Signals and Systems II Videos

Introduction to Modeling

01 Modeling

Why modelling?

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} \end{array} \xrightarrow{\dot{x}(t)}$$

$$\Rightarrow \dot{x}(t) = Ax(t) + Bu(t)$$

$$\rightarrow y(t) = Cx(t) + Du(t)$$

LINEAR (XH), UH)

LINEAR SYSTEM.

- Predict future evolution
- Determine properties
- Steer using inputs, ...

$$TIME \longrightarrow t \geq 0$$

STAGE
$$\rightarrow x(t) \in \mathbb{R}^n$$

output
$$\longrightarrow y(t) \in \mathbb{R}^p$$

INPUT
$$\rightarrow u(t) \in \mathbb{R}^m$$

$$n, p, m \in \mathbb{N}$$

$$A \in \mathbb{R}^{n \times n}$$

$$B \in \mathbb{R}^{n \times m}$$

$$C \in \mathbb{R}^{p \times n}$$

$$D \in \mathbb{R}^{p \times m}$$

Basic steps

- 1. Identify input variables $U(4) \in \mathbb{R}^{m}$
 - Quantities that come from outside the system
- 2. Identify output variables 4 (4) + R
 - Quantities that can be measured
- 3. Select state variables $(4) \in \mathbb{R}^{N}$
 - Related to "energy storage"
- 4. Compute derivatives of the states
 - Physical laws, chemical laws, ...
 - Write derivatives in terms of states and inputs
- 5. Write outputs in terms of states and inputs $(3\mu) = (k(4) + 04\mu)$

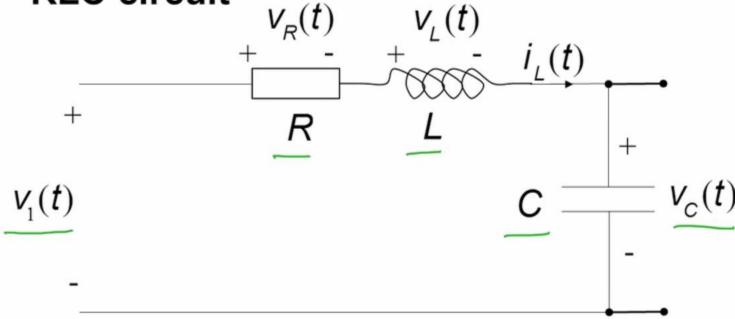
Disclaimes

- Seems easy, but some skill is necessary
 - State selection
 - Dynamical equations
- Mathematical model NEVER the same as reality
- With any luck, close enough to be useful!

Modeling an electric circuit

01 Modeling

RLC circuit



- Inputs: $u(t) = v_1(t) \in \mathbb{R} \longleftarrow M=1$
- Outputs: $y(t) = v_C(t) \in \mathbb{R} \leftarrow P = 1$
- States: $x_1(t), \dots, x_n(t) \in \mathbb{R}$ $\underline{\dot{x}_i(t)} = a_{i1}x_1(t) + \dots + a_{in}x_n(t) + b_iu(t)$

Given

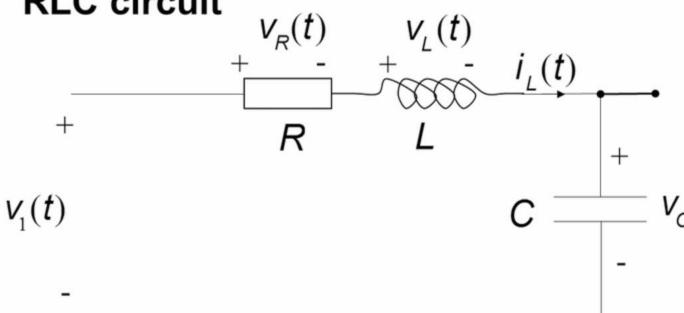
$$v_1(t), t \geq 0$$
 $v_C(0) \in NERGY$
 $i_L(0) \in NERGY$

Find

$$\begin{cases} v_c(t) \\ i_L(t) \\ v_L(t) \\ v_R(t) \end{cases} \quad t \ge 0$$

- Model
 - Equations relating these
 - Solve to determine evolution

RLC circuit



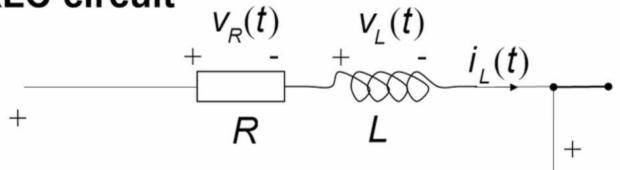
Element equations

$$\times_{1}(A) = U_{c}(A)$$
 $\times_{2}(A) = U_{c}(A)$

$$\dot{x}_1(t) = \frac{1}{C} \underbrace{x_2(t)}_{L}$$

$$\dot{x}_2(t) = \frac{1}{L} \underbrace{v_L(t)}_{L}$$

RLC circuit



 $V_1(t)$

Kirchoff's Laws

$$(v_L(t) = v_L(t) - v_R(t) - v_C(t)$$

So far

 $V_c(t)$

$$\dot{x}_2(t) = \frac{1}{L} v_L(t)$$

$$v_R(t) = Rx_2(t)$$

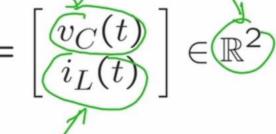
RLC circuit

$$\dot{x}(t) = \begin{bmatrix} 0 & \frac{1}{C} \\ -\frac{1}{L} & -\frac{R}{L} \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ \frac{1}{L} \end{bmatrix} u(t)$$

$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(t) + \mathbf{R} \mathbf{u} \mathbf{u}$$

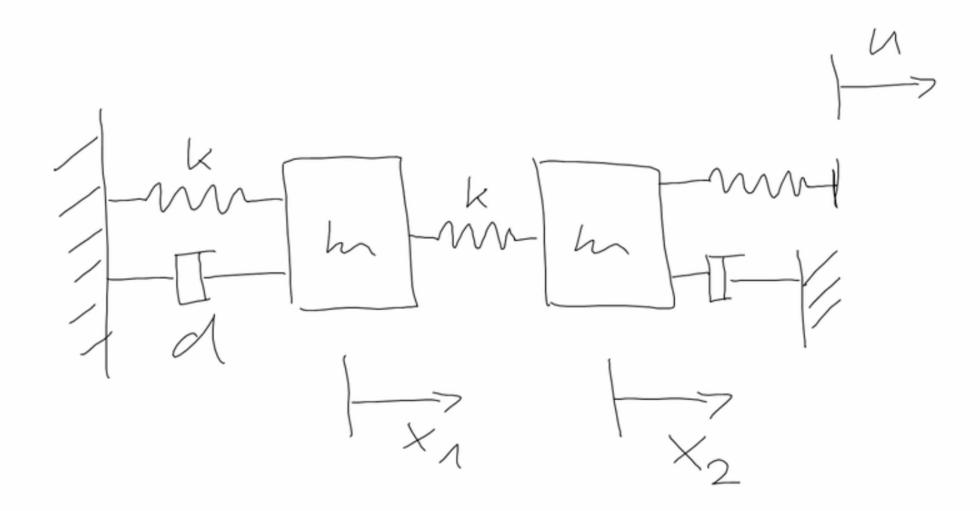
$$\mathbf{u}(t) = \mathbf{u}(t)$$

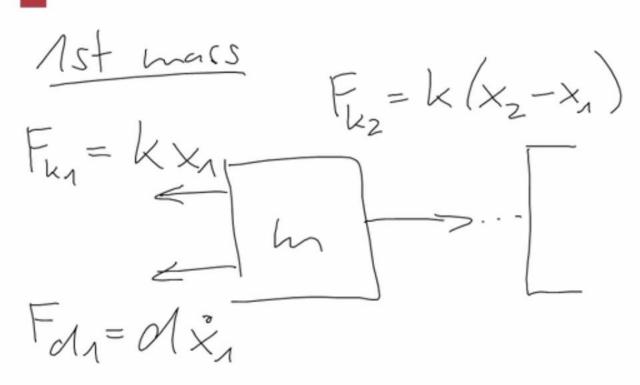
- Note: States related to energy storage $\Rightarrow x(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} v_C(t) \\ i_L(t) \end{bmatrix}$ Generally a good ideal
 - Generally a good idea!



Modeling double-mass dynamics

01 Modeling





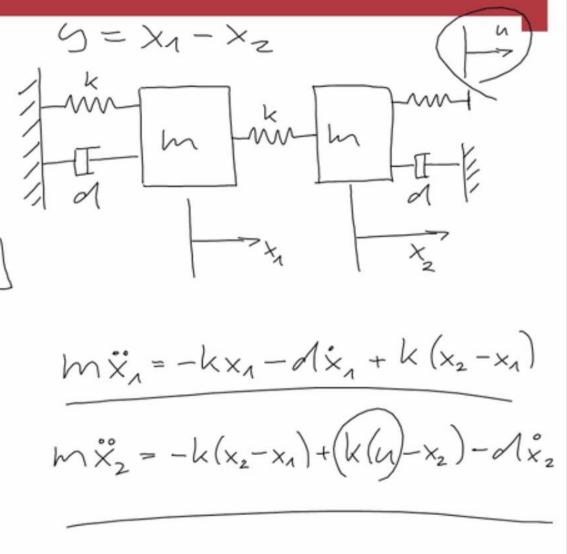
$$m\ddot{x}_1 = -kx_1 - \lambda \ddot{x}_1 + k(x_2 - x_1)$$

 $m\ddot{x}_{\lambda} = -kx_{\lambda} - d\dot{x}_{\lambda} + k(x_{2} - x_{\lambda})$ $- F_{d2} = d\tilde{x}_2$ $wx_2 = -k(x_2 - x_1) - dx_2 + k(u - x_2)$

5 × 10 5

Cinear State Space rept.
$$\dot{x} = Ax + Bu$$

$$\dot{x}$$



LinAlg Revision: Linear Equations

02 ODEs and Linear Algebra

Systems of linear equations

$$\underbrace{Ax = y}_{x \in \mathbb{R}^m} \quad A \in \mathbb{R}^{n \times m}, y \in \mathbb{R}^n \text{ given}$$
$$x \in \mathbb{R}^m \text{ unknown}$$

- Many interpretations: e.g., y are sensor measurements/outputs, x are inputs or model parameters, A is a linear model relating inputs to outputs
- m=n: unique solution iff A is invertible $A^{-1}A \times A = A^{-1}A \times A =$
- n>m: more equations than unknowns (overdetermined), no solution in general
 - Find x that minimizes ||Ax y||: if A is rank m, then

$$= (A^T A)^{-1} A^T y$$

- n<m: fewer equations than unknowns (underdetermined), infinitely many solutions
 - Find x with minimum norm: if A is rank n, then $x = A^T (AA^T)$

LinAlg Revision: The 2 Norm

02 ODEs and Linear Algebra

The 2-norm is a measure of "size" or "length"

Definition: The 2-norm is a function $\|\cdot\|: \mathbb{R}^n \to \mathbb{R}$ that to each $x \in \mathbb{R}^n$ assigns a real number

$$||x|| = \sqrt{\sum_{i=1}^n x_i^2}$$

$$X = \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}_{1} ||x|| = \sqrt{x_{1}^{2} + x_{2}^{2}}$$

$$||x||^{2} = (\sqrt{x_{1}^{2} + x_{2}^{2}})^{2} = x_{1}^{2} + x_{2}^{2} = \begin{bmatrix} x_{1} & x_{2} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = x^{T}x$$

Some important facts about the 2-norm

Fact 2.1: For all
$$x, y \in \mathbb{R}^n$$
, $a \in \mathbb{R}$
1. $||x|| \ge 0$ and $||x|| = 0$ if & only if $x = 0$
2. $||ax|| = |a| \cdot ||x||$
3. $||x + y|| \le ||x|| + ||y||$

$$||-2\times|| = \sqrt{(-2\times_1)^2 + (-2\times_2)^2}$$

$$= \sqrt{4\times_1^2 + 4\times_2^2}$$

$$= \sqrt{4(\times_1^2 + \times_2^2)} = 2||\times||$$

$$|-2|$$

Distance between $x, y \in \mathbb{R}^n$ is ||x-y||

$$X = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}, Y = \begin{bmatrix} -2 \\ 4 \\ 2 \end{bmatrix}$$

$$||X - Y|| = \left| \left| \left(\frac{5}{-3} \right) \right| \right| = \left| 25 + 9 + 0 \right|$$

$$= \sqrt{34}$$

LinAlg Revision: Linear Independance

02 ODEs and Linear Algebra

Definition: A set of vectors $\{x_1, x_2, \dots x_m\} \in \mathbb{R}^n$ is called <u>linearly</u> independent if for $a_1, a_2, \dots a_m \in \mathbb{R}$

$$a_1 x_1 + a_2 x_2 + \dots + a_m x_m = 0 \Leftrightarrow a_1 = a_2 = \dots = a_m = 0$$

Otherwise they are called linearly dependent.

$$X_{1} = \begin{bmatrix} 2 \\ 6 \end{bmatrix} \qquad X_{2} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

$$Q_{1} \times Q_{1} + Q_{2} \times Q_{2} = \begin{bmatrix} 0 \\ 6 \end{bmatrix}$$

$$Q_{1} \cdot (2) + Q_{2} \cdot (1) = Q \quad (+)$$

$$Q_{2} \cdot (3) = Q \quad (++) \longrightarrow Q_{2} = Q$$

$$(+) \longrightarrow Q_{1} \cdot (2) = Q \rightarrow Q_{1} = Q \quad (++) \longrightarrow (-1)^{2} \text{ in eacl}^{2} \text{ in eac$$

Definition: A set of vectors $\{x_1, x_2, \dots x_m\} \in \mathbb{R}^n$ is called <u>linearly</u> independent if for $a_1, a_2, \dots a_m \in \mathbb{R}$

$$a_1 x_1 + a_2 x_2 + \dots + a_m x_m = 0 \Leftrightarrow a_1 = a_2 = \dots = a_m = 0$$

Otherwise they are called linearly dependent.

$$X_{1} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}, \quad X_{2} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$a_{1} \times_{1} + a_{2} \times_{2} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$a_{1} \cdot 2 + a_{2} \cdot 1 = 0 \quad (*) \longrightarrow a_{2} = -2a_{1}$$

$$a_{1} \cdot 4 + a_{2} \cdot 2 = 0 \quad (**) \longrightarrow a_{2} = -2a_{1}$$

$$a_{1} \cdot 4 + a_{2} \cdot 2 = 0 \quad (**) \longrightarrow a_{2} = -2a_{1}$$

$$a_{1} = 1, \quad a_{2} = -2$$

$$X_{1} = 2 \times 2 \longrightarrow a_{1} = a_{2} = a_{1}$$

$$A_{2} = a_{2} = a_{2} = a_{2} \longrightarrow a_{2} = a_{2} = a_{3}$$

$$A_{3} = a_{1} = a_{2} = a_{2} \longrightarrow a_{3} = a_{4} = a_{2} \longrightarrow a_{4} = a_{2} \longrightarrow a_{4} = a_{4} \longrightarrow a_{4} = a_{4} \longrightarrow a_{4} = a_{4} \longrightarrow a_{$$

Fact 2.3: There exists a set with n linearly independent vectors in \mathbb{R}^n , but any set with more than n vectors is linearly dependent.

Exercise: What is a set of n linearly independent vectors of \mathbb{R}^n ?

$$X_{1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, X_{2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, X_{3} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\Rightarrow A_{1} \times_{1} + A_{2} \times_{2} + A_{3} \times_{5} = 0$$

$$\Rightarrow A_{1} \times_{1} + A_{2} \times_{2} + A_{3} \times_{5} = 0$$

$$\Rightarrow A_{2} = 0 \Rightarrow \text{linearly independent indep$$

LinAlg Revision: Subspaces

02 ODEs and Linear Algebra

Subspaces

Definition: A set of vectors $S \subseteq \mathbb{R}^n$ is called a <u>subspace</u> of \mathbb{R}^n if for all $x, y \in S$ and $a, b \in \mathbb{R}$, we have that $ax + by \in S$.

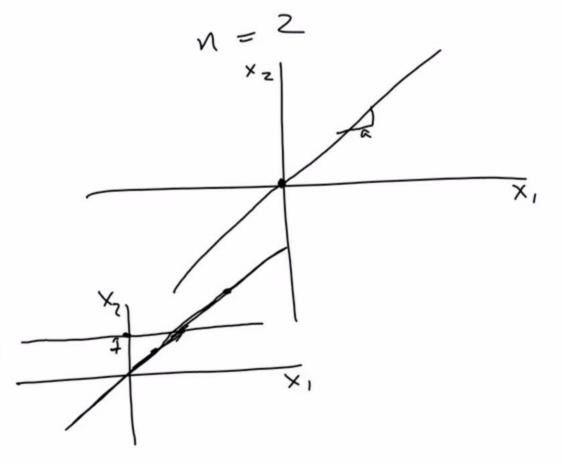
- Generally an infinite set
- Some examples:

Some examples:

$$S = \mathbb{R}^{n}, S = \{0\}$$

$$\{x \in \mathbb{R}^{n} \mid x_{2} = ax_{1}\}$$

Some example that are not subspaces



Basis of a Subspace

Definition: The <u>span</u> of $\{x_1, x_2, ..., x_m\} \subset \mathbb{R}^n$ is set of all linear combinations of these vectors

Definition: A set of vectors $\{x_1, x_2, ..., x_m\} \subset \mathbb{R}^n$ is called a basis for a subspace $S \subseteq \mathbb{R}^n$ if

- 1. $\{x_1, x_2, ..., x_m\}$ are linearly independent
- 2. $S = \text{span}\{x_1, x_2, ..., x_m\}$

In this case, m is called the <u>dimension</u> of S.

- All subspaces of \mathbb{R}^n have bases, though not unique
- Different bases related through coordinate transformation

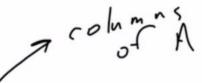
LinAlg Revision: Range and Null Space

Range space of a matrix

Definition: The <u>range space</u> of a matrix $A \in \mathbb{R}^{n \times m}$ is the set

range(A) =
$$\{ y \in \mathbb{R}^n \mid \exists \ \underline{x} \in \mathbb{R}^m, \ \underline{y} = Ax \}$$

- Fact: range(A) is a subspace of ℝⁿ
- **Definition**: The $\underline{\text{rank}}$ of a matrix $A \in \mathbb{R}^{n \times m}$ is the dimension of range(A).



Fact: range(A) = span{a₁,...,a_m},
 so rank(A) is the number of linearly independent columns of A

Example:

$$A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}$$

The sample:

In the range of
$$A = \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 3 & 4 \end{bmatrix}$$
?

Null space of a matrix

Definition: The null space of a matrix $A \in \mathbb{R}^{n \times m}$ is the set

$$\operatorname{null}(A) = \left\{ \underline{x \in \mathbb{R}^m} \mid \underline{Ax = 0} \right\}$$

- Fact: null(A) is a subspace of ℝⁿ
- Fact: null(A) is the set of vectors orthogonal to the rows of A

$$A = \begin{bmatrix} a_1^T \\ \vdots \\ a_n^T \end{bmatrix} \qquad A \times = \begin{bmatrix} a_1^T \\ \vdots \\ a_n^T \times \end{bmatrix} = 0$$

Fact: rank(A) is the number of linearly independent rows of A

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 4 \\ 4 & 8 & 12 \\ 1 & 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 4 \\ 4 & 8 & 12 \\ 1 & 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 4 \\ 4 & 8 & 12 \\ 1 & 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 4 \\ 4 & 8 & 12 \\ 1 & 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 4 \\ 4 & 8 & 12 \\ 1 & 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 4 \\ 4 & 8 & 12 \\ 1 & 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 4 \\ 4 & 8 & 12 \\ 1 & 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 4 \\ 4 & 8 & 12 \\ 1 & 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 8 & 12 \\ 1 & 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 8 & 12 \\ 1 & 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 8 & 12 \\ 1 & 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 8 & 12 \\ 1 & 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 8 & 12 \\ 1 & 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 8 & 12 \\ 1 & 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 8 & 12 \\ 1 & 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 8 & 12 \\ 1 & 1 & 1 \end{bmatrix}$$

$$A\begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} = 0, A = \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix} = 0$$

$$Basis for null(A) is
$$\left\{ \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix} \right\}$$$$

$$\left\{ \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix} \right\}$$

LinAlg Revision: Square Matrix Inverse

Definition: The <u>inverse</u> of a matrix $A \in \mathbb{R}^{n \times n}$ is a matrix $A^{-1} \in \mathbb{R}^{n \times n}$

$$A^{-1}A = AA^{-1} = I$$

Definition: A matrix is called singular if it does not have an inverse. Otherwise it is called non-singular or invertible.

Fact 2.9: If an inverse of *A* exists then it is unique.

Fact 2.10: A is invertible if and only if $det(A) \neq 0$

Fact 2.11: *A* is invertible if and only if the system of linear equations Ax = y has a unique solution $x \in \mathbb{R}^n$ for all $y \in \mathbb{R}^n$

Fact 2.12: A is invertible if and only if $null(A) = \{0\}$

Fact 2.13: A is invertible if and only if range(A) = \mathbb{R}^n

So how do we compute the matrix inverse?

$$A^{-1} = \frac{\operatorname{adj}(A)}{\det(A)}$$

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, A^{-1} = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \frac{1}{ad - bc}$$

$$A = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 3 & -1 \\ 0 & 2 \end{bmatrix} \xrightarrow{3.2 - 0} = A^{-1} = \begin{bmatrix} 1/2 & -1/6 \\ 0 & 1/3 \end{bmatrix}$$

LinAlg Revision: Eigenvalues and Eigenvectors

Definition: A (nonzero) vector $w \in \mathbb{C}^n$ is called an <u>eigenvector</u> of a matrix $A \in \mathbb{R}^{n \times n}$ if there exists a number $\lambda \in \mathbb{C}$ such that $Aw = \lambda w$. The number λ is then called an <u>eigenvalue</u> of A

Fact 2.17: A is invertible if and only if all its eigenvalues are non-zero

An nxn matrix has n eigenvalues (some may be repeated). They are the solutions of the characteristic polynomial

$$\det(\lambda I - A) = \lambda^{n} + a_1 \lambda^{n-1} + a_2 \lambda^{n-2} + \dots + a_n = 0$$

The n eigenvalues of A are called the <u>spectrum</u> of A

$$A = \begin{bmatrix} 2 & 1 \\ -2 & 5 \end{bmatrix}$$

$$det(\lambda I - A) = \begin{bmatrix} \lambda - 2 & -1 \\ 2 & \lambda - 5 \end{bmatrix}$$

$$= \lambda^2 - 7\lambda + 12 = 0$$

$$= \lambda (\lambda - 4)(\lambda - 3)$$

$$= \lambda \left[\lambda = 3, 4 \right]$$

$$Aw = \lambda w$$

$$\lambda = 3, \quad \Delta w = 3w$$

$$\Rightarrow \begin{bmatrix} 2 & 1 \\ -2 & 5 \end{bmatrix} \begin{bmatrix} \omega_1 \\ \omega_2 \end{bmatrix} = \begin{bmatrix} 3\omega_1 \\ 3\omega_2 \end{bmatrix}$$

$$\Rightarrow \lambda = \lambda \begin{bmatrix} 2\omega_1 + \omega_2 & 3\omega_1 \\ \omega_2 & \omega_1 \end{bmatrix}$$

$$Aw = 2w$$

$$2 = 4, Aw = 4w$$

$$\Rightarrow \begin{bmatrix} 2 & 1 \\ -2 & 5 \end{bmatrix} \begin{bmatrix} \omega_1 \\ \omega_2 \end{bmatrix} = \begin{bmatrix} 4\omega_1 \\ 4\omega_2 \end{bmatrix}$$

$$\Rightarrow 2\omega_1 + \omega_2 = 4\omega_1$$

$$\Rightarrow \omega_2 = 2\omega_1$$

LinAlg Revision: Symmetric positive (semi)definite matrices

ETH zürich

Symmetric positive definite and positive semidefinite matrices

Definition: A matrix is called

<u>symmetric</u> if $A = A^T$

Definition: A symmetric matrix is called <u>positive definite</u> if $\underline{x^T Ax} > 0$ for all $x \neq 0$. It is called <u>positive semi-definite</u> if $x^T Ax \geq 0$.

- Fact: Symmetric matrices have real eigenvalues and orthogonal eigenvectors
- Fact: A symmetric matrix is positive definite (semidefinite) if and only if it has real positive (non-negative) eigenvalues
- Fact: If A is positive definite (semidefinite) there exists a matrix $\underline{A^{1/2} > 0}$ ($\underline{A^{1/2} >= 0}$) such that $\underline{A^{1/2}A^{1/2}} = \underline{A}$
- Notation:

ODE Revision: State Space Models

State Space Models: Inputs, Outputs, and States

Mathematical model of physical system

• input variables
$$u_{11} u_{21} \dots u_{m} \in \mathbb{R}$$

• output variables
$$y_1, y_2, ..., y_p \in \mathbb{R}$$

• state variables
$$X_1, X_2, ..., X_n \in \mathbb{R}$$

• Stack into vectors for compact notation
$$u = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_m \end{bmatrix}$$
 $u = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$ $u = \begin{bmatrix} x_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$ • Number of states, n , called dimension or order of the system

Number of states, n, called <u>dimension</u> or <u>order</u> of the system

Dynamics

- System dynamics give relations between variables
 - Differential equations: evolution of states as a function of states, inputs, and possibly time

cossibly time
$$f_{i}(\cdot): \mathbb{R}^{\hat{x}} \times \mathbb{R}^{\hat{x}} \times \mathbb{R}_{t} \longrightarrow \mathbb{R} \qquad \frac{\mathcal{L}}{\mathcal{L}^{t}} \times_{i} lt) = f_{i}\left(x(t), u(t), t\right)$$

Algebraic equations: output as a function of states, inputs, and possibly time

$$h_i(\cdot): \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}_+ \rightarrow \mathbb{R}$$
 $y_i(t) = h_i(x(t), u(t), t)$

- Often come from "laws of Nature"
 - Newton's laws for mechanical systems
 - · Electrical laws for circuits
 - · Energy and mass balance for chemical systems

State Space Models

• Again, stack into vectors for compact notation $f(\cdot): \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}_+ \to \mathbb{R}^n$ $f(\cdot): \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}_+ \to \mathbb{R}^n$ $f(x,u,t) = \begin{bmatrix} f_1(x,u,t) \\ \vdots \\ f_n(x,u,t) \end{bmatrix}$ $f(x,u,t) = \begin{bmatrix} f_1(x,u,t) \\ \vdots \\ f_n(x,u,t) \end{bmatrix}$

State Space Form

$$\frac{d}{dt} \times (t) = f\left(\times (t), u(t), t\right)$$

$$y(t) = h\left(\times (t), u(t), t\right)$$

- a system of coupled, first-order ODEs and algebraic equations
- dynamics function sometimes called a vector field

System Classifications

• Time invariant
$$\frac{d}{dt} \times (t) = f(\times (t), u(t)), y(t) = h(\times (t), u(t))$$

• Autonomous
$$\int_{A^+} x(t) = \int (x \mid t \mid)$$
, $y \mid t \mid = h(x \mid t \mid)$

• Linear
$$\frac{d}{dt} \times (t) = \mathcal{A}(t) \times (t) + \mathcal{B}(t) \times (t)$$

• Linear time invariant (LTI) $\int_{0.4}^{4} x(t) = A(x(t)) + B(x(t)), \quad y(t) = C(x(t)) + D(x(t))$

ODE Revision: Higher Order ODEs

02 ODEs and Linear Algebra

Converting Higher Order ODEs to State Space Form

Sometimes dynamics expressed in terms of higher order differential equations

$$\frac{d^{2}y^{(t)}}{dt^{-}} + g_{1}\left(y^{(t)}, \frac{dy^{(t)}}{dt}, \dots, \frac{d^{2}y^{(t)}}{dt^{-}}\right) = g_{2}\left(u^{(t)}\right)$$

 Can always convert to state space form by defining state variables in terms of lower order derivatives

ETH zürich

Example: Linear ODE with an input

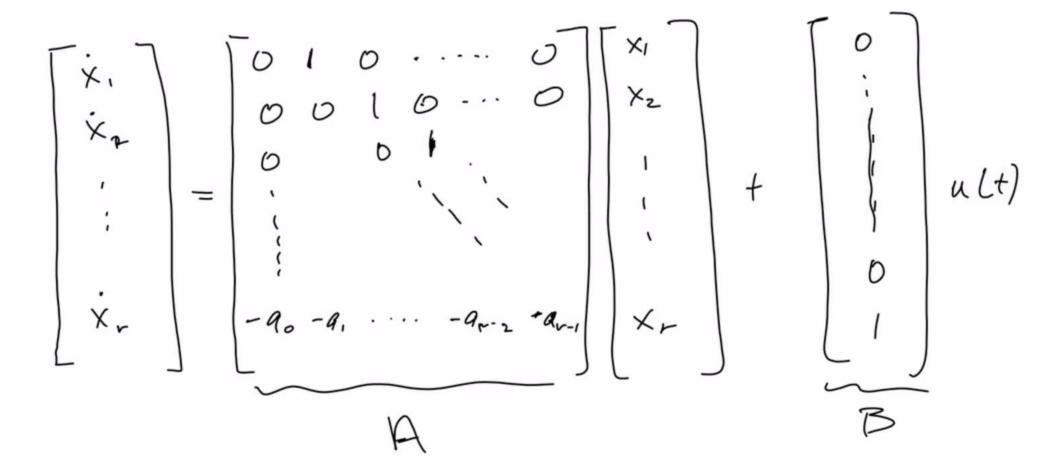
xample: Linear ODE with an input

$$\frac{d^{r}y(t)}{dt} + a_{r-1}\frac{d^{r-1}y(t)}{dt^{r-1}} + a_{r-2}\frac{d^{r-1}y(t)}{dt^{r-1}} + \dots + a_{r}\frac{d^{r}y(t)}{dt} + a_{o}y(t) = u(t)$$
The state variable

$$x_1 = g(t)$$
 \Rightarrow $\dot{x}_1 = \dot{g}(t) = x_2$
 $x_2 = \dot{g}(t)$ \Rightarrow $\dot{x}_2 = \ddot{g}(t) = x_3$

$$x_{r} = \frac{d^{r}}{dt^{r}}y(t) \Rightarrow x_{r} = \frac{d^{r}}{dt}y(t) = -a_{r}\frac{d^{r}}{dt}y(t) - \dots - a_{r}\frac{dy(t)}{dt} - a_{0}y(t) + u(t)$$

Example: Linear ODE with an input



ODE Revision: Solutions of State Space Equations

02 ODEs and Linear Algebra

Solution of State Space Equations

For now focus on autonomous time invariant systems

$$\dot{x}(t) = f(x(t))$$
 $y(t) = h(x(t))$

- What is the solution of the system?
 - Given dynamics and output function, initial condition: $\chi(t_0) = \chi_0 e^{-\beta L}$
 - What does the state and output do from now until some future time?

We want functions that "satisfy" the system equations and initial conditions

$$\chi(\cdot): [t_o,t] \rightarrow \mathbb{R}^n \quad \gamma(\cdot): [t_o,t_i] \rightarrow \mathbb{R}^p$$

Solution definition

Definition: A pair of functions $x(\bullet): [t_0, t_1] \to \mathbb{R}^n$, $y(\bullet): [t_0, t_1] \to \mathbb{R}^p$ is a <u>solution</u> of the state space system over the interval $[t_0, t_1]$ starting at $x_0 \in \mathbb{R}^n$ if $1. \ x(t_0) = x_0 \qquad 2. \ \dot{x}(t) = f(x(t)), \quad \forall t \in [t_0, t_1]$ $3. \ y(t) = h(x(t)), \quad \forall t \in [t_0, t_1]$

Hard part is finding state trajectory, just substitute to get output trajectory

For autonomous systems, initial time unimportant

Existence and Uniqueness Issues

- Does a solution exist for some time interval?
- Is the solution unique, or can there be more than one?
- Does the solution exist for arbitrary time intervals?
- Can the solution be computed? Analytically? happens often!
 - Unfortunately, things can go wrong for all of these questions!
 - Problem is then with the model

ODE Revision: Solutions of State Space Equations

02 ODEs and Linear Algebra

te Transformations

happens when we change coordinates? Why would we want to do

are many equivalent ways to express dynamics

change of coordinates

Coordinate Transformations

• We will get another linear time invariant system:

$$\hat{\chi}(t) = T \times (t) \qquad = \sum_{x(t)} \frac{\chi(t)}{x(t)} = T \cdot \hat{\chi}(t)$$

$$\hat{\chi}(t) = T \cdot \hat{\chi}(t) = T \cdot (A \times t + B \times t) \qquad y(t) = C \times (t) + \mathcal{B} \cdot Du(t)$$

$$= T A T' \hat{\chi}(t) + T B u(t) \qquad y(t) = C T' \cdot \hat{\chi}(t) + D u(t)$$

$$= \frac{T}{A} \frac{T'}{B} \hat{\chi}(t) + \frac{T}{B} u(t) \qquad y(t) = C T' \cdot \hat{\chi}(t) + D u(t)$$

 Why? Transformed system may take some useful or simpler form with an interesting interpretation.

Linear time invariant systems: solutions

03 Continuous LTI systems

Linear time invariant systems

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + Du(t)$$

$$x_0 \in \mathbb{R}^n \to T > 0$$

$$u(\bullet) : [0, T] \to \mathbb{R}^m$$

CONTENUOUS

SOLUTION
$$\begin{array}{c}
X(\cdot): [0,T] \to \mathbb{R}^{N} \\
y(\cdot): [0,T] \to \mathbb{R}^{P} \\
y(\cdot)$$

State transition matrix
$$\Phi(t) = e^{At} = I + At + \frac{A^2t^2}{2!} + \dots + \frac{A^kt^k}{k!} + \dots \in \mathbb{R}^{n \times n}$$

Properties of the state transition matrix

Fact: The state transition matrix satisfies w HY?

1.
$$\Phi(0) = I$$

2.
$$\frac{d}{dt}\Phi(t) = A\Phi(t) -$$

3.
$$\Phi(-t) = [\Phi(t)]^{-1}$$

4.
$$\Phi(t_1 + t_2) = \Phi(t_1)\Phi(t_2)$$

trix
$$\Phi(t) = e^{At} = I + At + ... + \frac{A^{k}t^{k}}{k!} + ...$$

$$\phi(0) = I + \beta \cdot 0 + ... + \frac{A^{k}t^{k}}{k!} + ...$$

$$\frac{1}{k!} \left[I + \beta \cdot A + ... + \frac{A^{k}t^{k}}{k!} + ... + \frac{A$$

Linear time invariant systems: Solution

State solution

$$x(t) = \Phi(t)x_0 + \int_0^t \Phi(t - \tau)Bu(\tau)d\tau \quad \longleftarrow$$

Output solution 9(4) = CX(4) + DuH

$$y(t) = \overbrace{C\Phi(t)x_0}^{\bullet} + \int_0^t C\Phi(t-\tau)Bu(\tau)d\tau + Du(t)$$

1

LTI systems: solution proof

03 Continuous LTI systems

Linear time invariant systems: Solution proof

- Candidate solution $\mathbf{X}(t) = \Phi(t)\mathbf{X}_0 + \int_0^t \Phi(t-\tau)\mathbf{B}\mathbf{U}(\tau)d\tau$ Show that it satisfies $\mathbf{X}(0) = \mathbf{X}_0 \longrightarrow \mathbf{X}(0) = \mathbf{A}_0 \longrightarrow \mathbf{X}(0) = \mathbf{A}_0 \longrightarrow \mathbf{X}(0) = \mathbf{A}_0 \longrightarrow \mathbf{X}(0) = \mathbf{A}_0 \longrightarrow \mathbf{A}_0$

$$\dot{x}(t) = Ax(t) + Bu(t) \quad \forall t \in [0, T]$$

Leibnitz rule

$$\frac{d}{dt} \int_{\underline{f(t)}}^{\underline{g(t)}} \underline{I(t,\tau)} \, d\tau = I(t,g(t)) \frac{d}{dt} g(t) - I(t,f(t)) \frac{d}{dt} f(t) + \int_{f(t)}^{g(t)} \frac{\partial}{\partial t} I(t,\tau) \, d\tau$$

Linear time invariant systems: Solution proof

$$\frac{d}{dt} \int_{f(t)}^{g(t)} I(t,\tau) \, d\tau = I(t,g(t)) \frac{d}{dt} g(t) - I(t,f(t)) \frac{d}{dt} f(t) + \int_{f(t)}^{g(t)} \frac{\partial}{\partial t} I(t,\tau) \, d\tau$$

• Differentiate candidate $\frac{d}{dt}x(t) = \frac{d}{dt}\Phi(t)x_0 + \frac{d}{dt}\int_0^t \Phi(t-\tau)Bu(\tau)d\tau$

$$\dot{X}(4) = \left(\frac{1}{4}\phi(4)\right) \times_{0} + \phi(4-4)BUH \cdot \frac{1}{4}(4) - \phi(4-0)BU(0) \cdot \frac{1}{4}(0) + \int_{0}^{4} \frac{1}{24}\phi(4-1)BUH d\tau$$

$$A\phi(4) = \left(\frac{1}{4}\phi(4)\right) \times_{0} + \phi(4-4)BUH \cdot \frac{1}{4}(4) - \phi(4-0)BU(0) \cdot \frac{1}{4}(0) + \int_{0}^{4} \frac{1}{24}\phi(4-1)BUH d\tau$$

$$\frac{A\phi(4)}{\chi(4)} = A\left(\phi(4)\chi_0 + \int_0^4 \phi(4-\tau)dsut\tau\right)d\tau + BU(4)$$

Linear time invariant systems: Solution

State solution

$$\frac{x(t)}{\varphi(t)} = \underbrace{\Phi(t)x_0}_{\varphi(t)=0} + \underbrace{\int_0^t \Phi(t-\tau)Bu(\tau)d\tau}_{\varphi(t)=0}$$

Output solution

$$y(t) = C\Phi(t)x_0 + C\int_0^t \Phi(t-\tau)Bu(\tau)d\tau + Du(t)$$

$$Total Response = \begin{bmatrix} Zero \\ Input \\ Response \end{bmatrix} + \begin{bmatrix} Zero \\ State \\ Response \end{bmatrix}$$

LINEAR IN XO EMY

LINEAR

PRIENCEPLE

LTI systems: Computing the state transition matrix

03 Continuous LTI systems

Linear time invariant systems: Solution

$$x(t) = \Phi(t)x_0 + \int_0^t \Phi(t-\tau)Bu(\tau)d\tau$$

Key ingredient: State transition matrix

$$\Phi(t) = e^{At} = I + At + \frac{A^2t^2}{2!} + \dots + \frac{A^kt^k}{k!} + \dots \in \mathbb{R}^{n \times n}$$

Compute based on eigenvalue/eigenvector decomposition

Diagonalizable matrices

- Eigenvectors: $\underline{w_i} \in \mathbb{C}^n, \underline{w_i} \neq 0$: $\underline{Aw_i} = \lambda_i w_i$ for some $\lambda_i \in \mathbb{C}, i = 1, ..., n$
- Matrix diagonalizable if eigenvectors limearly independent
- Matrix $W = \begin{bmatrix} w_1 & \dots & w_n \end{bmatrix} \in \mathbb{C}^{n \times n}$ is invertible

$$A \cdot w = A \left[w_1 - w_n \right] = \left[Aw_1 - Aw_n \right] = \left[w_1 - w_n \right]$$

State transition matrix computation: Diagonalizable matrices

$$\mathbf{A} = \mathbf{W} \Lambda \mathbf{W}^{-1} \longrightarrow \mathbf{A}^{\mathbf{c}} (\mathbf{w} \Lambda \mathbf{w}^{-1}) (\mathbf{w} \Lambda \mathbf{w}^{-1})_{\mathbf{c}} \mathbf{w} \Lambda^{\mathbf{c}} \mathbf{w}^{-1}, \dots, \mathbf{A}^{\mathbf{k}} = \mathbf{w} \Lambda^{\mathbf{h}} \mathbf{w}^{-1}$$

Substitute into the state transition matrix

$$e^{At} = 1 + At + \frac{A^2t^2}{2!} + ... + \frac{A^kt^k}{k!} + ...$$

$$= w \cdot w^{-1} + w \wedge t \wedge w^{-1} + ... + \frac{A^kt^k}{k!} + ...$$

$$= w \cdot \sqrt{1 + \wedge t} + ... + \frac{A^kt^k}{k!} + ...$$

$$= w \cdot \sqrt{1 + \wedge t} + ... + \frac{A^kt^k}{k!} + ...$$

$$= w \cdot \sqrt{1 + \wedge t} + ... + \frac{A^kt^k}{k!} + ...$$

$$= w \cdot \sqrt{1 + \wedge t} + ... + \frac{A^kt^k}{k!} + ...$$

$$= w \cdot \sqrt{1 + \wedge t} + ... + \frac{A^kt^k}{k!} + ...$$

$$= w \cdot \sqrt{1 + \wedge t} + ... + \frac{A^kt^k}{k!} + ...$$

$$= w \cdot \sqrt{1 + \wedge t} + ... + \frac{A^kt^k}{k!} + ...$$

$$= w \cdot \sqrt{1 + \wedge t} + ... + \frac{A^kt^k}{k!} + ...$$

$$= w \cdot \sqrt{1 + \wedge t} + ... + \frac{A^kt^k}{k!} + ...$$

$$= w \cdot \sqrt{1 + \wedge t} + ... + \frac{A^kt^k}{k!} + ...$$

$$= w \cdot \sqrt{1 + \wedge t} + ... + \frac{A^kt^k}{k!} + ...$$

$$= w \cdot \sqrt{1 + \wedge t} + ... + \frac{A^kt^k}{k!} + ...$$

$$= w \cdot \sqrt{1 + \wedge t} + ... + \frac{A^kt^k}{k!} + ...$$

$$= w \cdot \sqrt{1 + \wedge t} + ... + \frac{A^kt^k}{k!} + ...$$

$$= w \cdot \sqrt{1 + \wedge t} + ... + \frac{A^kt^k}{k!} + ...$$

$$= w \cdot \sqrt{1 + \wedge t} + ... + \frac{A^kt^k}{k!} + ...$$

$$= w \cdot \sqrt{1 + \wedge t} + ... + \frac{A^kt^k}{k!} + ...$$

$$= w \cdot \sqrt{1 + \wedge t} + ... + \frac{A^kt^k}{k!} + ...$$

$$= w \cdot \sqrt{1 + \wedge t} + ... + \frac{A^kt^k}{k!} + ...$$

$$= w \cdot \sqrt{1 + \wedge t} + ... + \frac{A^kt^k}{k!} + ...$$

$$= w \cdot \sqrt{1 + \wedge t} + ...$$

$$= w \cdot \sqrt{1 + \wedge t} + ... + \frac{A^kt^k}{k!} + ...$$

$$= w \cdot \sqrt{1 + \wedge t} + ... + \frac{A^kt^k}{k!} + ...$$

$$= w \cdot \sqrt{1 + \wedge t} + ... + \frac{A^kt^k}{k!} + ...$$

$$= w \cdot \sqrt{1 + \wedge t} + ... + \frac{A^kt^k}{k!} + ...$$

$$= w \cdot \sqrt{1 + \wedge t} + ... + \frac{A^kt^k}{k!} + ...$$

$$= w \cdot \sqrt{1 + \wedge t} + ...$$

$$= w \cdot \sqrt{1 + \wedge t} + ...$$

$$= w \cdot \sqrt{1 + \wedge t} + ...$$

$$= w \cdot \sqrt{1 + \wedge t} + ...$$

$$= w \cdot \sqrt{1 + \wedge t} + ...$$

$$= w \cdot \sqrt{1 + \wedge t} + ...$$

$$= w \cdot \sqrt{1 + \wedge t} + ...$$

$$= w \cdot \sqrt{1 + \wedge t} + ...$$

$$= w \cdot \sqrt{1 + \wedge t} + ...$$

$$= w \cdot \sqrt{1 + \wedge t} + ...$$

$$= w \cdot \sqrt{1 + \wedge t} + ...$$

$$= w \cdot \sqrt{1 + \wedge t} + ...$$

$$= w \cdot \sqrt{1 + \wedge t} + ...$$

$$= w \cdot \sqrt{1 + \wedge t} + ...$$

$$= w \cdot \sqrt{1 + \wedge t} + ...$$

$$= w \cdot \sqrt{1 + \wedge t} + ...$$

$$= w \cdot \sqrt{1 + \wedge t} + ...$$

$$= w \cdot \sqrt{1 + \wedge t} + ...$$

$$= w \cdot \sqrt{1 + \wedge t} + ...$$

$$= w \cdot \sqrt{1 + \wedge t} + ...$$

$$= w \cdot \sqrt{1 + \wedge t} + ...$$

$$= w \cdot \sqrt{1 + \wedge t} + ...$$

$$= w \cdot \sqrt{1 + \wedge t} + ...$$

$$= w \cdot \sqrt{1 + \wedge t} + ...$$

State transition matrix computation: Diagonalizable matrices

$$e^{\Lambda t} = \begin{bmatrix} 1 + \lambda_1 t + \dots + \frac{\lambda_1^k t^k}{k!} + \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 1 + \lambda_n t + \dots + \frac{\lambda_n^k t^k}{k!} + \dots \end{bmatrix} = \begin{bmatrix} \underline{e^{\lambda_1 t}} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \underline{e^{\lambda_n t}} \end{bmatrix}$$

$$e^{\lambda t} = W \begin{bmatrix} e^{\lambda_1 t} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & e^{\lambda_n t} \end{bmatrix} W^{-1}$$

LTI systems: Structure of the solutions

03 Continuous LTI systems

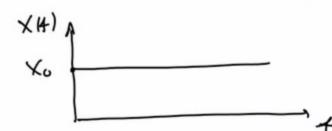
Solution structure $e^{At} = We^{At}W^{-1}$

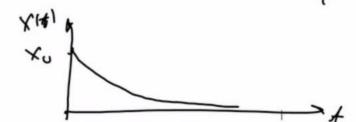
• Linear combination of $e^{\lambda_i t}$ $\int_{\mathbb{R}} e^{\lambda_i t} = e^{\epsilon t} \cdot e^{\lambda_i t}$ $\int_{\mathbb{R}} e^{\lambda_i t} = e^{\epsilon t} \cdot e^{\lambda_i t} = e^{\lambda_i t} = e^{\lambda_i t} \cdot e^{\lambda_i t} = e^{\lambda_i t}$

$$\omega = 0 \Rightarrow \lambda_i = \sigma$$

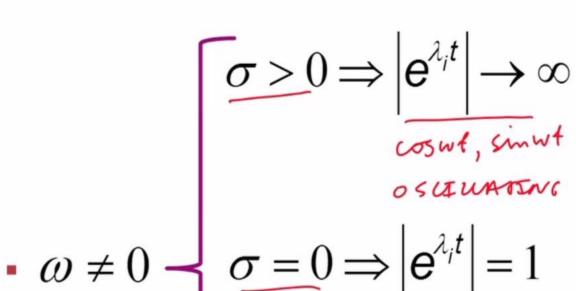
$$\sigma = 0 \Rightarrow e^{\lambda_i t} = 1$$

$$\sigma < 0 \Rightarrow e^{\lambda_i t} \rightarrow 0$$

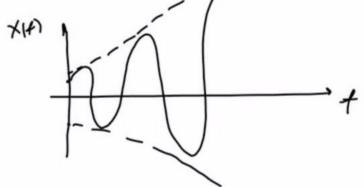


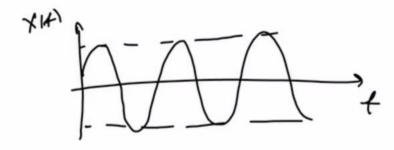


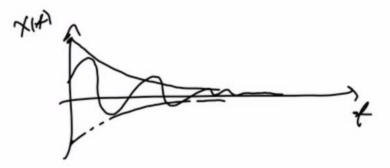
What does this mean about the solutions?



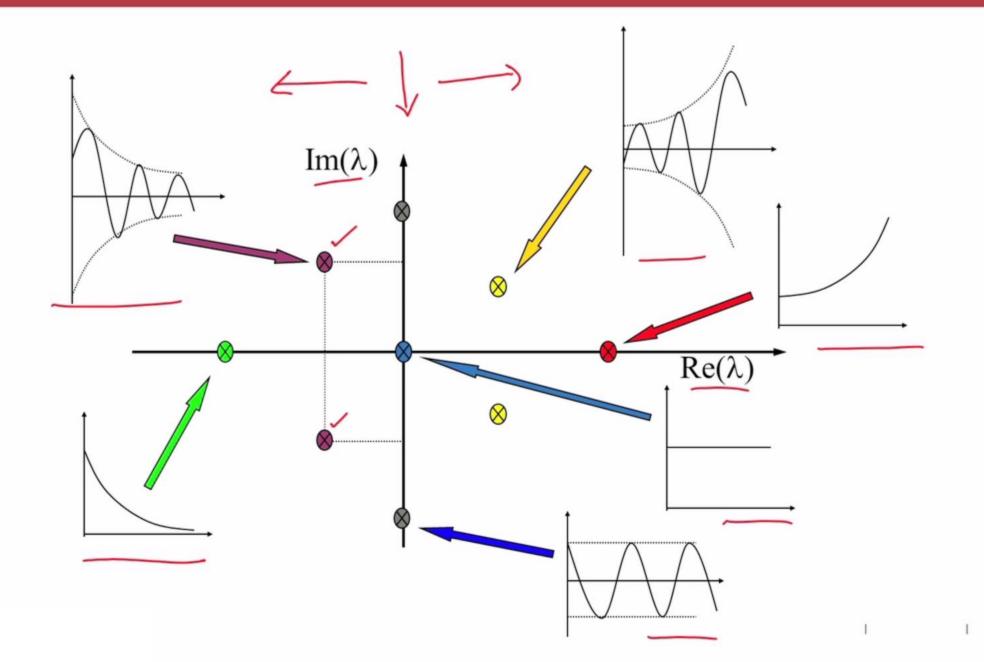
$$\sigma < 0 \Rightarrow \left| \mathbf{e}^{\lambda_i t} \right| \to 0$$







Summary



LTI systems: stability definitions

03 Continuous LTI systems

State transition matrix: Diagonalizable matrices

$$\mathbf{e}^{\mathbf{A}t} = \mathbf{W} \begin{bmatrix} \mathbf{e}^{\lambda_1 t} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \mathbf{e}^{\lambda_n t} \end{bmatrix} \mathbf{W}^{-1}$$

Zero input transition $X(t) = e^{At} X_0$

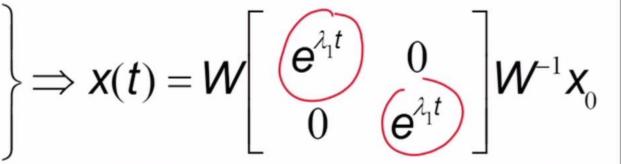
1

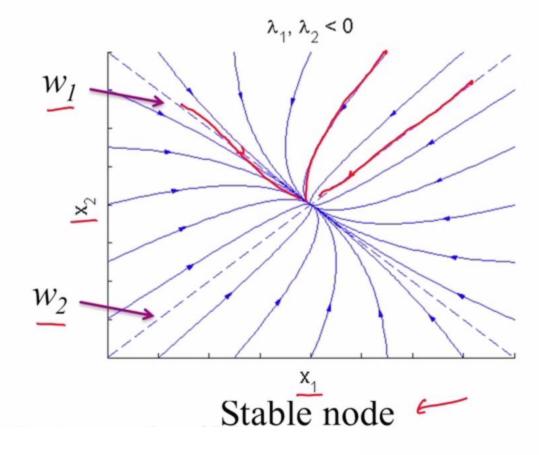
Phase plane plots

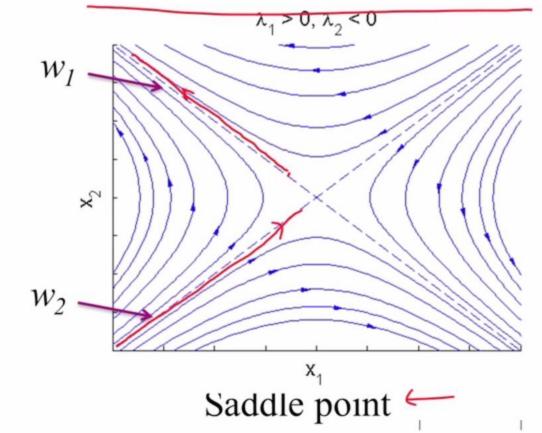
$$x(t) \in \mathbb{R}^2$$

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t)$$

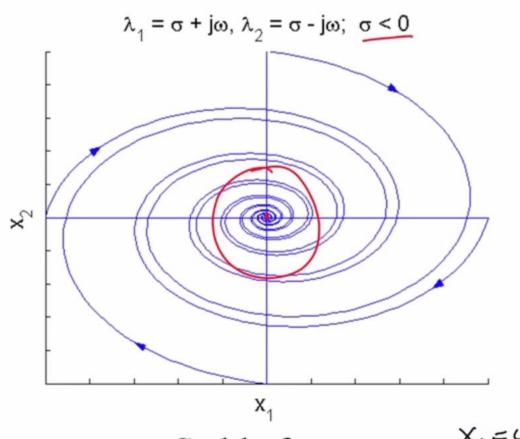
$$\mathbf{X}(0) = \mathbf{X}_0$$



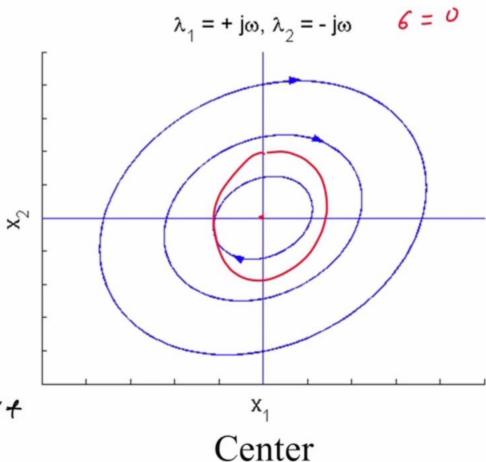




Phase plane plots: Complex eigenvalues



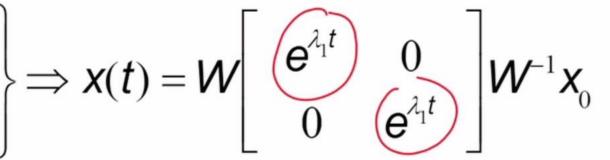
Stable focus

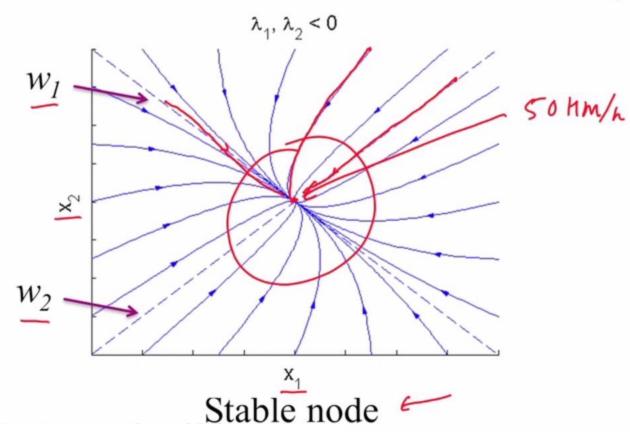


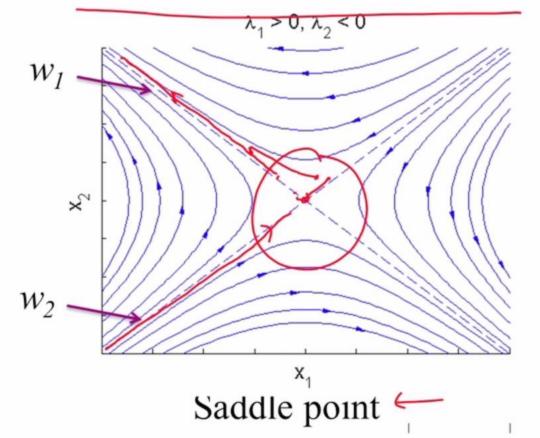
Phase plane plots

$$x(t) \in \mathbb{R}^2$$

$$\dot{\mathbf{x}}(t) = A\mathbf{x}(t)$$







Stability definitions

• Zero state transition $\mathbf{X}(t) = \Phi(t)\mathbf{X}_0 = \mathbf{e}^{\mathbf{A}t}\mathbf{X}_0$

Definition: The system is called <u>stable</u> if for all $\varepsilon > 0$ there exists $\delta > 0$ such that

if
$$||x_0|| \le \delta$$
 then $||x(t)|| \le \varepsilon$ for all $t \ge 0$.

Otherwise the system is called unstable.

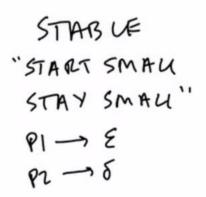
Definition: The system is called <u>asymptotically stable</u> if it is stable and in addition

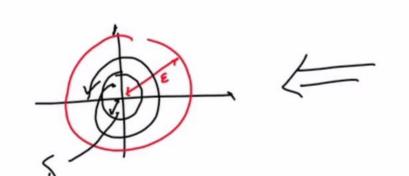
$$|x(t)| \to 0 \text{ as } t \to \infty$$

LTI systems: stability conditions

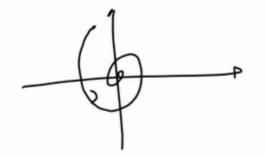
03 Continuous LTI systems

Stability conditions: Diagonalizable matrices



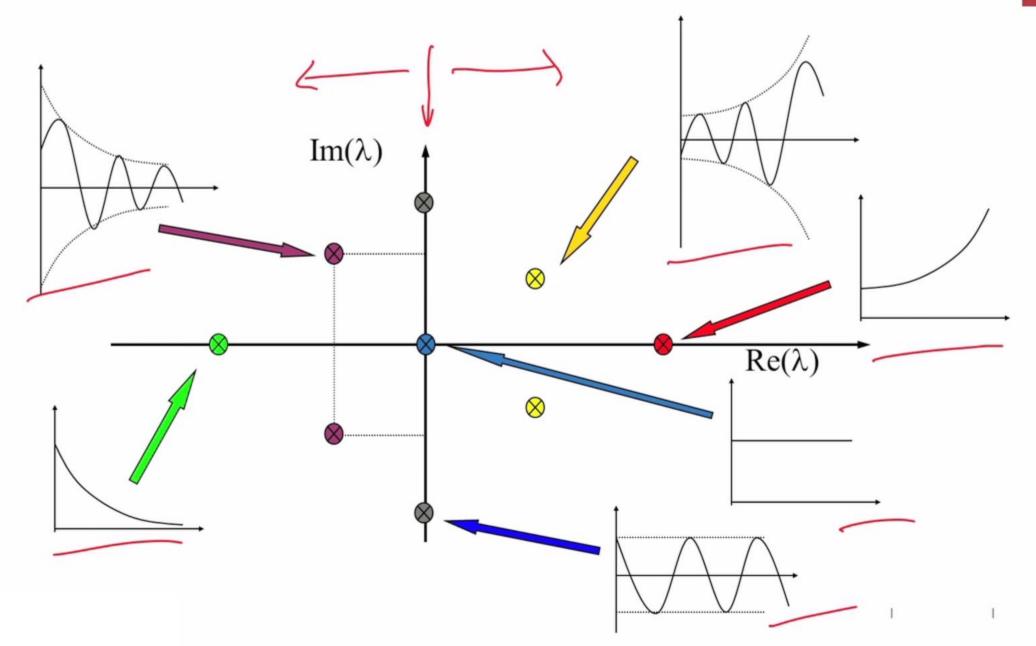


ASYMPTOTICALEX STABOR CONVERSE TO O



Theorem 3.1: System with diagonalizable *A* matrix is:

- Stable if and only if $Re[\lambda_i] \leq 0, \forall i$
- Asymptotically stable if and only if $\text{Re}[\lambda_i] < 0 \ \forall i$
- Unstable if and only if $\exists i : \text{Re}[\lambda_i] > 0$



Non-diagonalizable matrices

- Repeated eigenvalues $\lambda_1 = \lambda_2 = \dots = \lambda_r = \sigma \pm j\omega$
- State transition matrix contains terms of the form $e^{\lambda_i t}$, $te^{\lambda_i t}$, ..., $t^{r-1}e^{\lambda_i t}$
- $\sigma > 0 \Rightarrow |t^k e^{\lambda_i t}| \rightarrow \infty \quad \text{UNSTABLE}$ $\sigma = 0 \qquad |t^k e^{\lambda_i t}| = \text{Constant. Stable}$ $\sigma = 0 \qquad |t^k e^{\lambda_i t}| \rightarrow 0 \quad \text{Asymptotic}$ $\sigma < 0 \Rightarrow |t^k e^{\lambda_i t}| \rightarrow 0 \quad \text{Asymptotic}$ STABLLITY



Stability conditions: Non-diagonalizable matrices

Theorem 3.2: The system is:

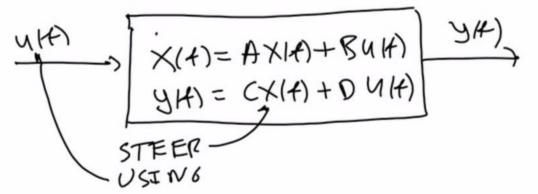
- Asymptotically stable if and only if $\text{Re}[\lambda_i] < 0 \ \forall i$
- Unstable if $\exists i : \text{Re}[\lambda_i] > 0$

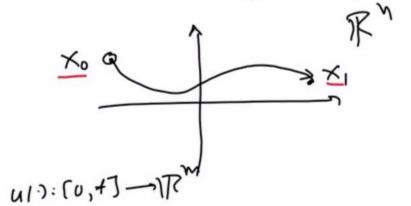
Controllability: basic defintions

04 Energy Controllability Observability

Controllability: Basic notion

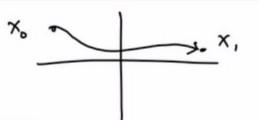
Steer the state from where it is to where you want it to be using the input



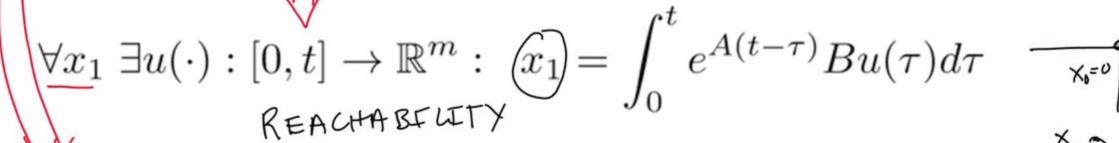


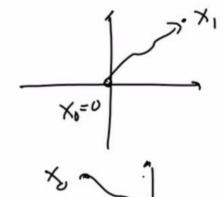
Definition: The system is called <u>controllable</u> over [0, t] if for all $x(0) = x_0 \in \mathbb{R}^n$ initial conditions and all terminal $x_1 \in \mathbb{R}^n$ conditions there exists an input $u(\cdot): [0,t] \to \mathbb{R}^m$ such that $x(t) = x_1$

Controllability: Equivalent notions



$$\nabla x_0, x_1 \exists u(\cdot) : [0, t] \to \mathbb{R}^m : \underline{x_1} = e^{At}\underline{x_0} + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau$$





$$\forall x_0 \exists u(\cdot) : [0,t] \to \mathbb{R}^m : e^{At} \underline{x_0} + \int_0^t e^{A(t-\tau)} Bu(\tau) d\tau = \underline{0}$$

1

Controllability Gramian

$$W_{C}(t) = \int_{0}^{t} e^{A\tau} BB^{T} e^{A^{T}\tau} d\tau \in \mathbb{R}^{n \times n}$$

$$\mathbb{R}^{n \times n} = \mathbb{R}^{n \times n}$$

Theorem: The system is controllable over [0, t] if and only if $W_C(t)$ is invertible

Controllability matrix

$$P = \begin{bmatrix} B & AB & A^2B \cdots A^{n-1}B \end{bmatrix} \in \mathbb{R}^{n \times (n \cdot m)}$$

$$\mathbb{R}^{n \times m} \qquad \mathbb{R}^{n \times n}$$

$$\mathbb{R}^{n \times m} \qquad \mathbb{R}^{n \times n}$$

$$\mathbb{R}^{n \times n} \qquad \mathbb{R}^{n \times n}$$

$$\mathbb{R}^{n$$

Theorem: The system is controllable over [0, t] if and only if the rank of P is n

Controllability: minimum energy controls

04 Energy Controllability Observability

Summary of controllability definition and conditions

$$\underline{\forall x_0, \underline{x_1} \ \exists \underline{u(\cdot)} : [0, t] \to \mathbb{R}^m : \ \underline{x_1} = e^{At}\underline{x_0} + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau$$

$$\forall x_1 \; \exists u(\cdot) : [0,t] \to \mathbb{R}^m : \quad x_1 = \int_0^t e^{A(t-\tau)} Bu(\tau) d\tau$$

REACHABILITY

$$\int_{0}^{t} e^{A\tau} B B^{T} e^{A^{T}\tau} d\tau \text{ invertible } \iff \text{Rank} \left[B A B \dots A^{n-1} B \right] = n$$

Rank
$$[B AB \dots A^{n-1}B] = n$$

Reachability

 $x_1 \in \operatorname{Range}\left[B \ AB \ \dots \ A^{n-1}B\right] \quad \text{Rank}\left[\mathbf{P}\right] = \mathbf{N} \ \ \text{(=)} \ \mathbf{Ru} \ \mathbf{X}_1 \in \mathbf{R}^{\mathbf{N}}$

SYSTEM NOT RANK [P] 2 M CONTROCUARUE

Minimum energy controls

$$\int_0^t e^{A\tau} B B^T e^{A^T \tau} d\tau \text{ invertible for all } t > 0$$

Minimum energy controls

$$u(\cdot): [0,t] \to \mathbb{R}^m$$
, "energy" $= \int_0^t ||u(\tau)||^2 d\tau$

Theorem: Assume that the system is controllable. Given $x_1 \in \mathbb{R}^n$ and t > 0, the input that drives the system from $\underline{x(0)} = 0$ to $\underline{x(t)} = x_1$ and has the minimum energy is given by

$$u_m(\tau) = B^T e^{A^T(t-\tau)} W_C(t)^{-1} x_1, \text{ for } \tau \in [0, t]$$

ENERGY IN Um(.)

XI [Wc(+)] XI

FURTHER =) MORE
ENERGY.

1

Observability: basic definitions

04 Energy Controllability Observability

Observability: Definition

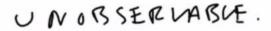
Infer the value of the state by looking at the input and the output

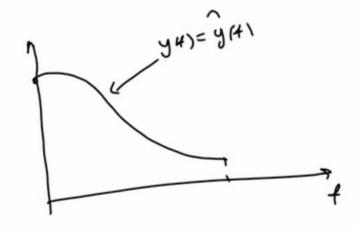
Definition: The system is called <u>observable</u> over [0, t] if given $\underline{u}(\cdot):[0,t] \to \mathbb{R}^m$ and $\underline{y}(\cdot):[0,t] \to \mathbb{R}^p$ we can uniquely determine the value of $\underline{x}(\cdot):[0,t] \to \mathbb{R}^n$

$$x_{\text{of the services}} = x(t) = e^{A\tau} x_0 + \int_0^t e^{A(t-\tau)} Bu(\tau) d\tau$$

|

41.)





$$y(\tau) = \underbrace{Ce^{A\tau}x_0}_{0} + \int_{0}^{t} \underbrace{Ce^{A(t-\tau)}Bu(\tau)d\tau}_{0} + \underbrace{Du(\tau)}_{0}$$

$$\hat{y}(\tau) = \underbrace{Ce^{A\tau}\hat{x}_0}_{0} + \int_{0}^{t} \underbrace{Ce^{A(t-\tau)}Bu(\tau)d\tau}_{0} + \underbrace{Du(\tau)}_{0}$$

$$y(\tau) = \underbrace{Ce^{A\tau}\hat{x}_0}_{0} + \underbrace{\int_{0}^{t} \underbrace{Ce^{A(t-\tau)}Bu(\tau)d\tau}_{0} + \underbrace{Du(\tau)}_{0}}_{0} + \underbrace{\int_{0}^{t} \underbrace{Ce^{A(t-\tau)}Bu(\tau)d\tau}_{0} + \underbrace{Du(\tau)}_{0}}_{0}$$

$$y(\tau) = \underbrace{Ce^{A\tau}\hat{x}_0}_{0} + \underbrace{\int_{0}^{t} \underbrace{Ce^{A(t-\tau)}Bu(\tau)d\tau}_{0} + \underbrace{Du(\tau)}_{0}}_{0} + \underbrace{\int_{0}^{t} \underbrace{Ce^{A(t-\tau)}Bu(\tau)d\tau}_{0} + \underbrace{Du(\tau)}_{0} + \underbrace{Du(\tau)}$$

ETH zürich

Unobservable states

X=0 ALWAYS UMBSERMARUE

$$y(\pi) = Ce^{AT} \times = 0 \qquad \forall \tau \in (0, +]$$

$$y(0) = Ce^{A} \times = C \times = 0$$

$$y(0) = CAe^{A} \times = CA \times = 0 \qquad \times 0$$

$$y(0) = CAe^{A} \times = CA \times = 0 \qquad \times 0$$

$$y(0) = CAe^{A} \times = CA \times = 0$$

$$y(0) = CAe^{A} \times = CA \times = 0$$

$$Y(0) = CAe^{A} \times = CA \times = 0$$

$$Y(0) = CAe^{A} \times = CA \times = 0$$

$$Y(0) = CAe^{A} \times = CA \times = 0$$

$$Y(0) = CAe^{A} \times = CA \times = 0$$

$$Y(0) = CAe^{A} \times = CA \times = 0$$

$$Y(0) = CAe^{A} \times = CA \times = 0$$

$$Y(0) = CAe^{A} \times = CA \times = 0$$

$$Y(0) = CAe^{A} \times = CA \times = 0$$

$$Y(0) = CAe^{A} \times = CA \times = 0$$

$$Y(0) = CAe^{A} \times = CA \times = 0$$

$$Y(0) = CAe^{A} \times = CA \times = 0$$

$$Y(0) = CAe^{A} \times = CA \times = 0$$

$$Y(0) = CAe^{A} \times = CA \times = 0$$

$$Y(0) = CAe^{A} \times = CA \times = 0$$

$$Y(0) = CAe^{A} \times = CA \times = 0$$

$$Y(0) = CAe^{A} \times = CA \times = 0$$

$$Y(0) = CAe^{A} \times = CAe^{A} \times = 0$$

$$Y(0) = CAe^{A} \times = CAe^{A} \times = 0$$

$$Y(0) = Ce^{n} \times = CX = 0$$

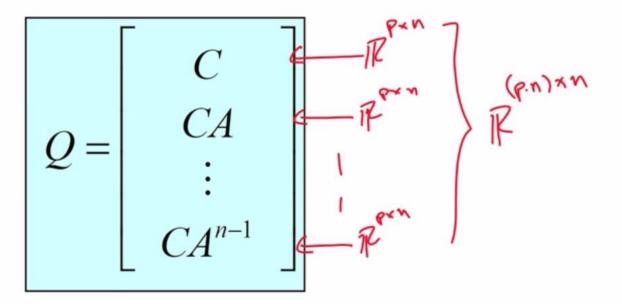
$$y(0) = CAe^{n} \times = CAX = 0$$

$$y(0) = \dots = CA^{n} \times = 0$$

$$Y = CAX = 0$$

$$Y$$

Observability matrix



Theorem: Set of unobservable states equal to Null(*Q*)

Theorem: The system is observable over [0, t] if and only if the rank of the matrix Q is n

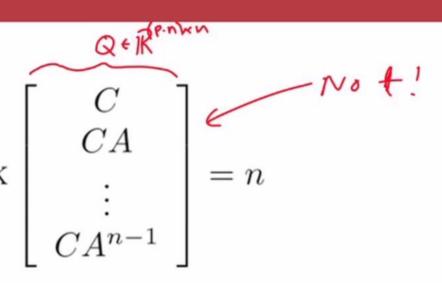
Initial state estimation

04 Energy Controllability Observability

Observability condition

■ System observable on [0, t] if and only if RANK

f smau — Ewoneh To Deconsmuct Stage.



- Observable for some t if and only if observable for all t!
- Consider differentiating y(t) along solutions of $\dot{x}(t) = Ax(t) + Bu(t)$

$$y(t) = Cx(t) + Du(t)$$

$$\dot{y}(t) = C\dot{x}(t) + D\dot{u}(t) = CAx(t) + CBu(t) + D\dot{u}(t)$$

$$\ddot{y}(t) = CA^{2}x(t) + CABu(t) + CB\dot{u}(t) + D\ddot{u}(t)$$

$$y(t) = CA^{2}x(t) + CABu(t) + CB\dot{u}(t) + D\ddot{u}(t)$$

$$y(t) = CA^{2}x(t) + CABu(t) + CB\dot{u}(t) + D\ddot{u}(t)$$

$$y(t) = C\dot{x}(t) + D\dot{u}(t)$$

$$y(t) = C\dot{x}(t) + D\dot{u}(t) + CB\dot{u}(t) + D\dot{u}(t)$$

$$y(t) = C\dot{x}(t) + D\dot{u}(t) + CB\dot{u}(t) + D\dot{u}(t)$$

$$y(t) = C\dot{x}(t) + D\dot{u}(t) + CB\dot{u}(t) + D\dot{u}(t)$$

$$y(t) = CA^{2}x(t) + CABu(t) + CB\dot{u}(t) + D\ddot{u}(t)$$

$$y(t) = CA^{2}x(t) + CABu(t) + CB\dot{u}(t) + D\ddot{u}(t)$$

$$y(t) = CA^{2}x(t) + CABu(t) + CB\dot{u}(t) + D\ddot{u}(t)$$

$$y(t) = CA^{2}x(t) + CABu(t) + CB\dot{u}(t) + D\ddot{u}(t)$$

$$y(t) = CA^{2}x(t) + CABu(t) + CB\dot{u}(t) + D\ddot{u}(t)$$

$$y(t) = CA^{2}x(t) + CABu(t) + CB\dot{u}(t) + D\ddot{u}(t)$$

$$y(t) = CA^{2}x(t) + CABu(t) + CB\dot{u}(t) + D\ddot{u}(t)$$

$$y(t) = CA^{2}x(t) + CABu(t) + CB\dot{u}(t) + D\ddot{u}(t)$$

$$y(t) = CA^{2}x(t) + CABu(t) + CB\dot{u}(t) + D\ddot{u}(t)$$

$$y(t) = CA^{2}x(t) + CABu(t) + CB\dot{u}(t) + D\ddot{u}(t)$$

$$y(t) = CA^{2}x(t) + CABu(t) + CB\dot{u}(t) + D\ddot{u}(t)$$

$$y(t) = CA^{2}x(t) + CABu(t) + CB\dot{u}(t) + D\ddot{u}(t)$$

$$y(t) = CA^{2}x(t) + CABu(t) + CB\dot{u}(t) + D\ddot{u}(t)$$

$$y(t) = CA^{2}x(t) + CABu(t) + CB\dot{u}(t) + D\ddot{u}(t)$$

$$y(t) = CA^{2}x(t) + CABu(t) + CB\dot{u}(t) + D\ddot{u}(t)$$

$$y(t) = CA^{2}x(t) + CABu(t) + CB\dot{u}(t) + D\ddot{u}(t)$$

$$y(t) = CA^{2}x(t) + CABu(t) + CB\dot{u}(t) + D\ddot{u}(t)$$

$$y(t) = CA^{2}x(t) + CABu(t) + CB\dot{u}(t) + D\ddot{u}(t)$$

$$y(t) = CA^{2}x(t) + CABu(t) + CB\dot{u}(t) + D\ddot{u}(t)$$

$$y(t) = CA^{2}x(t) + CABu(t) + CB\dot{u}(t) + D\ddot{u}(t)$$

$$y(t) = CA^{2}x(t) + CABu(t) + CABu(t) + CB\dot{u}(t) + D\ddot{u}(t)$$

$$y(t) = CA^{2}x(t) + CABu(t) + CABu(t) + CABu(t) + CABu(t) + CABu(t)$$

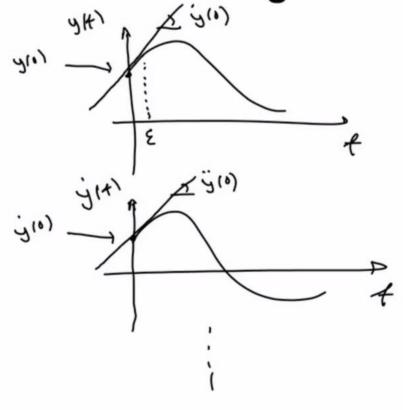
$$y(t) = CA^{2}x(t) + CABu(t) +$$

Reconstructing the state using derivatives find the

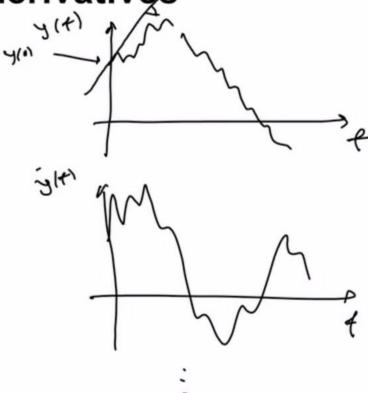
$$\begin{bmatrix} y(0) \\ \dot{y}(0) \\ \vdots \\ y^{(n-1)}(0) \end{bmatrix} = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix} x(0) + \begin{bmatrix} D & 0 & \cdots & 0 \\ CB & D & \cdots & 0 \\ CAB & CB & \cdots & 0 \\ CA^{n-2}B & CA^{n-3}B & \cdots & D \end{bmatrix} \begin{bmatrix} u(0) \\ \dot{u}(0) \\ \vdots \\ u^{(n-1)}(0) \end{bmatrix}$$

$$\forall \in \mathbb{R}^{P^n} \qquad \forall \in \mathbb{R}^{P^n} \qquad \forall \in \mathbb{R}^{N^n} \Rightarrow \forall \in \mathbb{R}^$$

Reconstructing the state using derivatives



IN PRENCEPUE



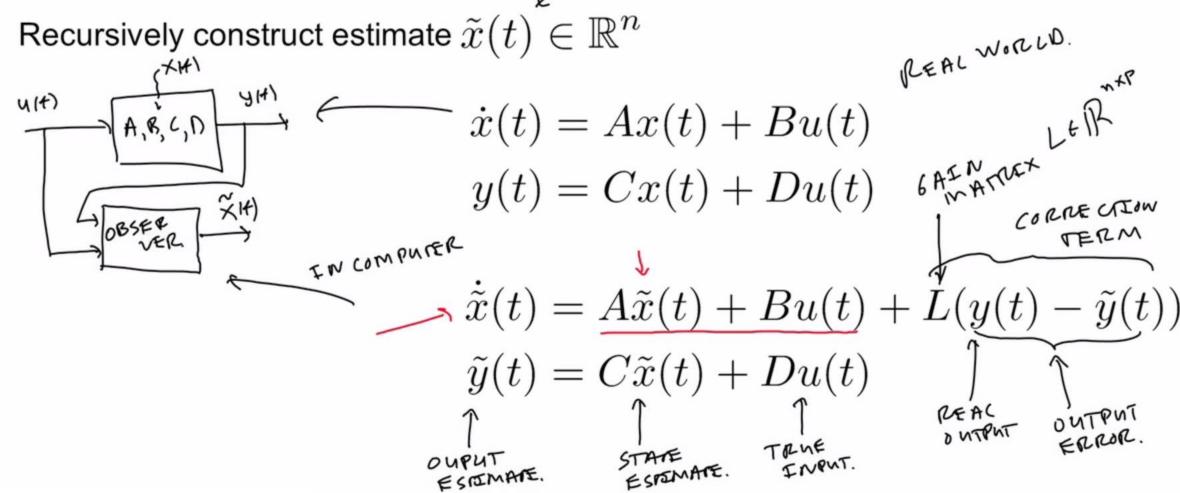
DIFFERENTATING AMPLIFIES
NOSSE!

IN PRACTICE.

Observers

04 Energy Controllability Observability

Observers



STATE ESTIMATE.

Observation error evolution

- Observation error $e(t) = \underline{x}(t) - \tilde{x}(t) \in \mathbb{R}^n$ observation error $e(t) = \underline{x}(t) - \tilde{x}(t) \in \mathbb{R}^n$

$$\begin{array}{l} P(t) = \dot{\chi}(t) - \dot{\chi}(t) = A \chi(t) + B h(t) - A \dot{\chi}(t) - B h(t) - L \left(\dot{y}(t) - \dot{y}(t) \right) \\ = A \left(\dot{\chi}(t) - \dot{\chi}(t) \right) - L \left(c \chi(t) + D h(t) - c \dot{\chi}(t) - D h(t) \right) \\ = \left(A - L c \right) \left(\dot{\chi}(t) - \dot{\chi}(t) \right) \\ P(t) = \left(A - L c \right) P(t) \\ P(t) =$$

Theorem: If the system is observable, then L can be chosen such that eigenvalues of (A-LC) have negative real parts.

Revision of Laplace transforms

05 Continuous LTI systems in frequency domain

Laplace transform

 Convert real valued functions of real argument to complex valued functions of complex argument

$$\underline{F(s)} = \underline{L\{f(t)\}} = \int_0^\infty f(t)e^{-st}dt$$

- Assumed f(t) such that integral well defined
- Can also be defined for vector/matrix valued functions element by element

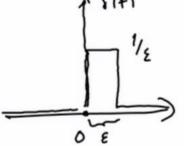
Laplace transform properties

• Linearity
$$259,14)+928,147=9,258,147+92258,147=9,515$$

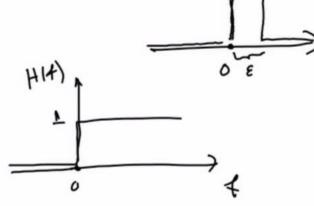
• s-shift
$$2584.e^{-47} = F(5+4)$$

- Time derivative $\left\{ \left\{ \frac{1}{11} \delta(4) \right\} = SF(5) \frac{1}{3} \delta(6) \right\}$
- Convolution $\left\{ \left\{ \left\{ \left\{ *g\right\} \right\} \right\} \right\} = \mathcal{F}(s) \cdot G(s)$
- Initial value theorem $\lim_{t\to 0} f(t) = \lim_{s\to \infty} s \cdot F(s)$ Final value theorem $\lim_{t\to \infty} f(t) = \lim_{s\to \infty} s \cdot F(s)$ Final value theorem $\lim_{t\to \infty} f(t) = \lim_{s\to \infty} s \cdot F(s)$

Laplace transform of common functions



- Dirac impulse 2(84) = 1
- Step function \(\(\frac{1}{2} \) H(A) \(\frac{1}{2} \)



- All rational functions
 - Very useful for linear systems (coming up!)
 - Compute inverse Laplace transform by partial fraction expansion

LTI systems in the frequency domain

05 Continuous LTI systems in frequency domain

Laplace transform of linear system equations

$$\dot{x}(t) = Ax(t) + Bu(t) \qquad x(t) \in \mathbb{R}^{n}, \ u(t) \in \mathbb{R}^{m}$$

$$y(t) = Cx(t) + Du(t) \qquad y(t) \in \mathbb{R}^{p}, \ t \in \mathbb{R}$$

$$\chi(s) = \chi(s) + \chi(s) = \chi(s) + \chi(s) = \chi(s) + \chi(s) + \chi(s) = \chi(s) + \chi(s) + \chi(s) + \chi(s) = \chi(s) + \chi(s) + \chi(s) + \chi(s) = \chi(s) + \chi(s$$

Comparison to time domain solution

$$x(t) = e^{At}x_0 + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau$$

$$\chi(s) = \chi(e^{At}) \times_0 + \chi(s) \int_0^t e^{A(t-\tau)}Su(\tau)d\tau$$

$$\chi(s) = \chi(e^{At}) \times_0 + \chi(s) \int_0^t e^{A(t-\tau)}Su(\tau)d\tau$$

$$\chi(s) = \chi(e^{At}) \cdot \chi(s)$$

$$= \chi(e^{At}) \cdot \chi(s)$$

Transfer function

$$\chi_{\delta} = 0$$

$$X(s) = (sI - A)^{-1}B \cdot U(s)$$

$$Y(s) = (X(s) + DU(s)) = (c(sI - A)^{-1}B + D)U(s)$$

Zero state response

$$G(s) = C(sI - A)^{-1}B + D \quad \text{TRANSFER FUNCTION} \qquad \forall (s) = G(s) \cdot \text{U(s)}$$

$$(sI-A)^{-1} = \underbrace{AOJ(sI-A)}_{DET(sI-A)}$$

$$(sI-A)^{-1} = \frac{A0J(sI-A)}{DET(sI-A)} = \frac{A0J(sI-A)}{DET(sI-A)} = \frac{A0J(sI-A)}{(n-1)\times(n-1)} = \frac{A0J(sI-A)}{DET(sI-A)} =$$

= POLYMOMERY OF OPEDER AT MOST N-1

POLYNOMIAL ORDER M CHAMACTERESISC POLS. Of A & TRYN

Transfer function properties

05 Continuous LTI systems in frequency domain

Transfer function and impulse response
$$\text{Impulse response } K(t) = Ce^{At}B + D\delta(t)$$

$$\chi\{K(t)\} = \chi\{Ce^{At}B + O\delta(t)\} = C\chi\{e^{At}\}B + D\chi\{\delta(t)\} = C(sI-A)^{-1}B + D = G(s)$$

$$\zeta(sI-A)^{-1} \qquad \qquad L$$

Zero state response

state response
$$y(t) = C \int_0^t e^{A(t-\tau)} Bu(\tau) d\tau + Du(t) = (K*u)(t)$$

$$y(s) = \lambda \{(K*u)(t)\} = \lambda \{(K*u)(t)\} = \zeta(s) \cdot \mathcal{V}(s)$$

CONVOLUTION

Transfer function and stability

K < W

- Transfer function = proper rational function of s• Single input-single output $G(s) = \frac{(s-z_1)(s-z_2)\cdots(s-z_k)}{(s-p_1)(s-p_2)\cdots(s-p_n)}$ (SISO system)

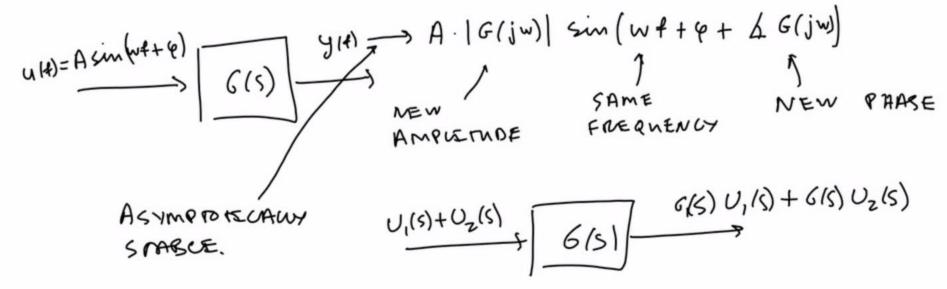
 Character Resort Poly Affin

Denominator = Characteristic polynomial of matrix A

- Poles \rightarrow eigenvalues of matrix A (unless there are pole zero cancellations!)
- Real part of poles determines stability
- Unless there are pole zero cancellations! \leftarrow

Transfer function and frequency reponse

- SISO system ightarrow Transfer function complex number $G(s) = |G(s)| \cdot e^{\angle G(s)}$
- Apply sinusoidal input → output settles to sinusoid of same frequency



Continuous LTI systems in time domain: Block Diagrams

05 Continuous LTI systems in frequency domain

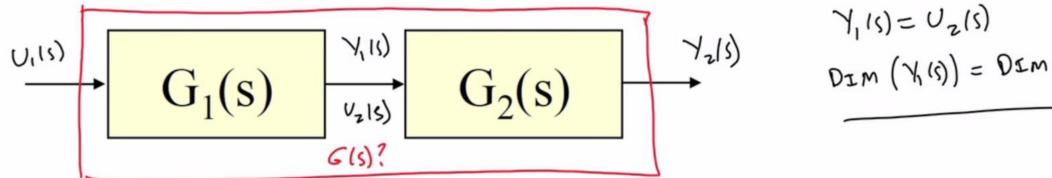
Cascade interconnection

$$\frac{\langle G(s) \rangle}{\langle G(s) \rangle} = \frac{\langle G(s) \cdot U(s) \rangle}{\langle G(s) \rangle}$$

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + Du(t)$$

$$G(s) = C(sI - A)^{-1}B + D$$

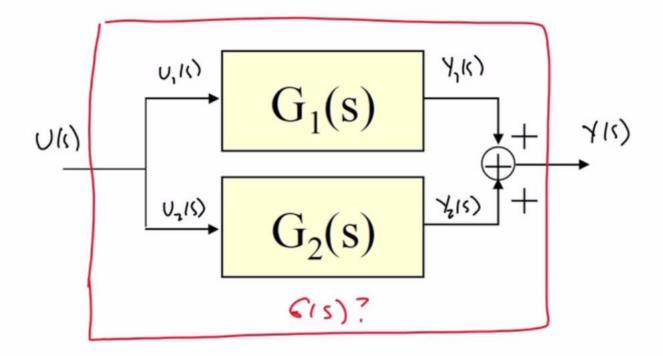


$$D_{IM}(\chi(s)) = D_{IM}(\nabla_{z}(s))$$

$$\lambda'_{1}(s) = G_{1}(s) \cdot U_{1}(s) \longleftrightarrow \lambda'_{1}(s) = U_{1}(s) \longleftrightarrow \lambda'_{2}(s) = G_{2}(s) \cdot U_{2}(s) = G_{2}(s) \cdot G_{1}(s) \cdot U_{1}(s)$$

$$G_2(s)G_1(s)$$
 $G_2(s)G_1(s)$

Parallel interconnection



$$D_{IM}[U_{1}(s)] = D_{IM}[U_{2}(s)]$$

$$D_{IM}[Y_{1}(s)] = D_{IM}[Y_{2}(s)]$$

$$Y_{1}(s) = G_{1}(s) \cdot U_{1}(s) = G_{1}(s) U(s)$$

$$Y_{2}(s) = G_{2}(s) \cdot U_{2}(s) = G_{2}(s) U(s)$$

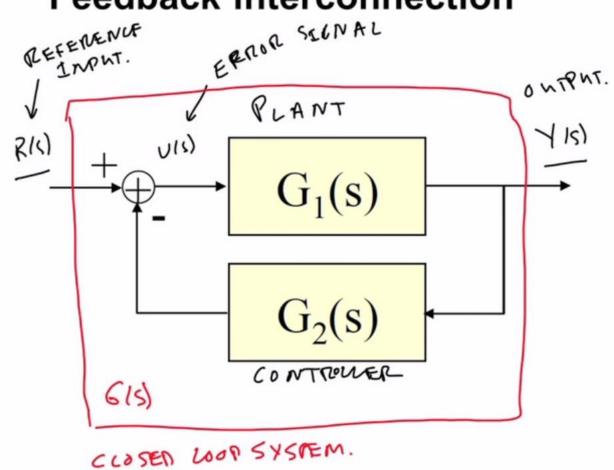
$$Y(s) = Y_{1}(s) + Y_{2}(s)$$

$$Y(s) = (G_{1}(s) + G_{2}(s))U(s)$$

$$U_{1}(s) = (G_{1}(s) + G_{2}(s))U(s)$$

$$\xrightarrow{\gamma_{(s)}} G_2(s) + G_1(s) \xrightarrow{\gamma_{(s)}}$$

Feedback interconnection



$$\frac{\gamma(s) = c_1(s) \, \forall (s)}{= c_1(s) \cdot \left(R(s) - c_2(s) \, \gamma(s) \right)}$$

$$= c_1(s) \cdot \left(R(s) - c_2(s) \, \gamma(s) \right)$$

$$(I + c_1(s) \cdot c_2(s)) \, \gamma(s) = c_1(s) \, R(s)$$

$$\gamma(s) = \left[I + c_1(s) \, c_2(s) \right]^{-1} \cdot c_1(s) \cdot R(s)$$

$$c(s)$$

Sampled Data Systems

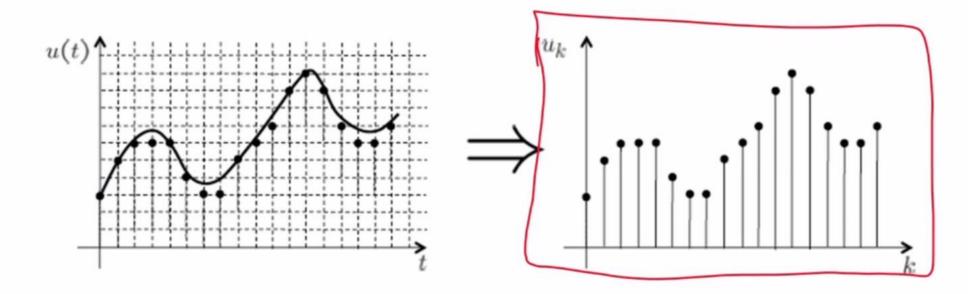
06 Discrete time LTI systems

Embedded computational systems on digital computers

- Measurements of physical quantities measured by computers
- Decisions of computer applied to the physical system

Analog-to-Digital conversion (ADC) and Digital to Analog conversion (DAC)

Value and time quantization ESSENTIAL



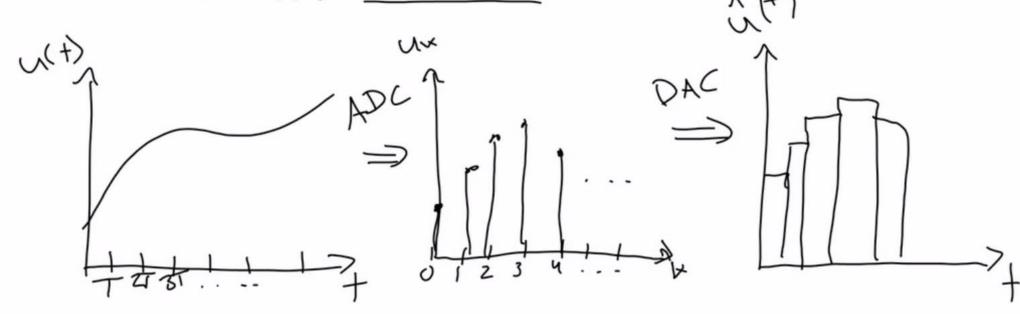
Value and time quantization

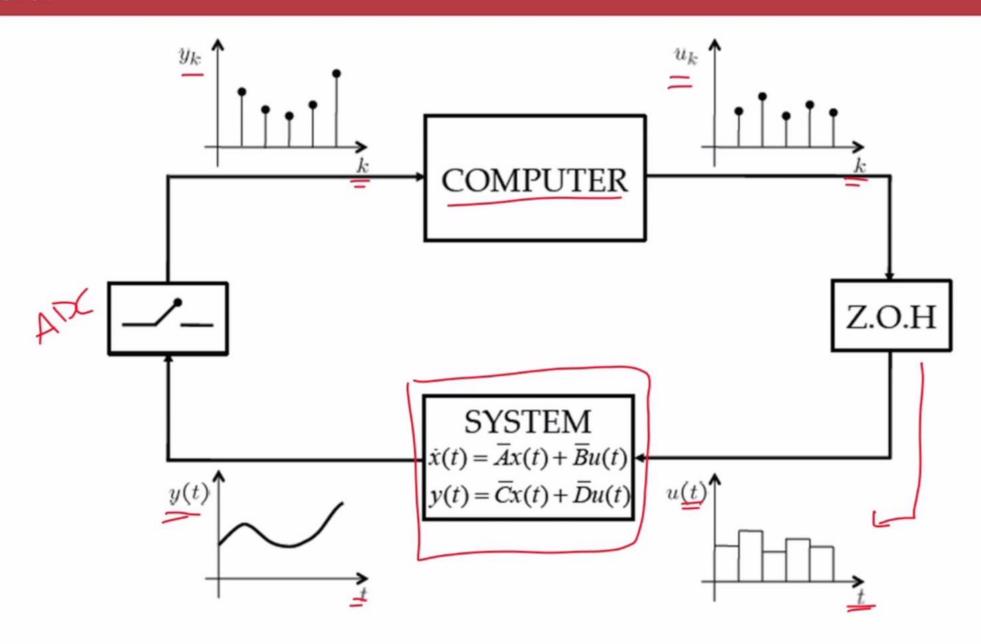
• Often, value quantization is accurate... Focus is then on time quantization.

Assume

For ADC, we sample every T seconds

For DAC, we apply a zero order hold





Sampled Data Linear Systems

ETH zürich

What does a linear system with sampling and zero order hold look like to a digital computer?

$$\dot{x}(t) = \overline{A}x(t) + \overline{B}u(t) \qquad \overline{A} \in \mathbb{R}^{n \times n} \quad \overline{B} \in \mathbb{R}^{n \times m}
y(t) = \overline{C}x(t) + \overline{D}u(t) \qquad \overline{C} \in \mathbb{R}^{p \times n} \quad \overline{D} \in \mathbb{R}^{p \times m}
\underline{u(t)} = \underline{u_k} \quad \text{for all } t \in [kT, (k+1)T)
\underline{y_k} = \underline{y(kT)}$$

Look at solution at at time t.

at solution at at time t.

$$+ \in [kT, (k+1)T)$$

$$+ \in [kT, (k+1)T)$$

$$+ \int_{kT} e^{A(t-1)} B u(T) dT$$

$$+ \int_{kT} e^{A(t-1)} B u(T) dT$$

$$+ \int_{kT} e^{A(t-1)} B u(T) dT$$

$$x(t) = e^{\overline{A}(t-kT)}x(kT) + \int_{kT}^{t} e^{\overline{A}(t-\tau)}\overline{B}u(\tau)d\tau$$

$$+ \rightarrow (k+1)T$$

$$x((k+1)T) = e^{\overline{A}T}x(kT) + \int_{kT}^{(k+1)T} e^{\overline{A}(k+1)T-T}\overline{B}dT dt$$

$$= e^{\overline{A}T}x(kT) + \int_{0}^{T} e^{\overline{A}(T-T)}\overline{B}dT dt$$

$$x((k+1)T) = e^{\overline{A}T} x(kT) + \left(\int_{0}^{T} e^{\overline{A}(T-\tau)} \overline{B} d\tau\right) \underline{u}_{k}$$

Discrete Time Linear Systems

$$x_{k+1} = Ax_k + Bu_k \qquad x_k \in \mathbb{R}^n, u_k \in \mathbb{R}^m, y \in \mathbb{R}^p$$

$$y_{\underline{k}} = Cx_{\underline{k}} + Du_{\underline{k}} \qquad A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}$$

$$C \in \mathbb{R}^{p \times n}, D \in \mathbb{R}^{p \times m}$$

Discrete Time LTI Systems: A primer

Modelling

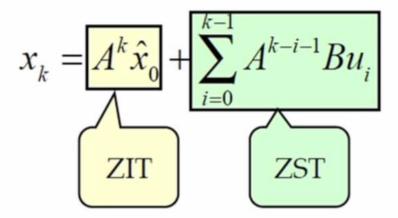
$$x_{k+1} = Ax_k + Bu_k$$
 $x_k \in \mathbb{R}^n, u_k \in \mathbb{R}^m, y \in \mathbb{R}^p$
 $y_k = Cx_k + Du_k$ $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}$
 $C \in \mathbb{R}^{p \times n}, D \in \mathbb{R}^{p \times m}$

What's interesting?

- 1 Discrete time variable rather than continuous time variable
- 2 The controller is restricted to zero order hold input strategies

Solution

Given $\hat{x}_0 \in \mathbb{R}^n$ and $u_k \in \mathbb{R}^m$, k = 0, 1, ..., N - 1



What's interesting?

- Both discrete time and continuous time variants have two distinct parts
 ZIT and ZST
- Hard part is the computation of Ak

Stability

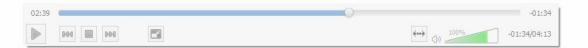
Theorem 6.1: System with diagonalizable A matrix is:

- Stable if and only if $\forall i | \lambda_i | \leq 1$
- Asymptotically stable if and only if $\forall i |\lambda_i| < 1$
- Unstable if and only if $\exists i : |\lambda_i| > 1$

Major difference from stability analysis of a continuous time LTI System?

Continuous Time – real part of eigenvalues less than or equal to 0

Discrete Time – absolute value or eigenvalues less than or equal to 1



Controllability

Consider the controllability matrix P

$$P = [B \quad AB \quad A^2B \cdots A^{n-1}B] \quad \in \mathbb{R}^{n \times nm}$$

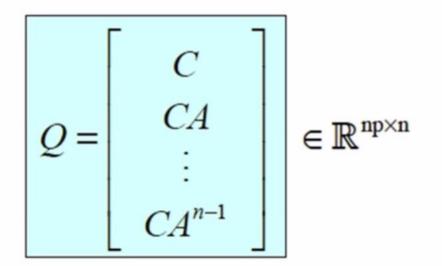
Theorem 6.4: The system is controllable if and only if P has rank n.

How is this different than a continuous time LTI System?

It's Not!

Observability

Consider the observability matrix Q



Theorem 6.5: The system is observable if and only if *Q* has rank *n*.

How is this different than a continuous time LTI System?

It's Not!

Moral of the story?

Analysis tools for continuous time LTI systems and discrete time LTI systems are often similar, and sometimes exactly the same. But mistaking a continuous time system for a discrete time system or vice-versa can be detrimental to a safety critical system, or your exam grade.

Discrete Time LTI Systems: An example

Consider the following discrete time LTI system

$$x_{k+1} = Ax_k + Bu_k$$
$$y_k = Cx_k + Du_k$$

$$A = \begin{bmatrix} -2 & 1 \\ 3 & 6 \end{bmatrix} \quad B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 1 \end{bmatrix} \quad D = \begin{bmatrix} 0 \end{bmatrix}$$

Let's address the following:

- 1. Is the system stable?
- 2. Is the system controllable?
- 3. Is the system observable?
- 4. Compute A^k.

Stability

$$CP = de+(\lambda I - A)$$

$$= de+(\begin{bmatrix} \lambda+2 & -1 \\ -3 & \lambda \end{bmatrix})$$

$$= \lambda^{2} + 2\lambda - 3$$

$$0 = (\lambda+3)(\lambda-1) \implies \lambda = -3, 1$$

$$|-3| > | = >$$

$$A = \begin{bmatrix} -2 & 1 \\ 3 & 6 \end{bmatrix} B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 1 \end{bmatrix} D = \begin{bmatrix} 0 \end{bmatrix}$$

Controllability

$$A = \begin{bmatrix} -2 & 1 \\ 3 & 6 \end{bmatrix} B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 1 \end{bmatrix} D = \begin{bmatrix} 0 \end{bmatrix}$$

$$det(P) = 0 - 1 = -1 \neq 0$$

$$\rightarrow P \text{ is rank 2}$$

$$\longrightarrow controllable$$

Observability

$$Q = \begin{bmatrix} C \\ CA \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} -2 & 1 \\ 3 & 6 \end{bmatrix} B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 1 \end{bmatrix} D = \begin{bmatrix} 0 \end{bmatrix}$$

Compute A^k

$$A = W \wedge W^{-1}$$

$$A^{k} = W \wedge^{k} W^{-1}$$

$$A^$$

$$A = \begin{bmatrix} -2 & 1 \\ 3 & 6 \end{bmatrix} B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 1 \end{bmatrix} D = \begin{bmatrix} 0 \end{bmatrix}$$

Compute Ak

$$\Rightarrow W = \begin{bmatrix} -1 & 1 \\ 1 & 3 \end{bmatrix}$$

$$W^{-1} = \begin{bmatrix} 3 & -1 \\ -1 & -1 \end{bmatrix} = \begin{bmatrix} -3/n & 1/n \\ 1/n & 1/n \end{bmatrix}$$

$$A = \begin{bmatrix} -2 & 1 \\ 3 & 6 \end{bmatrix} B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 1 \end{bmatrix} D = \begin{bmatrix} 0 \end{bmatrix}$$

Compute A^k

$$A^{k} = W \wedge W^{-1}$$

$$= \begin{bmatrix} (-3^{k})(\sqrt[3]{4}) + \frac{1}{4} & (-3^{k})(-\frac{1}{4}) + \frac{1}{4} \\ (-3^{k})(-3/4) + \sqrt[3]{4} & (-3^{k})(\frac{1}{4}) + \sqrt[3]{4} \end{bmatrix}$$

$$= \begin{bmatrix} (-3^{k})(\sqrt{3}/4) + \sqrt[3]{4} & (-3^{k})(\frac{1}{4}) + \sqrt[3]{4} \\ (-3^{k})(-3/4) + \sqrt[3]{4} & (-3^{k})(\frac{1}{4}) + \sqrt[3]{4} \end{bmatrix}$$

$$A = \begin{bmatrix} -2 & 1 \\ 3 & 6 \end{bmatrix} B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 1 \end{bmatrix} D = \begin{bmatrix} 0 \end{bmatrix}$$

$$K = 0 \rightarrow A^{\circ} = I$$

$$K = 1 \rightarrow A' = A$$

Discrete time LTI Systems: Coordinate Change

Consider the following discrete time LTI system

$$x_{k+1} = Ax_k + Bu_k$$
$$y_k = Cx_k + Du_k$$

Assume that: Assume $\hat{x}_k = Tx_k$ for some invertible $T \in \mathbb{R}^{n \times n}$

Prove that:

$$\begin{split} \hat{x}_{k+1} &= \hat{A}\hat{x}_k + \hat{B}u_k \\ y_k &= \hat{C}\hat{x}_k + \hat{D}u_k \end{split}$$

with

$$\hat{A} = TAT^{-1}, \quad \hat{B} = TB$$

 $\hat{C} = CT^{-1}, \quad \hat{D} = D$

Proof
$$TT_{\times_{N}} = T^{\wedge}_{\times_{N}} \rightarrow \begin{bmatrix} \times_{N} = T^{-1} \hat{X}_{N} \\ & & \end{bmatrix}$$

$$X_{k+1} = A \times_{k} + Bu_{k}$$

$$TT^{-1} \hat{X}_{k+1} = TAT^{-1} \hat{X}_{k} + TBu_{k}$$

$$\hat{A} \qquad \hat{B} \qquad \hat{B} \qquad \hat{B} = TAT^{-1}, \quad \hat{B} = TB$$

$$\hat{X}_{k+1} = \hat{A} \hat{X}_{k} + \hat{B} u_{k}, \quad \hat{A} = TAT^{-1}, \quad \hat{B} = TB$$

$$y_{k} = C \times k + Du_{k}$$

$$y_{k} = C T^{-1} \hat{\chi}_{k} + Du_{k}$$

$$y_{k} = C \hat{\chi}_{k} + \hat{\Delta}u_{k}, \quad \hat{C} = C T^{-1}, \quad \hat{D} = D$$

$$y_{k} = C \hat{\chi}_{k} + \hat{\Delta}u_{k}, \quad \hat{C} = C T^{-1}, \quad \hat{D} = D$$

Nonlinear Systems: Introduction

07 Nonlinear Systems

Linear dynamical systems are modeled by linear differential equations

$$\dot{x}(t) = Ax(t) + Bu(t) \qquad x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m, y(t) \in \mathbb{R}^p$$
$$y(t) = Cx(t) + Du(t) \qquad A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n}, D \in \mathbb{R}^{p \times m}$$

Recall that this is a special case of the more general state-space form of dynamical systems modeled in continuous time

$$\dot{x}(t) = f(x(t), u(t)) \qquad x(t) \in \mathbb{R}^n, u(t) \in \mathbb{R}^m, y(t) \in \mathbb{R}^p$$
$$y(t) = h(x(t), u(t)) \qquad f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n, h: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^p$$

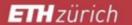
Here we focus on general nonlinear dynamical systems and in particular

Autonomous, time invariant systems

$$\dot{x}(t) = f(x(t))$$
 (In the linear case $\dot{x}(t) = Ax(t)$)

Under the assumption that the function f is Lipschitz

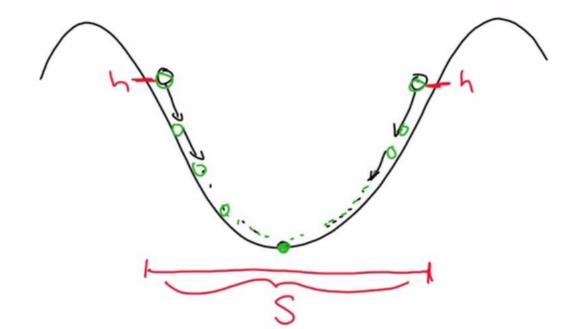
$$\exists \lambda > 0, \forall x, \hat{x} \in \mathbb{R}^n, \quad \left\| f(x) - f(\hat{x}) \right\| \le \lambda \left\| x - \hat{x} \right\|$$



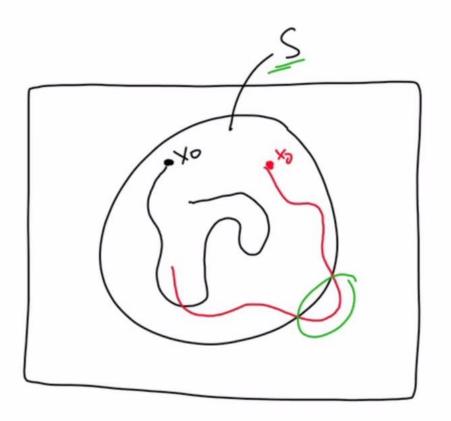
Invariant Sets (A generalized notion of equilibrium)

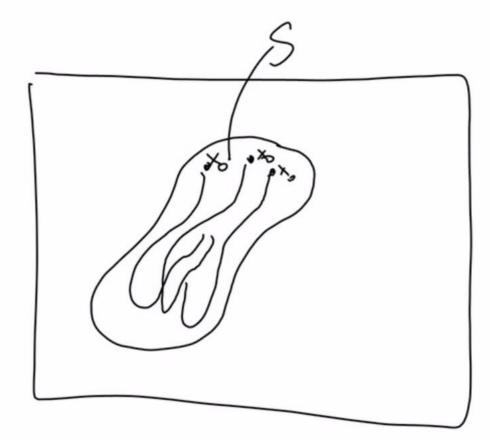
Definition: A set of states $S \subseteq \mathbb{R}^n$ is called <u>invariant</u> if

$$\forall x_0 \in S, \forall t \ge 0, \quad x(t) \in S$$



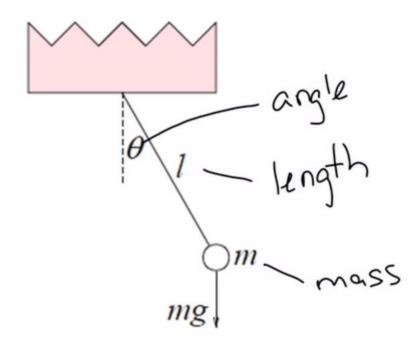
Invariant Sets (A generalized notion of equilibrium)





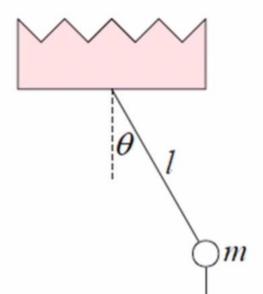
Nonlinear Systems: Modeling a Pendulum

07 Nonlinear Systems



d: friction coefficient

- •Derive the equations of motion for a simple pendulum
- •Put the equations of motion for a simple pendulum into state space form



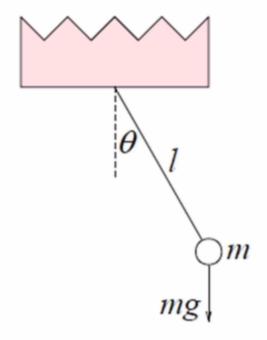
mg

Deriving the equations of motion: Newton's Second Law of Motion

$$F = ma = -dv - mgsin\Theta *$$

$$ml\dot{\theta} = -d\dot{\theta} - mgsin(\dot{\theta})$$

FIH zürich



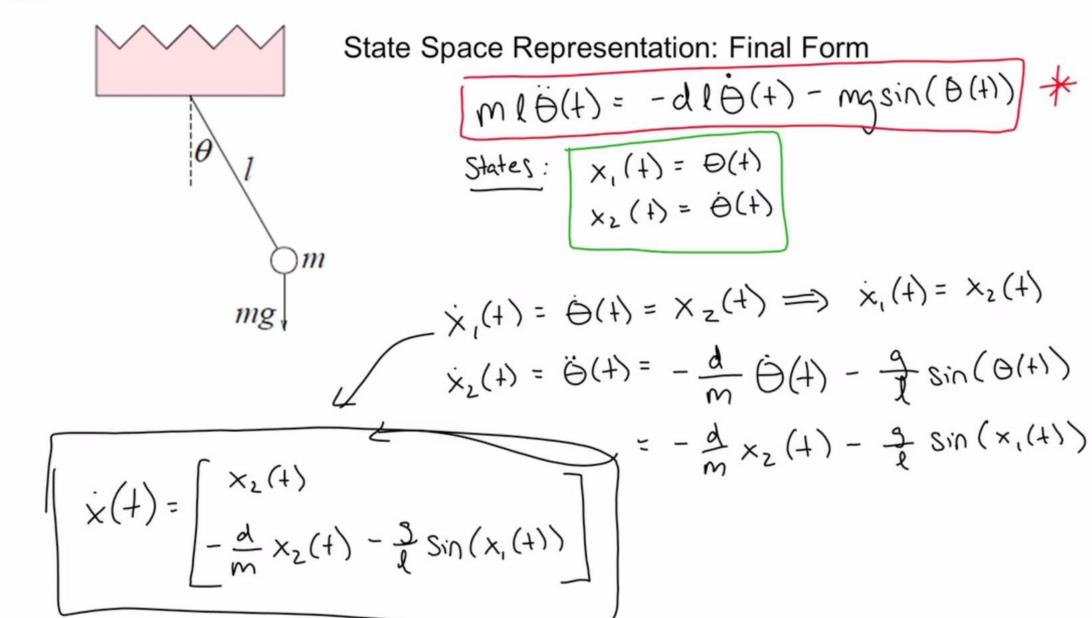
State Space Representation: Defining the states

$$\dot{x}(+) = f(x(+)), x(+) \in \mathbb{R}^{n}$$

$$x(+) = \begin{bmatrix} x_{1}(+) \\ x_{2}(+) \end{bmatrix}$$

$$x_{2}(+) = \dot{\Theta}(+)$$

ETH zürich



Nonlinear Systems: Equilibrium Points

07 Nonlinear Systems

Equilibrium points are invariants sets

Definition: A state $\hat{x} \in \mathbb{R}^n$ is called an <u>equilibrium</u> if

$$f(\hat{x}) = 0$$

Linear systems have a linear subspace of equilibria

Sometimes only x=0 is an equilibria

More generally, the null space of the matrix A

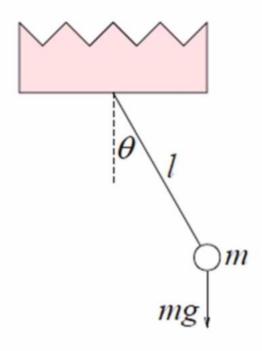
Equilibrium points are invariants sets

Definition: A state $\hat{x} \in \mathbb{R}^n$ is called an <u>equilibrium</u> if

$$f(\hat{x}) = 0$$

Nonlinear systems are a bit more complicated

They can have many isolated equilibria



$$\hat{X}_{1} = K\pi$$

$$\hat{X}_{2} = D$$

$$K \in \mathbb{Z}$$

Pendulum dynamical system

$$\dot{x}(t) = \begin{bmatrix} x_2(t) \\ -\frac{d}{m}x_2(t) - \frac{g}{l}\sin x_1(t) \end{bmatrix}$$

$$\dot{\chi}_1(t) = 0 \Rightarrow \chi_2(t) = 0$$

$$\dot{\chi}_2(t) = 0 = -\frac{d}{m}x_2(t) - \frac{g}{m}\sin(x_1(t))$$

$$\Rightarrow \sin(x_1(t)) = 0$$

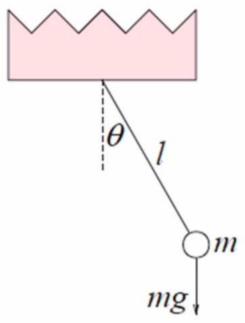
$$\Rightarrow \sin(x_1(t)) = 0$$

$$\Rightarrow \sin(x_1(t)) = 0$$

$$\Rightarrow \chi_1(t) = 0$$

$$\Rightarrow \chi_1(t) = 0$$

$$\Rightarrow \chi_1(t) = 0$$



Pendulum dynamical system



Nonlinear Systems: Stability

07 Nonlinear Systems

For a nonlinear system

Definition: An equilibrium \hat{x} is called stable if for all $\varepsilon > 0$ there exists $\delta > 0$ such that

$$\|x_0 - \hat{x}\| < \delta \Longrightarrow \|x(t) - \hat{x}\| < \varepsilon \ \forall t \ge 0$$

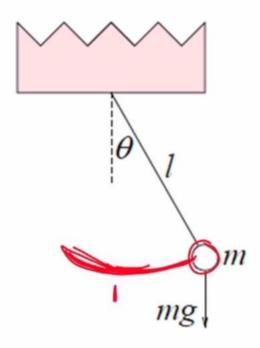
Otherwise equilibrium called unstable.

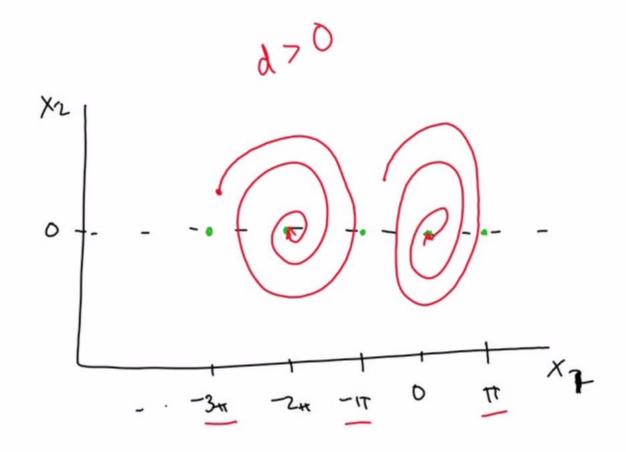
For a nonlinear system

Definition: An equilibrium \hat{x} is called <u>locally asymptotically stable</u> if it is stable and there exists M > 0 such that

$$||x_0 - \hat{x}|| < M \Longrightarrow \lim_{t \to \infty} x(t) = \hat{x}$$

It is called globally asymptotically stable if this holds for any M > 0. The set of x_0 such that $\lim_{t \to \infty} x(t) = \hat{x}$ is called the domain of attraction of \hat{x}





Linearization

$$\dot{x}(+) = t(x(+))^{1} t(\dot{x}) = 0$$

Approx by linear syr-lem
$$f(x) = f(\hat{x}) + A(x - \hat{x}) + higher order terms of (x - \hat{x})$$

$$A = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} \begin{pmatrix} \hat{x} \end{pmatrix} & \cdots & \frac{\partial f_n}{\partial x_n} \begin{pmatrix} \hat{x} \end{pmatrix} \\ \vdots & \vdots & \ddots & \ddots \end{bmatrix}$$

Linearization

$$\frac{dS_{x}(t) = x(t) - \hat{x} \in \mathbb{R}^{n}}{dS_{x}(t)} = AS_{x}(t)$$

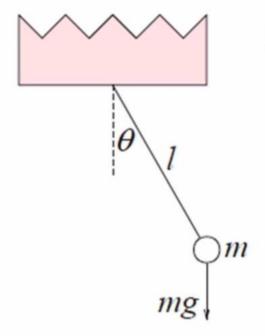
$$\frac{dS_{x}(t)}{dt} = AS_{x}(t)$$

So, for a good linear approximation

$$\frac{d\delta x(t)}{dt} \approx A\delta x(t)$$

Theorem 7.1: The equilibrium \hat{x} is

- Locally asymptotically stable if the eigenvalues of the linearization have negative real part
- Unstable if the linearization has at least one eigenvalue with positive real part



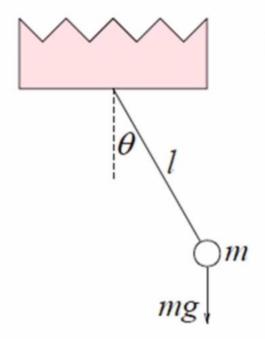
Pendulum dynamical system

$$\dot{x}(t) = \begin{bmatrix} x_2(t) \\ -\frac{d}{m}x_2(t) - \frac{g}{l}\sin x_1(t) \end{bmatrix}$$

$$\frac{d > 0}{\hat{x}} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow \frac{d \delta \times (4)}{d+} = \begin{bmatrix} 0 \\ -9/l \\ -d/m \end{bmatrix} \delta \times (4)$$

$$\Rightarrow \lambda^2 + \frac{d}{m}\lambda + \frac{g}{l} = 0$$

$$\Rightarrow \text{Neg. real parts} \Rightarrow \text{Lexally A.S.}$$



Pendulum dynamical system

$$\dot{x}(t) = \begin{bmatrix} x_2(t) \\ -\frac{d}{m}x_2(t) - \frac{g}{l}\sin x_1(t) \end{bmatrix}$$

$$\frac{d > 0}{\lambda} \qquad \dot{x} = \begin{bmatrix} \pi \\ 0 \end{bmatrix}$$

$$\frac{d > x_1(t)}{dt} = \begin{bmatrix} 0 & 1 \\ 9ll & -d/m \end{bmatrix} \delta \times (t)$$

$$\Rightarrow \lambda^2 + \frac{d}{m}\lambda - \frac{3}{\lambda}$$

$$\Rightarrow \text{ at least } 1 \geq 0 \Rightarrow \text{ unstable}$$