Automatic Control Laboratory ETH Zurich Prof. J. Lygeros D-ITET Fall 2007 06.09.2007

Signal and System Theory II

This sheet is provided to you for ease of reference only. *Do not* write your solutions here.

1 Exercise 1

1	2	3	4	Exercise
5	5	7	8	25 Points

The following differential equation was proposed by Euler to model the buckling of a flexible beam.

$$m\ddot{\theta} + d\dot{\theta} - \mu\theta + \lambda\theta + \theta^3 = 0, \qquad (1)$$

where m, d, μ, λ are positive constant parameters.

- 1. What is the dimension of the system? Is the system autonomous? Is it linear?
- 2. Write the system in state space form using $x_1 = \theta$ and $x_2 = \dot{\theta}$ as states.
- 3. Determine all the equilibria of the system for the cases $\mu > \lambda$ and $\mu < \lambda$.
- 4. Using linearization, determine the stability of the equilibrium $\hat{x} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ for the cases $\mu > \lambda$ and $\mu < \lambda$.

2 Exercise 2

1	2	3	4	Exercise
5	8	4	8	25 Points

Consider the discrete time, linear, time invariant system:

$$\begin{aligned} x_{k+1} &= Ax_k + Bu_k \qquad x_k \in \mathbb{R}^n, u_k \in \mathbb{R}^m, y \in \mathbb{R}^p \\ y_k &= Cx_k + Du_k \qquad A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n}, D \in \mathbb{R}^{p \times m} \end{aligned}$$

1. Assume that $x_0 = 0$ (zero state response). Show by induction that for k = 1, 2, ...

$$x_k = \sum_{i=0}^{k-1} A^{k-i-1} B u_i \,.$$

2. A state $x \in \mathbb{R}^n$ is called reachable from 0 if there exists a sequence $u_0, u_1, \ldots, u_{n-1}$ such that $x_n = x$ starting from $x_0 = 0$. Show that x is reachable if and only if it is in the range space of the matrix:

$$P = [B \ AB \ \dots \ A^{n-1}B] \in \mathbb{R}^{n \times n \cdot m}.$$

3. Assume now that $x_0 \neq 0$ but $u_k = 0$ for all k = 0, 1, 2, ... (zero input response). Show that for k = 1, 2, ...

$$x_k = A^k x_0 \,.$$

4. A state $x_0 \in \mathbb{R}^n$ is called unobservable if the zero input response is such that $y_0 = y_1 = \cdots = y_{n-1} = 0$. Show that a state is unobservable if and only if it is in the

nullspace of the matrix
$$Q = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix} \in \mathbb{R}^{p \cdot n \times n}.$$

3 Exercise 3

1	2	3	4	Exercise
6	6	7	6	25 Points

Consider the continuous time, linear, time invariant system:

$$\dot{x} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x .$$

1. Compute the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$. Is the matrix diagonalizable?

- 2. Is the system controllable? Is it observable?
- 3. Show that the state transition matrix is given by:

$$e^{At} = \left[\begin{array}{ccc} 1 & t & \frac{t^2}{2} \\ 0 & 1 & t \\ 0 & 0 & 1 \end{array} \right] \,.$$

4. Compute the Laplace transform of the state transition matrix. Hence, or otherwise, compute the transfer function of the system.

Exercise 4

1	2	3	4	Exercise
5	5	6	9	25 Points

Consider the mechanical system of the following figure. The mass M is attached to a wall by means of a spring of stiffness k and a damper of constant b. The damper exerts a force proportional to the speed of the mass and in the opposite direction. An external force f is applied to the mass. Let x denote the horizontal displacement of the mass from its equilibrium point and $v = \frac{dx}{dt}$ its velocity.

- 1. Write the state space model for this system using $x_1 = v$, $x_2 = x$ as states, u = f as input and y = x as output.
- 2. Using the values M = 1Kg, b = 2Kg/sec and k = 5Nt/m, derive the transfer function G(s) from the input u to the output y.
- 3. Assume that the force applied to the mass is $f(t) = 10(1 e^{-t})$ Nt, $t \ge 0$. For the parameter values of part 2 of this exercise, calculate the steady state value $y_{\infty} = \lim_{t \to \infty} y(t)$ by using the Final Value Theorem.
- 4. A step input of magnitude f = 10Nt, $t \ge 0$ is now applied to the system. Calculate the expression of y(t) as a function of time. Use the parameter values of part 2 of this exercise and zero initial condition $(x_1(0) = 0 \text{ and } x_2(0) = 0)$.