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1 Exercise 1

1 2 3 4 Exercise
5 5 7 8 25 Points

The following differential equation was proposed by Euler to model the buckling of a
flexible beam.

mθ̈ + dθ̇ − µθ + λθ + θ3 = 0 , (1)

where m, d, µ, λ are positive constant parameters.

1. What is the dimension of the system? Is the system autonomous? Is it linear?

2. Write the system in state space form using x1 = θ and x2 = θ̇ as states.

3. Determine all the equilibria of the system for the cases µ > λ and µ < λ.

4. Using linearization, determine the stability of the equilibrium x̂ =
[

0
0

]
for the

cases µ > λ and µ < λ.
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2 Exercise 2

1 2 3 4 Exercise
5 8 4 8 25 Points

Consider the discrete time, linear, time invariant system:

xk+1 = Axk + Buk xk ∈ Rn, uk ∈ Rm, y ∈ Rp

yk = Cxk + Duk A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m .

1. Assume that x0 = 0 (zero state response). Show by induction that for k = 1, 2, . . .

xk =
k−1∑

i=0

Ak−i−1Bui .

2. A state x ∈ Rn is called reachable from 0 if there exists a sequence u0, u1, . . . , un−1

such that xn = x starting from x0 = 0. Show that x is reachable if and only if it is
in the range space of the matrix:

P = [B AB . . . An−1B] ∈ Rn×n·m .

3. Assume now that x0 6= 0 but uk = 0 for all k = 0, 1, 2, . . . (zero input response).
Show that for k = 1, 2, . . .

xk = Akx0 .

4. A state x0 ∈ Rn is called unobservable if the zero input response is such that y0 =
y1 = · · · = yn−1 = 0. Show that a state is unobservable if and only if it is in the

nullspace of the matrix Q =




C
CA
...

CAn−1


 ∈ R

p·n×n.
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3 Exercise 3

1 2 3 4 Exercise
6 6 7 6 25 Points

Consider the continuous time, linear, time invariant system:

ẋ =




0 1 0
0 0 1
0 0 0


x +




0
0
1


u

y =
[

1 0 0
]
x .

1. Compute the eigenvalues and eigenvectors of the matrix A =




0 1 0
0 0 1
0 0 0


. Is the

matrix diagonalizable?

2. Is the system controllable? Is it observable?

3. Show that the state transition matrix is given by:

eAt =




1 t t2

2
0 1 t
0 0 1


 .

4. Compute the Laplace transform of the state transition matrix. Hence, or otherwise,
compute the transfer function of the system.
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Exercise 4

1 2 3 4 Exercise
5 5 6 9 25 Points

Consider the mechanical system of the following figure. The mass M is attached to a wall
by means of a spring of stiffness k and a damper of constant b. The damper exerts a force
proportional to the speed of the mass and in the opposite direction. An external force
f is applied to the mass. Let x denote the horizontal displacement of the mass from its
equilibrium point and v = dx

dt its velocity.

f
M

k

b

x

1. Write the state space model for this system using x1 = v, x2 = x as states, u = f as
input and y = x as output.

2. Using the values M = 1Kg, b = 2Kg/sec and k = 5Nt/m, derive the transfer function
G(s) from the input u to the output y.

3. Assume that the force applied to the mass is f(t) = 10(1 − e−t)Nt, t ≥ 0. For
the parameter values of part 2 of this exercise, calculate the steady state value
y∞ = limt→∞y(t) by using the Final Value Theorem.

4. A step input of magnitude f = 10Nt, t ≥ 0 is now applied to the system. Calculate
the expression of y(t) as a function of time. Use the parameter values of part 2 of
this exercise and zero initial condition (x1(0) = 0 and x2(0) = 0).
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