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Exercise 1

1/2|3|4]|5]| Exercise

4|15|4| 75| 25 Points

1. A is triangular, hence the eigenvalues are A\; = o and Ay = o?. If o € {0, 1}, then

a = o?. In this case A is in Jordan canonical form, not diagonalizable and there

exists only one eigenvector v; = [1 0]T. If a ¢ {0,1}, the eigenvalues of A are
distinct and A is diagonalizable. The eigenvectors in this case are

1 1
V] = [O} and vy = [az _OJ .

2. Let @ < 0. Then A is diagonalizable with

1 2 _ _
A= I/VA/A\VV_I7 where W = |:1 1 :| and W—l - - |:a « 1:| ’

0 -« a? — « 0 1
We obtain
oAt — At — —~ 1_ - é - 1_ a] [e;t 6224 [a20_ « —11] _
1 :eat et o —a -1
T aZ—a o (a2—a)ea2t] [ 0 1] -
1 :(a2 — a)e™ et _ eat ]
a2 -« 0 (a% — a)e’t

Alternative solution:

To show that the given matrix is indeed the matrix exponential et we can show
that it fulfills the differential equation %eAt = Ae”? and that e? = I. The latter
statement clearly holds. For the former, differentiating the given matrix exponential

we obtain

ieAt 1 a(a? —a)e™t  a2e™t — qeot
dt- a2 —a« 0 a%(a? — a)e®’t

Further, we find that

AeAt =

0 a?(a? — a)e’t

1 a(0? — a)e®  ae®t — qe + (o — a)e’t
a? —

0 a?(a? — a)e®’t

2
1 a(a? —a)e a2t — qet
a? —a

For a = 0, A is not diagonalizable but it is nilpotent and we find

w Lol o1, [t
6_[01+00t_01'
2
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3. Since a? > 0 V « # 0 it is immediately clear that the system cannot be stable for
a # 0. For o« = 0 we can see from the matrix exponential that the system is also
not stable. Hence, the system is unstable for all a.

4. Tt is easy to see that for a = 0 the system is controllable, hence such an input must
exist. To find one we can, for instance, use the minimum energy input which we can
compute with the controllability gramian

1
We(l) = / eABBT At =
0

[t ol 3o
%

-0 it el H0
=12[1—t 1] [_11} :12(2—75) =6— 12t

2

5. For a = —1, B contains only zeros and the input does not influence the system at all.
The state transition is therefore given by e4*zq. Using the results from subquestion

2 we obtain . . .
1 (2e7" e —e™ 1 e
At _ = _
z(t)=e xO_Q[O 0t ][O}_[O]

Hence, at ¢t = 1 the desired state will be reached for any input u(t).
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Exercise 2

1/ 2|3]|4]| Exercise
96|46 | 25 Points

—_
[ ]

[3 points] Mechanical system: m - &(t) = k- I(t) — f - z(t) — d - v(t)
[3 points] Electrical system: L - %I(t) =—R-I(t) — r-v(t) +u(t)
Faraday’s law: (F(t)=B-n-D-mw-I(t)=k-1(t)
o Lorentz’ law: (Ujpa(t) =B -n-D-m-v(t) =k -v(t))

z

K
With state vector z = [I(t),z(t),v(t)]T, u(t) = F(t) and y(t) = z(t), the system
matrices read:

B 9 _K
L L
e [2 points] A= | 0 0 1
& _f _4d
m m m
1
L
e [1 point] B= |0
0
o O = [0 1 O]
2. With L=m = f=d=x=1and R = 2, the state space matrices read
-2 0 -1 1
A=10 0 1| and B= |0
1 -1 -1 0

Stability: [2 points]

det(sI —A)=(s+2)(s(s+1)+1)+s (1)
=(s+2)(s*+s5+1)+s (2)
=53 +35% 445 +2 (3)
=(s+1)(s* +25+2) (4)
Use the hint for the last step.
S1 — -1 (5)
—2++4-38
52,3 = - 9 (6)
=—1+i (7)
All Rels;] <0, i.e., the system is stable.
1 -2 3
Controllability: [2 points] P:= [B AB A?B] = |0 0 1 |. Since det(P)
o 1 -3

# 0, P has full rank, and therefore the4system is controllable.
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C 0 1 0
Observability: [2 points] O:=|CA | = |0 0 1 |. Since det(O) # 0, O
CA? 1 -1 -1

has full rank, and therefore the system is observable.

. [4 points| The transfer function is defined as G(s) = C(sI — A)"'B + D. Because
4 p ]

1

B = |0]| and C' = [0 1 O], we only need the (first column, second row)-element
0

of (sI—A)~!. Consequently, G(s) = gegtzgé = (s+l)(s+11—i)(s+l+i) (with f, g, d, i being

some of the original elements of sI — A).

. To derive an expression for y(t) we need to perform an inverse Laplace transform,
hence we expand the transfer function in partial fractions.

1 A B C
GADGrl—rl+i) s+l sti—i s+i+i ®)
_ A(s?+25+2)+ B(s?+ (s+i)s+1+i) + O(s2 + (2 —i)s + 1 — i) (©)
(s+1)(s+1—i)(s+1+1)
(A+B+C)s?+(2A+ (2+i)B+ (2—14)0)s+ 2A+ (1+4)B + (1 —14)C)

5+ D)+1—i)(s+1+1)

(10)

By comparison of coefficients, we obtain A=1, B=C=-0.5 [3 points|. Hence, the
Laplace transform of the output is

1 -0.5 —-0.5

YO =gt e (11)
The inverse Laplace transform is [3 points]
y(t) = et — 0.5e( 71t _ . 5el71701 (12)
it | it
=et et (e e > (13)
2
=e ' —etcos(t) (14)
= e (1 — cos(t)). (15)
Alternative derivation:
1 A Bs+C
= 1
(s+1D)(s+1—d)(s+1+1) s—|—1+(s+1)2+1 (16)
A(s? +25+2)+ B(s2 +5)+C(s+1)
= 5 (17)
(s+1)((s+1)2+1)
_ (A+B)s?+(2A+B+C)s+ 24+ C) (18)

(s+1)((s+1)2+1)
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By comparison of coefficients, we obtain A=1, B=C=-1 [3 points]. Hence, the
Laplace transform of the output is

1 s+1
Y(s) = — . 1
(8) =77 (s+1)2+1 (19)
The inverse Laplace transform is [3 points]
y(t) = et — e Tcos(t) (20)
= e (1 — cos(t)). (21)
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Exercise 3

-
N
w
N

Exercise
66| 6| 7|25 Points

1. The equilibrium points are the solutions of
0= (2*+y* -1z —y, (22)
0= (2*+y* - 1)y +a. (23)
It is immediate to see that the point (z,y) = (0,0) satisfies (22) and (23), therefore

the origin is the unique equilibrium point of the system. The linearization of the
system around the origin is

8[(m2+y2—1)x—y] 8[(x2+y2—1)x—y]

: 1 -1
_ ox oy _

The eigenvalues are A\; 2 = —1 & +/—1. Since Re(A12) < 0 we can conclude, from
Theorem 7.1, that the origin is locally asymptotically stable.

2. Note that 72(t) = z2(t) + y?(t), hence

S = (1) +20)
(1)) = 20(1)i(1) + 2y(1)i (1)
(1)) = 2(1) [(a(8) + (1) — D(t) (1)) + 25(6) [(2(0) + v7(6) — Dy(e) + (1)
2r(1)i(1) = 22°(1)(r(1) ~ 1) ~ 2(2)y(6) + 2P0 E(0) + (1) — 1) + 2a(B)y(1)
2r(t)r(t) = 2r2 () (r*(t) — 1)

() c
(22() + y*(t) — Dy(t) + x(t) = r(t)(r*(t) — 1)sin(0(t)) + 7(¢) cos(6(2))0(t)
(r2(t) — 1)r(t) sin(8(t)) + r(t) cos(8(t)) = r(t)(r2(t) — 1) sin(6(t)) + r(t) cos(A(t))0(t)
r(t) cos(0(t)) = r(t) cos(A(t))6(t)
1 =6(t).

Hence the system in polar coordinates is
P(t) = r(t)(r*(t) - 1), (25)
O(t) = 1. (26)

7
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3. Note that equations (25) and (26) are decoupled. The angle (t) is constantly in-
creasing over time irrespective of the value of r(¢). On the other hand, if r(¢) < 1
then 7(t) < 0, if r(¢t) > 1 then #(¢t) > 0 and 7(t) = 0 if 7(¢) = 1. Therefore if
r(t) < 1 it will decrease towards zero, if r(t) > 1 it will increase towards infinity
and if r(¢t) = 1 it will stay constant. Therefore the trajectories are as illustrated in

N

Figure 1: Three sample trajectories. Green: r(0) < 1. Blue: 7(0) = 1. Red: r(0) > 1.

From this analysis we can conclude that the circle of radius one is a periodic orbit.
Moreover, the equilibrium point in the origin is a trivial periodic orbit.

4. From the analysis of part 3 it is clear that any circle C), of radius p < 1is an invariant
set. In fact r is non-increasing for any value of » < 1 therefore any trajectory starting
inside a set C), of radius p < 1 cannot leave it. The sets C, are the level sets of the
function

V(z,y) = z? + >

To prove that this is a local Lyapunov function for the origin we need to prove that
there exists an open set S containing the origin such that:

(a) V(z,y) > 0 for any (z,y) € S # (0,0);
(b) V(z,y) < 0 for any (z,y) € S # (0,0).
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To this end, we can use the suggested set S = {(z,y)|2? +y* < 1}. Condition (a) is
always true. The time derivative of V(x(¢),y(t)) is

V((t),y(t) = 2e(t)a(t)+2y()g(t) = 2(2>(6)+y° (1)) (@ () +y* () 1) = 2r (1) (r (1) 1),

which is strictly negative on S\ (0, 0). Therefore also Condition (b) holds and V' (z, y)
is a local Lyapunov function. The asymptotic stability of the origin follows from
Theorem 7.3.

Finally, we can conclude that S is contained in the domain of attraction of the
origin. Actually, from the analysis done in part 3, we can conclude that S is the
entire domain of attraction.
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Exercise 4

-
N
w
N

Exercise
71675 ]| 25 Points

1. The output after k£ time-steps is given by

y(k) = Cx(k) + Du(k)
k—1
— ( +ZA’“ =1 Bu(i) )+Du(/~c)
k—1
= CAR2(0)+ Y CAF "1 Bu(i) + Du(k)
=0

[1 point for providing this formula]

Stacking the outputs for kK = 0,..., N — 1 to make use of U and Y, this can be
written in terms of a large system of linear equations as follows:

y(0) C D 0 o0 u(0)
y(1) CA CB D ... 0 u(1)
. - . x(O) - . . . . .
y(N —1) CAN-1 CAN=2B CAN=3B ... D| [u(N—1)
Y Q H U

[3 points for stacking the vectors correctly]

Collecting all known quantities on the right-hand side, we can rewrite this as
Qx(0)=Y — HU, (27)

which can be solved for the only unknown z(0) under some assumptions (see next
part). [1 point for writing the system of linear equations in the required
form]

In the notation of the exercise, M = Q € RPN*" and ¢ =Y — HU € RPV, [2
points for the correct dimensions]

2. Because N = n, the coefficient matrix of the system of equations (27) is exactly the
observability matrix @, i.e. we have to solve (27) to find z(0). [2 points for
noticing that M = Q)]

Since p = 1, it follows that @ is square. Therefore (27) has a unique solution if and
only if @ has full rank. Equivalently (for square matrices), det(Q) # 0, Q! has to
exist, or R(Q) = R™. [3 points for a unique solution condition + 1 point
for making the connection to rank(Q) = n]

10
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3. Using the given values in (27) leads to the system of linear equations [3 points for
the correct system)]

1 09 2(0) = 291 |0 0] 1]_ 129
2.8 24 199 1.9 0| [-2| |8’
which is solved by

[4 points for the correct solution]

4. In the presence of measurement noise, it might be impossible to reliably reconstruct
the initial state. [1 point]

In order to get a good estimate of the system state, it is therefore better to design
a state estimator such as a Luenberger Observer or Kalman Filter. [2 points]

In order for such estimation methods to work, the system has to be detectable. Note
that this is a slightly weaker condition than observability, i.e. detectable systems can
be unobservable but an observer will still work. [1 point]

When the state estimator for a detectable system is properly designed, the estimation
error will tend to zero, providing a very good estimate of the system state in the
long run. [1 point]

11



