Automatic Control Laboratory	D-ITET
ETH Zurich	Spring 2010
Prof. J. Lygeros	28.08 .2010

Signal and System Theory II 4. Semester, BSc

Solutions

1 Exercise 1

1	2	3	4	Exercise
5	7	7	6	25 Points

1. The controllability matrix of the system is given by $P=[B A B]$, so

$$
P=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

Since $\operatorname{rank}(P)=2$, the system is controllable.
The observability matrix of the system is given by $Q=\left[\begin{array}{c}C \\ C A\end{array}\right]$, so

$$
Q=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] .
$$

The system is unobservable since $\operatorname{rank}(Q)=1$.
2. The system is controllable, so the reachable set is the whole \mathbb{R}^{2}. Since the system is unobservable, the unobservable subspace is given by the null space $N(Q)$ of the observability matrix. It can be easily shown that $N(Q)=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\right.$.
3. Consider the feedback $u(t)=-\left[\begin{array}{ll}k_{1} & k_{2}\end{array}\right]\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]$. Then the closed loop system is given by

$$
\dot{x}(t)=\left[\begin{array}{cc}
0 & 1 \\
-k_{1} & -k_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right] .
$$

The characteristic polynomial of the closed loop system is

$$
\lambda^{2}+k_{2} \lambda+k_{1}=0
$$

Having both poles at -1 implies that this should be the same as $(\lambda+1)^{2}=\lambda^{2}+$ $2 \lambda+1=0$. Equating coefficients leads to $k_{1}=1$ and $k_{2}=2$.
4. We have that $\dot{x}_{2}(t)=u(t)$. Hence, for $0 \leq t<1$

$$
x_{2}(t)=a_{1} t+x_{2}(0) .
$$

From the first equation of the system $\dot{x}_{1}(t)=x_{2}(t)$ we get that

$$
x_{1}(t)=a_{1} \frac{t^{2}}{2}+x_{2}(0) t+x_{1}(0) .
$$

Since $x_{1}(0)=1$, and $x_{2}(0)=0$, we have that

$$
\begin{aligned}
& x_{1}(t)=a_{1} \frac{t^{2}}{2}+1, \\
& x_{2}(t)=a_{1} t . \\
& \quad 2
\end{aligned}
$$

For $t \geq 1$ we have

$$
\begin{aligned}
& x_{2}(t)=a_{2}(t-1)+x_{2}(1) \\
& x_{1}(t)=a_{2} \frac{(t-1)^{2}}{2}+x_{2}(1)(t-1)+x_{1}(1)
\end{aligned}
$$

By continuity of $x_{2}, x_{2}(1)=a_{1}$. Similarly for $x_{1}, x_{1}(1)=\frac{a_{1}}{2}+1$. By summarizing the results for $t \geq 1$ we get

$$
\begin{aligned}
& x_{2}(t)=a_{2}(t-1)+a_{1} \\
& x_{1}(t)=a_{2} \frac{(t-1)^{2}}{2}+a_{1}(t-1)+\frac{a_{1}}{2}+1
\end{aligned}
$$

Since $x_{1}(2)=0$, and $x_{2}(2)=2$, for $t=2$ we get

$$
\begin{aligned}
& a_{2}+a_{1}=2 \\
& \frac{1}{2} a_{2}+\frac{3}{2} a_{1}+1=0
\end{aligned}
$$

From the last set of equations we can compute $a_{1}=-2$, and $a_{2}=4$.

2 Exercise 2

1	2	3	4	Exercise
5	6	6	8	25 Points

1. The system is linear and time invariant. The eigenvalues of the state matrix A are $\lambda_{1}=-3$ and $\lambda_{2}=2$. Therefore, since one of the eigenvalues is strictly greater than zero, the system is not stable.
2. The transfer function from the controlled input to the output is:

$$
G(s)=\frac{Y(s)}{U(s)}=C(s I-A)^{-1} B_{u}=\frac{3}{s-2} .
$$

The transfer function from the uncontrolled disturbance input to the output is:

$$
H(s)=\frac{Y(s)}{W(s)}=C(s I-A)^{-1} B_{w}=\frac{1}{s+3} .
$$

3. The nominal system is uncontrollable, so normaly one would not expect stabilization by state feedback to be possible. However, note that the unstable eigenvalue of A appears in the transfer function from $U(s)$ to $Y(s)$. Hence the unstable mode is controllable and the system is stabilizable.
4. Applying the state feedback controller to the nominal system we obtain the closed loop system:

$$
\dot{x}(t)=\left[\begin{array}{ll}
-1 & -5 \\
0 & -3
\end{array}\right] x(t)+\left[\begin{array}{l}
1 \\
1
\end{array}\right] w(t)
$$

The resulting closed loop state matrix $A+B K$ has eigenvalues at $\lambda_{1}=-3$ and $\lambda_{2}=$ -1 and is therefore stable. The transfer function from the uncontrolled disturbance input to the output is now:

$$
H(s)=\frac{Y(s)}{W(s)}=C\left(s I-A-B_{u} K\right)^{-1} B_{w}=\frac{s-8}{s^{2}+4 s+3} .
$$

Since the Laplace Transform of a step is equal to $\frac{1}{s}$

$$
Y(s)=\frac{s-8}{s^{2}+4 s+3} W(s)=\frac{s-8}{s^{2}+4 s+3} \cdot \frac{1}{s} .
$$

Applying the Final Value Theorem, we have that

$$
\begin{aligned}
\lim _{t \rightarrow \infty} y(t) & =\lim _{s \rightarrow 0} s Y(s) \\
& =\lim _{s \rightarrow 0} \frac{s-8}{s^{2}+4 s+3} \\
& =\frac{-8}{3} .
\end{aligned}
$$

3 Exercise 3

1	2	3	Exercise
8	10	7	25 Points

1. Let us consider v_{C}, the voltage on the capacitor, and i_{L}, the current on the inductor, as our states.

$$
\begin{aligned}
v_{o u t} & =-v_{C} \\
v_{i n}=L \frac{d}{d t} i_{L} & \Rightarrow \frac{d}{d t} i_{L}=\frac{1}{L} v_{i n}
\end{aligned}
$$

we also have

$$
v_{C}=\frac{1}{C} \int i_{C} d t \Rightarrow \frac{d}{d t} v_{C}=\frac{1}{C} i_{C}
$$

but

$$
i_{C}=i_{L}-\frac{1}{R} v_{C}
$$

hence,

$$
\frac{d}{d t} v_{C}=\frac{1}{C} i_{L}-\frac{1}{R C} v_{C}
$$

and finally,

$$
\begin{aligned}
\frac{d}{d t}\left[\begin{array}{c}
v_{C} \\
i_{L}
\end{array}\right] & =\left[\begin{array}{rr}
-\frac{1}{R C} & \frac{1}{C} \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
v_{C} \\
i_{L}
\end{array}\right]+\left[\begin{array}{c}
0 \\
\frac{1}{L}
\end{array}\right] v_{i n} \\
v_{\text {out }} & =\left[\begin{array}{ll}
-1 & 0
\end{array}\right]\left[\begin{array}{c}
v_{C} \\
i_{L}
\end{array}\right]+0 v_{\text {in }}
\end{aligned}
$$

For the transfer function we have:

$$
\left[\begin{array}{c}
s V_{C} \\
s I_{L}
\end{array}\right]=\left[\begin{array}{cc}
-\frac{1}{R C} & \frac{1}{C} \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
V_{C} \\
I_{L}
\end{array}\right]+\left[\begin{array}{c}
0 \\
\frac{1}{L}
\end{array}\right] V_{i n}
$$

and $V_{\text {out }}=-V_{C}$
resulting in $s V_{C}=-\frac{V_{C}}{R C}+\frac{I_{L}}{C}$ and $s I_{L}=\frac{V_{i n}}{L}$ which gives

$$
\frac{V_{o u t}}{V_{\text {in }}}=-\frac{1}{s L C\left(s+\frac{1}{R C}\right)}=-\frac{1}{L C s^{2}+\frac{L}{R} s}
$$

2. We can write the transfer function as follows

$$
V_{o u t}=\frac{K}{s+1} \delta V
$$

From this transfer function we can go back to the time domain and we get that

Augmenting the state with $v_{o u t}$, the new state is $x^{T}=\left[\begin{array}{lll}v_{C} & i_{L} & v_{o u t}\end{array}\right]$ we also have the following equations:

$$
\begin{gather*}
v_{\text {out }}=-v_{C}-\delta v \Rightarrow \delta v=-v_{C}-v_{\text {out }} \tag{2}\\
v_{\text {in }}=L \frac{d}{d t} i_{L}-\delta v \Rightarrow \frac{d}{d t} i_{L}=\frac{1}{L} v_{\text {in }}+\frac{1}{L} \delta v \tag{3}
\end{gather*}
$$

now, substituting (2) in (3) we have

$$
\frac{d}{d t} i_{L}=\frac{1}{L} v_{i n}-\frac{1}{L} v_{C}-\frac{1}{L} v_{o u t}
$$

and substituting (2) in (1) we have

$$
\frac{d}{d t} v_{o u t}=-(K+1) v_{o u t}-K v_{C}
$$

the equation for $\frac{d}{d t} v_{C}$ remains as before, because the currents are the same (note that $i_{-}=i_{+}=0$)

$$
\frac{d}{d t} v_{C}=\frac{1}{C} i_{L}-\frac{1}{R C} v_{C}
$$

the state space representation is then given by:

$$
\begin{gathered}
\frac{d}{d t}\left[\begin{array}{c}
v_{C} \\
i_{L} \\
v_{\text {out }}
\end{array}\right]=\left[\begin{array}{ccc}
-\frac{1}{R C} & \frac{1}{C} & 0 \\
-\frac{1}{L} & 0 & -\frac{1}{L} \\
-K & 0 & -(K+1)
\end{array}\right]\left[\begin{array}{c}
v_{C} \\
i_{L} \\
v_{\text {out }}
\end{array}\right]+\left[\begin{array}{c}
0 \\
\frac{1}{L} \\
0
\end{array}\right] v_{\text {in }} \\
v_{\text {out }}=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
v_{C} \\
i_{L} \\
v_{\text {out }}
\end{array}\right]+0 v_{\text {in }}
\end{gathered}
$$

3. By making use of the impedance method we can write the circuit in the following form:

$$
\begin{gathered}
V_{\text {in }}(s)=\frac{1}{s C} I(s) \\
V_{\text {out }}(s)=-\frac{s L R}{s L+R} I(s)
\end{gathered}
$$

Hence the transfer function is:

$$
\begin{equation*}
\frac{V_{o u t}}{V_{\text {in }}}=-\frac{L R C s^{2}}{s L+R} \tag{4}
\end{equation*}
$$

This transfer function is not proper (degree of the numerator is higher than the degree of the denominator). This is due to the fact that this circuit is a differentiator, it differentiates the input. Hence it cannot be put in the state space form, where only the input, but not its derivative can appear at the output.

4 Exercise 4

1	2	3	4	Exercise
6	7	7	5	Points

1. $x(t)$ can be written as (cf. script slide 6.6, Sampled Data Linear Systems):

$$
\begin{gathered}
x(t)=e^{A(t-k T)} x(k T)+\int_{k T}^{t} e^{A(t-\tau)} B u(\tau) \mathrm{d} \tau \\
x((k+1) T)=e^{A T} x(k T)+\left(\int_{k T}^{(k+1) T} e^{A[(k+1) T-\tau]} B \mathrm{~d} \tau\right) u_{k}
\end{gathered}
$$

The integral on the right hand side can be reformulated using the substitution $s=$ $\tau-k T$ to

$$
\int_{k T}^{(k+1) T} e^{A[(k+1) T-\tau]} B \mathrm{~d} \tau=\int_{0}^{T} e^{A(T-s)} B \mathrm{~d} s
$$

With this we finally get

$$
\begin{equation*}
x((k+1) T)=e^{A T} x(k T)+\left(\int_{0}^{T} e^{A(T-\tau)} B \mathrm{~d} \tau\right) u_{k} \tag{5}
\end{equation*}
$$

So, $\hat{A}=e^{A T}$ and $\hat{B}=\int_{0}^{T} e^{A(T-\tau)} B \mathrm{~d} \tau$.
2. As A is diagonalizable we can write $A=W \Lambda W^{-1}$ where W is a matrix of eigenvectors and Λ a diagonal matrix with eigenvalues

$$
\Lambda=\left(\begin{array}{ccc}
\lambda_{1} & \cdots & 0 \\
0 & \ddots & 0 \\
0 & \cdots & \lambda_{n}
\end{array}\right)
$$

Hence,

$$
\begin{aligned}
\hat{A} & =e^{A T} \\
& =I+A T+\ldots+\frac{1}{k!}(A T)^{n}+\ldots \\
& =I+W \Lambda W^{-1} T+\ldots+\frac{1}{k!}\left(W \Lambda W^{-1}\right)^{k} T^{k}+\ldots
\end{aligned}
$$

Note, that $I=W W^{-1}$ and $\left(W \Lambda W^{-1}\right)^{k}=W \Lambda^{k} W^{-1}$, therefore

$$
\hat{A}=W \underbrace{\left(I+\Lambda T+\ldots+\frac{1}{k!} \Lambda^{k} T^{k}+\ldots\right)}_{e^{\Lambda T}} W^{-1}
$$

As a result, if A is diagonalizable, then \hat{A} is also diagonalizable with the eigenvalues

$$
\begin{equation*}
\hat{\lambda}_{i}=e^{\lambda_{i} T} \tag{6}
\end{equation*}
$$

3. If A is diagonalizable, then \hat{A} is also diagonalizable as shown above. Moreover, we have eigenvalues

$$
\hat{\lambda}_{i}=e^{\lambda_{i} T}
$$

The discrete time system is asymptotically stable, if and only if $\left|\hat{\lambda}_{i}\right|<1$, for all $i=1, \ldots, n$, or equivalently $\left|e^{\lambda_{i} t}\right|<1$.

With $\lambda_{i}=\sigma_{i} \pm j \omega_{i}$ this is equivalent to

$$
\left|e^{\lambda_{i} T}\right|=\left|e^{\left(\sigma_{i} \pm j \omega_{i}\right) T}\right|=\left|e^{\sigma_{i} T}\right|\left|e^{ \pm j \omega_{i} T}\right|<1
$$

Since $\left|e^{ \pm j \omega_{i} T}\right|=1$, the inequality is satisfied if and only if σ_{i} is less than zero. This is equivalent to

$$
\operatorname{Re}\left\{\lambda_{i}\right\}<0
$$

Hence the continuous time system is asymptotically stable, if and only if the discrete system is asymptotically stable.
4. To have $x_{k}=0$ for all $k \geq n$, we aim for a deadbeat respofnse and a nilpotent matrix \hat{A} (cf. slide 6.13). Since A is diagonalizable, \hat{A} is also diagonalizable. Moreover $\hat{\lambda_{i}}=e^{\lambda_{i} T} \neq 0$ for all finite λ_{i}. This contradicts the condition for nilpotent matrices, where all eigenvalues have to be zero. Therefore, you should not believe your friend from EPFL.

