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1 Exercise 1
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1. The controllability matrix of the system is given by P = [B AB]J, so
0 1
P [ : O] |
Since rank(P) = 2, the system is controllable.

The observability matrix of the system is given by Q) = { CCA} , SO
01
o= o)
The system is unobservable since rank(Q) = 1.

2. The system is controllable, so the reachable set is the whole R?. Since the system
is unobservable, the unobservable subspace is given by the null space N(Q) of the

observability matrix. It can be easily shown that N(Q) = span{ [é} }.
3. Consider the feedback u(t) = — [k ko] {

w0 =[5 ][]

The characteristic polynomial of the closed loop system is

]. Then the closed loop system is
given by

A4 Eod + ky = 0.

Having both poles at —1 implies that this should be the same as (A +1)? = A2 +
2\ + 1 = 0. Equating coefficients leads to k1 = 1 and ko = 2.

4. We have that #2(t) = u(t). Hence, for 0 <t <1
$2(t) =ait + xg(O)

From the first equation of the system @1 (t) = z2(t) we get that

/2
21(t) = a1 + 22(0)t + 21 (0).

Since x1(0) = 1, and z5(0) = 0, we have that

t2
1‘1(15) = alE + 1,
Cﬂz(t) = (1175.
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For t > 1 we have

CCQ(t) = (ZQ(t — 1) —+ $2(1),

+aa(1)(t — 1) + 21(1).

By continuity of 3, x2(1) = ay. Similarly for z1, z1(1) = %

= 4 + 1. By summarizing
the results for ¢ > 1 we get

CCQ(t) = ag(t — 1) +aq,

—1)?
C=D  —n+ %1

t) =
71(t) = 027 2

Since x1(2) = 0, and z2(2) = 2, for t = 2 we get
ag +a = 2,
L + J +1=0
2&2 2&1 = U.

From the last set of equations we can compute a1 = —2, and as = 4.
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2 Exercise 2
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1. The system is linear and time invariant. The eigenvalues of the state matrix A are
A1 = —3 and Ao = 2. Therefore, since one of the eigenvalues is strictly greater than
zero, the system is not stable.

2. The transfer function from the controlled input to the output is:

Y (s) 1 3
G(s) = =C(sl—A) "B, = .
(5) = g = O = A —
The transfer function from the uncontrolled disturbance input to the output is:
Y (s) 1 1
H(s) = =C(sl —A) "By, = .
() W (s) (s ) s+3

3. The nominal system is uncontrollable, so normaly one would not expect stabilization
by state feedback to be possible. However, note that the unstable eigenvalue of A
appears in the transfer function from U(s) to Y(s). Hence the unstable mode is
controllable and the system is stabilizable.

4. Applying the state feedback controller to the nominal system we obtain the closed
loop system:

#(t) = [51 :g]m(tw[ﬂw(t)

The resulting closed loop state matrix A+ BK has eigenvalues at A\ = —3 and Ay =
—1 and is therefore stable. The transfer function from the uncontrolled disturbance
input to the output is now:

Y(S) 1 s—8
() W (s) (s wK)™ Bu s2+4s+3
Since the Laplace Transform of a step is equal to %
5—8 s—8 1
Y(is)=—5—>W(s)= 5——"—"—.
() s2+4s+3 () s24+4s+3 s

Applying the Final Value Theorem, we have that

lim y(t) = limsY(s)
t—o00 s—0
. 5s—8
= lim ———
s—0 g2 +4s +3
-8
= 5
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3 Exercise 3
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1. Let us consider v, the voltage on the capacitor, and i, the current on the inductor,
as our states.

+ vo -
) C
il |
—1I
/LR R
-
17, L v V v
[(1])} >
+ —
+
Uz’n(t) + Uout(t)
< L <
Vout = —UC
I d . N d . 1
) —1q —1 V;
in dt L dt L 3 in
we also have p )
Vo = c icdt = EUC = aic
but )
o =1L — Y
hence,
d 1 1
—VC = =i — V0
dt C RC
and finally,

d (Yol o —R—lc% (Yol 0 )
E[iL}_[ 0 0| | T L |"m

For the transfer function we have:

][ 40

= O
—_ 1
=

3

and V. = — Vo



Signal and System Theory II, BSc, Spring 2010

Solution

resulting in sV = —% + % and sly = Vi” which gives
Vout _ 1 o 1
Vi sLC (s + 7) LCs?+ £s

2. We can write the transfer function as follows

K
ou:—(S
Vout s—|—1V

From this transfer function we can go back to the time domain and we get that

+ vo -
1 C
il |
—1I
1R R
=
ZL L
e
¥ -~
O P
Uzn_ + Uout(t)
< L <
d
Evout = Kdv — Vout
Augmenting the state with vy, the new state is 27 = [vc

the following equations:

Vout = —VC — 0V = 0V = —V0 — Vput

d 1
Vin = L—11, — v = —i, = —vjy, + Zév

dt dt L

now, substituting (2) in (3) we have

d . 1 1 1
— UL = T Vin Vo — 7 Vout

dt L™ L L

and substituting (2) in (1) we have

d
Evout - - (K + 1) Vout — KUC’

(1)
vout} we also have
(2)
(3)

the equation for %vc remains as before, because the currents are the same (note that

Z',:Z'+:0)
d 1. 1
at’¢ = ¢ T RCC
6
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the state space representation is then given by:

af el [mee O Qe ][]
7 B e B 0 - u, |+ | | Vin
Vout -K 0 —(K + 1) Vout 0
vo
Vout = [ 0 01 ] |: i, + 0vin
Vout

3. By making use of the impedance method we can write the circuit in the following

form: )
Vinls) = = 1(5)
sLR
Vout(s) = _5L+RI(S)
sLR
I(s) SL+R
L= MWy

+ L

Hence the transfer function is:

2
Vo  LRCs n

Vi sL+ R

This transfer function is not proper (degree of the numerator is higher than the degree
of the denominator). This is due to the fact that this circuit is a differentiator, it
differentiates the input. Hence it cannot be put in the state space form, where only
the input, but not its derivative can appear at the output.
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1. z(t) can be written as (cf. script slide 6.6, Sampled Data Linear Systems):
t
z(t) = A D (kT + / A7) By (1) dr

kT
(k+1)T

z((k+1)T) = e Tx (kT) + / AlFADT=TI Bar |
kT

The integral on the right hand side can be reformulated using the substitution s =

T — kT to
(k+1)T T
/ AN Bqr = /eA(T_S)BdS
kT 0

With this we finally get
T
e ((k+1)T) =T (kT) + / AT BAr | (5)
0

So, A =eAT and B = [eAT-7) Bdr.

2. As Ais diagonalizable we can write A = W AW ~! where W is a matrix of eigenvectors
and A a diagonal matrix with eigenvalues

AN - 0
A=1lo =~ o0
0 - A\
Hence,
A=eAT
1
:I—i—AT—i—...—i—E(AT)"—l—...
1
— T+ WAW T+ ..+ — (WAW ) TF 4

k!
Note, that I = WIW~! and (WAWfl)k = WA*W 1, therefore

1

A:W<I+AT+...+M

AFTRE > wt

AT

8



Signal and System Theory II, BSc, Spring 2010 Solution

As a result, if A is diagonalizable, then A is also diagonalizable with the eigenvalues

)\i = eAiT (6)

3. If A is diagonalizable, then A is also diagonalizable as shown above. Moreover, we
have eigenvalues

N = eNT

i

The discrete time system is asymptotically stable, if and only if < 1, for all

<1

1 =1,...,n, or equivalently {e)‘it

With \; = 0; & jw; this is equivalent to

<1

eAiT‘ _ ‘e(oiijwi)T‘ _ ‘eoiT‘ ‘eijwiT

+jwil| = 1, the inequality is satisfied if and only if o; is less than zero. This

Since {e
is equivalent to

Re{)\l} <0

Hence the continuous time system is asymptotically stable, if and only if the discrete
system is asymptotically stable.

4. To have z = 0 for all £ > n, we aim for a deadbeat respofnse and a nilpotent matrix

A (cf. slide 6.13). Since A is diagonalizable, A is also diagonalizable. Moreover
N = eNT = 0 for all finite ;. This contradicts the condition for nilpotent matrices,
where all eigenvalues have to be zero. Therefore, you should not believe your friend

from EPFL.



