\right)+s \tag{2}\\
& =s^{3}+3 s^{2}+4 s+2 \tag{3}\\
& =(s+1)\left(s^{2}+2 s+2\right) \tag{4}
\end{align*}
$$

Use the hint for the last step.

$$
\begin{align*}
s_{1} & =-1 \tag{5}\\
s_{2,3} & =\frac{-2 \pm \sqrt{4-8}}{2} \tag{6}\\
& =-1 \pm i \tag{7}
\end{align*}
$$

All $\operatorname{Re}\left[s_{i}\right] \leq 0$, i.e., the system is stable.

Controllability: $[\mathbf{2}$ points $] \mathrm{P}:=\left[\begin{array}{lll}B & A B & A^{2} B\end{array}\right]=\left[\begin{array}{ccc}1 & -2 & 3 \\ 0 & 0 & 1 \\ 0 & 1 & -3\end{array}\right]$. Since $\operatorname{det}(P)$ $\neq 0, P$ has full rank, and therefore the system is controllable.

Observability: $[\mathbf{2}$ points $] \mathrm{O}:=\left[\begin{array}{c}C \\ C A \\ C A^{2}\end{array}\right]=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -1 & -1\end{array}\right]$. Since $\operatorname{det}(O) \neq 0, O$ has full rank, and therefore the system is observable.
3. [4 points] The transfer function is defined as $G(s)=C(s I-A)^{-1} B+D$. Because $B=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ and $C=\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$, we only need the (first column, second row)-element of $(s I-A)^{-1}$. Consequently, $G(s)=\frac{f g-d i}{\operatorname{det}(A)}=\frac{1}{(s+1)(s+1-i)(s+1+i)}$ (with $\mathrm{f}, \mathrm{g}, \mathrm{d}$, i being some of the original elements of $s I-A$).
4. To derive an expression for $y(t)$ we need to perform an inverse Laplace transform, hence we expand the transfer function in partial fractions.

$$
\begin{align*}
& \frac{1}{(s+1)(s+1-i)(s+1+i)}=\frac{A}{s+1}+\frac{B}{s+1-i}+\frac{C}{s+1+i} \tag{8}\\
& =\frac{A\left(s^{2}+2 s+2\right)+B\left(s^{2}+(s+i) s+1+i\right)+C\left(s^{2}+(2-i) s+1-i\right)}{(s+1)(s+1-i)(s+1+i)} \tag{9}\\
& =\frac{(A+B+C) s^{2}+(2 A+(2+i) B+(2-i) C) s+(2 A+(1+i) B+(1-i) C)}{(s+1)(s+1-i)(s+1+i)} \tag{10}
\end{align*}
$$

By comparison of coefficients, we obtain $\mathrm{A}=1, \mathrm{~B}=\mathrm{C}=-0.5$ [$\mathbf{3}$ points]. Hence, the Laplace transform of the output is

$$
\begin{equation*}
Y(s)=\frac{1}{s+1}+\frac{-0.5}{s+1-i}+\frac{-0.5}{s+1+i} . \tag{11}
\end{equation*}
$$

The inverse Laplace transform is [$\mathbf{3}$ points]

$$
\begin{align*}
y(t) & =e^{-t}-0.5 e^{(-1+i) t}-0.5 e^{(-1-i) t} \tag{12}\\
& =e^{-t}-e^{-t}\left(\frac{e^{i t}+e^{-i t}}{2}\right) \tag{13}\\
& =e^{-t}-e^{-t} \cos (t) \tag{14}\\
& =e^{-t}(1-\cos (t)) . \tag{15}
\end{align*}
$$

Alternative derivation:

$$
\begin{align*}
& \frac{1}{(s+1)(s+1-i)(s+1+i)}=\frac{A}{s+1}+\frac{B s+C}{(s+1)^{2}+1} \tag{16}\\
& =\frac{A\left(s^{2}+2 s+2\right)+B\left(s^{2}+s\right)+C(s+1)}{(s+1)\left((s+1)^{2}+1\right)} \tag{17}\\
& =\frac{(A+B) s^{2}+(2 A+B+C) s+(2 A+C)}{(s+1)\left((s+1)^{2}+1\right)} \tag{18}
\end{align*}
$$

By comparison of coefficients, we obtain $\mathrm{A}=1, \mathrm{~B}=\mathrm{C}=-1$ [3 points]. Hence, the Laplace transform of the output is

$$
\begin{equation*}
Y(s)=\frac{1}{s+1}-\frac{s+1}{(s+1)^{2}+1} \tag{19}
\end{equation*}
$$

The inverse Laplace transform is [$\mathbf{3}$ points]

$$
\begin{align*}
y(t) & =e^{-t}-e^{-t} \cos (t) \tag{20}\\
& =e^{-t}(1-\cos (t)) . \tag{21}
\end{align*}
$$

Exercise 3

1	2	3	4	Exercise
6	6	6	7	25 Points

1. The equilibrium points are the solutions of

$$
\begin{align*}
& 0=\left(x^{2}+y^{2}-1\right) x-y, \tag{22}\\
& 0=\left(x^{2}+y^{2}-1\right) y+x . \tag{23}
\end{align*}
$$

It is immediate to see that the point $(x, y)=(0,0)$ satisfies (22) and (23), therefore the origin is the unique equilibrium point of the system. The linearization of the system around the origin is

$$
A=\left[\begin{array}{ll}
\frac{\partial\left[\left(x^{2}+y^{2}-1\right) x-y\right]}{\partial x} & \frac{\partial\left[\left(x^{2}+y^{2}-1\right) x-y\right]}{\partial y} \tag{24}\\
\frac{\partial\left[\left(x^{2}+y^{2}-1\right) y+x\right]}{\partial x} & \frac{\partial\left[\left(x^{2}+y^{2}-1\right) y+x\right]}{\partial y}
\end{array}\right]_{(0,0)}=\left[\begin{array}{cc}
-1 & -1 \\
1 & -1
\end{array}\right] .
$$

The eigenvalues are $\lambda_{1,2}=-1 \pm \sqrt{-1}$. Since $\operatorname{Re}\left(\lambda_{1,2}\right)<0$ we can conclude, from Theorem 7.1 , that the origin is locally asymptotically stable.
2. Note that $r^{2}(t)=x^{2}(t)+y^{2}(t)$, hence

$$
\begin{aligned}
\frac{d}{d t} r^{2}(t) & =\frac{d}{d t}\left(x^{2}(t)+y^{2}(t)\right) \\
2 r(t) \dot{r}(t) & =2 x(t) \dot{x}(t)+2 y(t) \dot{y}(t) \\
2 r(t) \dot{r}(t) & =2 x(t)\left[\left(x^{2}(t)+y^{2}(t)-1\right) x(t)-y(t)\right]+2 y(t)\left[\left(x^{2}(t)+y^{2}(t)-1\right) y(t)+x(t)\right] \\
2 r(t) \dot{r}(t) & =2 x^{2}(t)\left(r^{2}(t)-1\right)-2 x(t) y(t)+2 y^{2}(t)\left(x^{2}(t)+y^{2}(t)-1\right)+2 x(t) y(t) \\
2 r(t) \dot{r}(t) & =2 r^{2}(t)\left(r^{2}(t)-1\right) .
\end{aligned}
$$

Therefore $\dot{r}(t)=r(t)\left(r^{2}(t)-1\right)$.
To compute $\dot{\theta}(t)$ we can differentiate both sides of $y(t)=r(t) \sin (\theta(t))$.

$$
\begin{aligned}
\frac{d}{d t} y(t) & =\frac{d}{d t}(r(t) \sin (\theta(t))) \\
\dot{y}(t) & =\dot{r}(t) \sin (\theta(t))+r(t) \cos (\theta(t)) \dot{\theta}(t) \\
\left(x^{2}(t)+y^{2}(t)-1\right) y(t)+x(t) & =r(t)\left(r^{2}(t)-1\right) \sin (\theta(t))+r(t) \cos (\theta(t)) \dot{\theta}(t) \\
\left(r^{2}(t)-1\right) r(t) \sin (\theta(t))+r(t) \cos (\theta(t)) & =r(t)\left(r^{2}(t)-1\right) \sin (\theta(t))+r(t) \cos (\theta(t)) \dot{\theta}(t) \\
r(t) \cos (\theta(t)) & =r(t) \cos (\theta(t)) \dot{\theta}(t) \\
1 & =\dot{\theta}(t) .
\end{aligned}
$$

Hence the system in polar coordinates is

$$
\begin{align*}
& \dot{r}(t)=r(t)\left(r^{2}(t)-1\right), \tag{25}\\
& \dot{\theta}(t)=1 . \tag{26}\\
& 7
\end{align*}
$$

3. Note that equations (25) and (26) are decoupled. The angle $\theta(t)$ is constantly increasing over time irrespective of the value of $r(t)$. On the other hand, if $r(t)<1$ then $\dot{r}(t)<0$, if $r(t)>1$ then $\dot{r}(t)>0$ and $\dot{r}(t)=0$ if $r(t)=1$. Therefore if $r(t)<1$ it will decrease towards zero, if $r(t)>1$ it will increase towards infinity and if $r(t)=1$ it will stay constant. Therefore the trajectories are as illustrated in Figure 1.

Figure 1: Three sample trajectories. Green: $r(0)<1$. Blue: $r(0)=1$. Red: $r(0)>1$.
From this analysis we can conclude that the circle of radius one is a periodic orbit. Moreover, the equilibrium point in the origin is a trivial periodic orbit.
4. From the analysis of part 3 it is clear that any circle C_{ρ} of radius $\rho \leq 1$ is an invariant set. In fact r is non-increasing for any value of $r \leq 1$ therefore any trajectory starting inside a set C_{ρ} of radius $\rho \leq 1$ cannot leave it. The sets C_{ρ} are the level sets of the function

$$
V(x, y)=x^{2}+y^{2} .
$$

To prove that this is a local Lyapunov function for the origin we need to prove that there exists an open set S containing the origin such that:
(a) $V(x, y)>0$ for any $(x, y) \in S \neq(0,0)$;
(b) $\dot{V}(x, y)<0$ for any $(x, y) \in S \neq(0,0)$.

To this end, we can use the suggested set $S=\left\{(x, y) \mid x^{2}+y^{2}<1\right\}$. Condition (a) is always true. The time derivative of $V(x(t), y(t))$ is
$\dot{V}(x(t), y(t))=2 x(t) \dot{x}(t)+2 y(t) \dot{y}(t)=2\left(x^{2}(t)+y^{2}(t)\right)\left(x^{2}(t)+y^{2}(t)-1\right)=2 r^{2}(t)\left(r^{2}(t)-1\right)$,
which is strictly negative on $S \backslash(0,0)$. Therefore also Condition (b) holds and $V(x, y)$ is a local Lyapunov function. The asymptotic stability of the origin follows from Theorem 7.3.
Finally, we can conclude that S is contained in the domain of attraction of the origin. Actually, from the analysis done in part 3, we can conclude that S is the entire domain of attraction.

Exercise 4

1	2	3	4	Exercise
7	6	7	5	25 Points

1. The output after k time-steps is given by

$$
\begin{aligned}
y(k) & =C x(k)+D u(k) \\
& =C\left(A^{k} x(0)+\sum_{i=0}^{k-1} A^{k-i-1} B u(i)\right)+D u(k) \\
& =C A^{k} x(0)+\sum_{i=0}^{k-1} C A^{k-i-1} B u(i)+D u(k)
\end{aligned}
$$

[1 point for providing this formula]
Stacking the outputs for $k=0, \ldots, N-1$ to make use of U and Y, this can be written in terms of a large system of linear equations as follows:

$$
\underbrace{\left[\begin{array}{c}
y(0) \\
y(1) \\
\vdots \\
y(N-1)
\end{array}\right]}_{Y}=\underbrace{\left[\begin{array}{c}
C \\
C A \\
\vdots \\
C A^{N-1}
\end{array}\right]}_{Q} x(0)+\underbrace{\left[\begin{array}{cccc}
D & 0 & \ldots & 0 \\
C B & D & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
C A^{N-2} B & C A^{N-3} B & \ldots & D
\end{array}\right]}_{H} \underbrace{\left[\begin{array}{c}
u(0) \\
u(1) \\
\vdots \\
u(N-1)
\end{array}\right]}_{U}
$$

[3 points for stacking the vectors correctly]
Collecting all known quantities on the right-hand side, we can rewrite this as

$$
\begin{equation*}
Q x(0)=Y-H U, \tag{27}
\end{equation*}
$$

which can be solved for the only unknown $x(0)$ under some assumptions (see next part). [1 point for writing the system of linear equations in the required form]
In the notation of the exercise, $M=Q \in \mathbb{R}^{p N \times n}$ and $q=Y-H U \in \mathbb{R}^{p N}$. points for the correct dimensions]
2. Because $N=n$, the coefficient matrix of the system of equations (27) is exactly the observability matrix Q, i.e. we have to solve (27) to find $x(0)$.
[2 points for noticing that $M=Q$]
Since $p=1$, it follows that Q is square. Therefore (27) has a unique solution if and only if Q has full rank. Equivalently (for square matrices), $\operatorname{det}(Q) \neq 0, Q^{-1}$ has to exist, or $\mathcal{R}(Q)=\mathbb{R}^{n}$. [3 points for a unique solution condition +1 point for making the connection to $\operatorname{rank}(Q)=n$]
3. Using the given values in (27) leads to the system of linear equations [3 points for the correct system]

$$
\left[\begin{array}{cc}
1 & 0.9 \\
2.8 & 2.4
\end{array}\right] x(0)=\underbrace{\left[\begin{array}{l}
2.9 \\
9.9
\end{array}\right]}_{Y}-\underbrace{\left[\begin{array}{cc}
0 & 0 \\
1.9 & 0
\end{array}\right]}_{\mathcal{M}} \underbrace{\left[\begin{array}{c}
1 \\
-2
\end{array}\right]}_{U}=\left[\begin{array}{c}
2.9 \\
8
\end{array}\right],
$$

which is solved by

$$
x(0)=\binom{2}{1} .
$$

[4 points for the correct solution]
4. In the presence of measurement noise, it might be impossible to reliably reconstruct the initial state.
[1 point]
In order to get a good estimate of the system state, it is therefore better to design a state estimator such as a Luenberger Observer or Kalman Filter.
In order for such estimation methods to work, the system has to be detectable. Note that this is a slightly weaker condition than observability, i.e. detectable systems can be unobservable but an observer will still work.

When the state estimator for a detectable system is properly designed, the estimation error will tend to zero, providing a very good estimate of the system state in the long run.
[1 point]

