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Exercise 1

1 2 3 Exercise

10 6 9 25 Points

Consider the difference equation

y(k + 2) + a1y(k + 1) + a0y(k) = b1u(k + 1) + b0u(k). (1)

1. Consider the state x1(k) = y(k). This implies that x1(k + 1) = y(k + 1). Since (1)
is time invariant we can shift it by one time-step and solve for y(k + 1). Therefore,

x1(k + 1) = −a1y(k) + b1u(k)− a0y(k − 1) + b0u(k − 1), (2)

Set x2(k) = −a0y(k − 1) + b0u(k − 1). Equation (2) is then

x1(k + 1) = −a1x1(k) + b1u(k) + x2(k), (3)

and

x2(k + 1) = −a0y(k) + b0u(k),

= −a0x1(k) + b0u(k). (4)

Setting x(k) =
[

x1(k) x2(k)
]T

, (3) and (4) lead to the following state space repre-
sentation of the system1

x(k + 1) =

[

−a1 1
−a0 0

]

x(k) +

[

b1
b0

]

u(k),

y(k) =
[

1 0
]

x(k). (5)

The state space form matrices are A =

[

−a1 1
−a0 0

]

, B =

[

b1
b0

]

, C =
[

1 0
]

and D = 0.

2. For b1 = 2b0, consider the controllability matrix

P =
[

B AB
]

=

[

b1 −a1b1 + b0
b0 −a0b1

]

[

2b0 (−2a1 + 1)b0
b0 −2a0b0

]

(6)

The system is controllable if and only if P has full rank. The latter holds if the
columns of P are linearly independent (equivalently if the determinant is not zero).
To achieve this we need b0 6= 0 and (2a1 − 1)/(2a0) 6= 2. In other words, if b0 6= 0
and a1 − 2a0 6= 0.5 the system is controllable.

The system is observable if and only if the observability matrix is full rank. The
observability matrix is given by

Q =

[

C
CA

]

=

[

1 0
−a1 1

]

. (7)

Q is always full rank, hence the system is observable for any values of a0, a1, b0.

1Note that setting x2(k) = y(k + 1) + a1y(k)− b1u(k) leads to the same state space representation.
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3. The transfer function of the system is given by

G(z) = C(zI −A)−1B +D

=
[

1 0
]

[

z + a1 −1
a0 z

]

−1 [

b1
b0

]

=
1

z2 + a1z + a0

[

1 0
]

[

z 1
−a0 z + a1

]

−1 [

b1
b0

]

=
b1z + b0

z2 + a1z + a0
. (8)

The transfer function could also have been immediately deduced by observing that
(5) is in the observable canonical form.

Consider now the case where b1 = 2b0. Pole-zero cancelations are related to the cases
where controllability or observability is lost. Since the system is always observable,
we need to examine the cases where it is uncontrollable, i.e. b0 = 0 or a1−2a0 = 0.5.
If b0 = 0, no pole-zero cancelation occurs, but the transfer function is zero since
matrix B of the state space form is also zero. If a1 − 2a0 = 0.5 the transfer function
can be written as

G(z) =
2b0(z + 0.5)

(z + 2a0)(z + 0.5)
,

=
2b0

(z + 2a0)
.

Therefore, if a1 − 2a0 = 0.5 we have one pole-zero cancelation.
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Exercise 2

1 2 3 4 Exercise

5 8 7 5 25 Points

1. The system is linear, hence it is possible to write the system in state space form:

ẋ(t) =

[

−2 3
0 4

]

x(t) +

[

1
2

]

u(t)

y(t) = [1 0]x(t).

The system is unstable since it has eigenvalues −2 and 4.

The controllability matrix

P = [B AB] =

[

1 4
2 8

]

has rank 1; the system is not controllable.

The observability matrix

Q = [C CA]T =

[

1 0
−2 3

]

has rank 2; the system is observable.

2. The closed loop system (with state matrix A+BK) has characteristic polynomial

λ2 + (−k1 − 2k2 − 2)λ− 2k1 − 4k2 − 8.

The characteristic polynomial for a system with both eigenvalues at −4 is

λ2 + 8λ+ 16.

As the resulting set of linear equations has no solution, it is impossible to set both
eigenvalues to −4. This can be expected given the controllability result in Part (1),
although, in this case, the system can be stabilized.

3. The error dynamics are given by the ordinary differential equation

ė(t) = ẋ(t)− ˙̃x = [A− LC] e(t).

The error system (with state matrix A− LC) has characteristic polynomial

λ2 + (l1 − 2)λ− 4l1 + 3l2 − 8.

The characteristic polynomial for a system with eigenvalues at −1 and −1 is

λ2 + 2λ+ 1.

It follows that the estimator gain matrix L = [4 25

3
]T results in an error system with

eigenvalues at −1 and −1.

4. From the second linear equality at equilibrium we have that 2x̂2 = −û. Plugging
this value for û into the equilibrium equality of the first equation results in the
relationship

2x̂1 = x̂2.

4



Signal and System Theory II, BSc, Spring Term 2012 Solution

Exercise 3

1 2 3 Exercise

10 7 8 25 Points

1. From Kirchoff’s laws and element equations:

Vs = R1iL + L
diL
dt

=⇒ ẋ1 = −
R1

L
x1 +

u

L

C
dVc

dt
= iL =⇒ ẋ2 =

1

C
x1

Vo = −R0iL − Vc =⇒ y = −R0x1 − x2

So the state space representation becomes:

[

ẋ1
ẋ2

]

=

[

−R1

L
0

1

C
0

]

x+

[

1

L

0

]

u

y =
[

−R0 −1
]

x

2. The transfer function is given by

G(s) = C(sI −A)−1B +D =
[

−1 −1
]

[

s+ 1 0
−1 s

]

−1 [

1
0

]

=

=
1

(s+ 1)s

[

−1 −1
]

[

s 0
1 s+ 1

] [

1
0

]

= −
s+ 1

(s+ 1)s
= −

1

s
.

There is a pole-zero cancellation at s = −1. We can conclude that the system is
either not controllable or not observable.

3. In order to compute the zero input transition we need to find the state transition
matrix. Therefore we first calculate the eigenvalues of A by solving det (λI −A) = 0.
This gives (λ + 1)λ = 0, hence the eigenvalues are λ1 = −1 and λ2 = 0. Since the
eigenvalues are distinct the matrix A is diagonalizable. To diagonalize A we also
need the eigenvectors. These satisfy the equations

Aw1 = λ1w1 and Aw2 = λ2w2,

which gives w1 = [−1 1]T and w2 = [0 1]T .

Defining W := [w1 w2] we obtain the state transition matrix as

Φ(t) = eAt = W

[

eλ1t 0
0 eλ2t

]

W−1 =

[

−1 0
1 1

] [

e−t 0
0 1

] [

−1 0
1 1

]

=

[

e−t 0
1− e−t 1

]

.
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The zero input transition for x(0) = [1 0]T is then

x(t) = eAtx(0) =

[

e−t

1− e−t

]

.
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Exercise 4

1a 1b 1c 2a 2b 2c Exercise

3 2 2 3 7 8 25 Points

1. (a) The system is linear, autonomous and has dimension 1.

(b) The only equilibrium point of the system is x = 0. The system is unstable as
r > 0.

(c) The solution of the system is x(t) = x0e
rt. The limes of the solution is

limt→∞ x(t) = ∞.

2. (a) The system is non-linear, autonomous and has dimension 1.

(b) Equilibrium points are found by setting the right-hand side of (??) to zero:

f(x) = rx
(

1−
x

K

)

= 0

⇒ x = 0 and x = K

Linearizing the right hand side of (??) yields

f̃(x) =
d

dx
f(x) = r −

2rx

K

and hence, we obtain for the two equilibria

x = 0 : f̃(x) = r ⇒ unstable

x = K : f̃(x) = −r ⇒ locally asymptotically stable.

(c) First we show for t = 0 that the proposed solution satisfies the initial condition:

x(0) =
Kx0
K

= x0

Second, we check if the solution x(t) and it’s time-derivative satisfy the differ-
ential equation (??):

ẋ(t) =
d

dt

[

Kx0e
rt

K + x0 (ert − 1)

]

=
Kx0re

rt
(

K + x0
(

ert − 1
))

− rx0e
rtKx0e

rt

(K + x0 (ert − 1))2

=
Kx0re

rt

(K + x0 (ert − 1))2
(K − x0)

Substitution of ẋ(t) and x(t) in (??) yields

ẋ(t) = rx(t)

(

1−
x(t)

K

)

Kx0re
rt

(K + x0 (ert − 1))2
(K − x0) =

rKx0e
rt

K + x0 (ert − 1)

(

1−
Kx0e

rt

K (K + x0 (ert − 1))

)

=
Kx0re

rt

(K + x0 (ert − 1))2
(K − x0)
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and hence, the given solution satisfies system (??). For t → ∞ we obtain

lim
t→∞

x(t) = K,

which is expected since x = K is the only stable equilibrium. For K → ∞, the
solution is given by

lim
K→∞

x(t) = x0e
rt,

which equals the solution of the unconstrained Malthusian system from (??).
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