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Identification and Control - Closed-loop Issues * 
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A survey is given of recent developments in iterative methods of closed-loop 
identljication and control design, where the ident$cation criteria are based 

on control-relevant cost functions. 

Kev Words-System identification; robust control; closed-loop identification; experiment-based control 
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Abstract- An overview is given of some current research ac- 
tivities on the design of high-performance controllers for plants 
with uncertain dynamics, based on approximate identification 
and model-based control design. In dealing with the interplay 
between system identification and robust control design, some 
recently developed iterative schemes are reviewed and special 
attention is given to aspects of approximate identification un- 
der closed-loop experimental conditions. 

I. INTRODUCTION 

The identification of dynamic models out of experi- 
mental data has very often been motivated and sup- 
ported by the presumed ability to use the resulting 
models as a basis for model-based control design. 
As such, control design is considered an important 
intended-application area for identified models. On 
the other hand, model-based control design is built 
upon the assumption that a reliable model of the 
plant under consideration is available. Without a 
model, no model-based control design. These state- 
ments seem to point to two research areas between 
which one would expect many interrelations yet to 
exist. However reality is different. 

In the past twenty years identification and con- 
trol design have shown a development in two sepa- 
rate directions with hardly any relationships. 
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While model-based control design has been de- 
veloped into robust control, the importance of 
accurate model descriptions has been amplified. 
Apart from a nominal plant model, robust control- 
design methods employ a description of the model 
uncertainty, i.e. some (hard) upper bound on a 
specific mismatch between plant and model, in or- 
der to be able to evaluate robust stability and/or 
robust performance of the controlled plant, see e.g. 
Francis (1987), Maciejowski (1989) and Doyle et 
al. (1992). In the robust control-design paradigm, 
as a rule, one assumes model and uncertainty to 
be given a priori. However, one accepts that the 
(nominal) models that are used in general will not 
be able to capture all of the dynamics that are 
present in the plant, as exact modelling is either 
impossible or too costly. 

In system identification, emphasis has long been 
on aspects of consistency and efficiency, related to- 
wards the reconstruction of the “real plant” that 
underlies the measurement data. However, in real- 
life situations, models that are identified from data 
will generally be contaminated with errors due to 
both aspects of bias (undermodelling) and variance. 
Even after the introduction of undermodelling is- 
sues in identification, as e.g. the asymptotic bias dis- 
tribution expressions in prediction error methods 
in Wahlberg and Ljung (1986), it has still not been 
possible to formulate explicit results for the relia- 
bility (uncertainty) of identified approximate mod- 
els. In this mainstream area of identfication, one 
mainly has to stick to asymptotic confidence inter- 
vals that are only valid in the case of consistent 
modelling see e.g. Ljung (1987). As a result there is 
a severe problem in explicitly quantifying the accu- 
racy of estimated models. 

At the end of the eighties it was pointed out by 
a number of people that the established techniques 
for identification and control design were hardly 
related to each other. This was due to two main 
points: firstly, it is generally not possible to bound 
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the uncertainty in identified models; and secondly, 
it is not clear what kind of (approximate) models 
are best suited for model-based control design. 

Nevertheless, both communities would very likely 
agree on the relevance and importance of the ques- 
tion: “How can one arrive at appropriate (high per- 
formance) controlled plants on the basis of plant 
models that result from (or at least are validated 
by) measurement data?“. 

The challenge to bring identification and control 
design more closely together and to tackle the prob- 
lem formulated above, has led to a substantially 
increased attention for the problem area indicated 
by “identification for control” (from an identifica- 
tion point of view) or “experiment-based control 
design” (from a control-design point of view). The 
core of this problem is briefly indicated next. 

Identification methods deliver a nominal 
model of a plant with unknown dynamics. 
Some methods deliver also an uncertainty 
region. The nominal model is just an approx- 
imation of the plant. 
Based on this nominal model, a controller has 
to be designed, assuming a certain level of ac- 
curacy (uncertainty) of the nominal model. 

The performance achieved by this controller 
when applied to the plant will be highly dependent 
on the nominal model and the assumed uncertainty. 

From here the research for control-relevant sys- 
tem identification branches into two directions. 
These directions are depicted in Fig. 1 which re- 
lates to the above remarks. The branch on the left 
illustrates the demand of robust control theory for 
a quantification of the “model error”. The right 
branch concerns the identification of a nominal 
model that is suited for high-performance control 
design. 

In this paper we will emphasize the right branch 
of this problem, but without losing sight of the left 
branch. However, for a detailed discussion on meth- 
ods and techniques for estimating model uncertain- 
ties, we will refer to the literature. 

An interconnection between identification and 
control design has been investigated before. For ex- 
ample, in Astrom and Wittenmark (1971) proba- 
bilistic schemes for simultaneous identification and 
control design have been proposed, and in Gevers 
and Ljung (1986) an optimal identification experi- 
ment is proposed for control-design model applica- 
tions. However, similar to the “classical” separation 
theorem in optimal control, these works consider 
exact models and aspects of approximation are not 
taken into account. 

In this survey paper we will first elucidate the 
problem of concern, and we will briefly review the 
main approaches in the literature. In Section 3, we 
will present a framework for handling the problem 

directed towards the matching of criteria that are 
used in control design and in identification. This 
leads to a generic form of iterative scheme of re- 
peated identification and control design. Next, in 
Section 4, we review recent developments in approx- 
imate closed-loop identification. Several examples 
of iterative schemes to solve the problem are pre- 
sented and evaluated in Section 5, while final re- 
marks conclude the paper. 

2. MODELS FOR CONTROL - PRELIMINARIES 

2.1. The high-performance control-design problem 
Let us first have a look at how model-based con- 

trol design is commonly applied in practice. The ba- 
sic ingredients are a set of control objectives, some 
nominal model, and possibly an upper bound on 
some model-plant mismatch (model error). 

Let us denote with PO a linear, time-invariant 
plant, represented by its discrete-time transfer 
function; fi is a nominal model of that plant, and 
FA(!~, b) refers to an uncertainty set induced by the 
nominal model P and an uncertainty structure A, 
while the scalar b is a measure for the “size” of this 
set. The uncertainty set can for instance represent 
unstructured weighted additive uncertainty, as 

?,,,(p, b) := {P I IP(eiW) - P(e’w)Ig(w)-l I b}(l) 

with g( (u) some real-valued weighting function. We 
could also think of uncertainties in a multiplicative 
or structured form, see e.g. Doyle et al. (1992). 

C will denote a linear time-invariant controller, 
and (PO, C) represents the closed-loop system com- 
posed of plant PO and controller C. We will employ 
the notion of performance of a controlled system 
in an abstract way, without having it specified in 
detail at this moment. 

Given some 3 and PA (p, b), the robust control 
designer carefully chooses a control criterion and 
weighting functions, and calculates a controller by 
some numerical optimization. Next, the designer 
checks on the new controller by applying it to the 
nominal model p in order to examine e.g. the sen- 
sitivity, step response, robustness margins, etc. The 
designed controller will be accepted if it performs 
satisfactorily on the nominal model. If so, then the 
performance achieved for the plant is desired or 
even required to be similar to the designed nom- 
inal performance. Thus one pursues a high plant 
performance through a high nominal performance. 

In this line of thought the design of a high- 
performance controller involves two prerequisites, 
again pointing to the two branches in Fig. 1: 
(1) the controller must be robust with respect to 

the mismatch between PO and p; and 
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Fig. I The two branches of control-relevant system identification. 

(2) this mismatch must leave enough room to 
achieve a high performance. 

The quantification of the mismatch between PO 
and P can, of course, be done in many different 
ways. It comes down to the specification of an 
uncertainty set CPA@, b) that contains (or is very 
likely to contain) PO. Many choices for the uncer- 
tainty structure A are possible: e.g. additive, mul- 
tiplicative and coprime factor uncertainty in both 
unstructured and structured form; it is apparent 
that the achievable control performance for both 
p and PO is dependent on p, on A and on b. The 
fact that the achievable robust performance is lim- 
ited for a given uncertainty set FA(& b) has been 
stated frequently in the control theory. However, 
from an identification point of view, the aim is to 
select a nominal model which does allow the above 
high-performance control design. Therefore, one 
can make the following converse observation. 

The requirement of a high performance imposes 
limitations on the allowed structure and size of 
the uncertainty set ?A#, b), representing the mis- 
match between the plant and its nominal model. 

For instance, it is well understood that a rea- 
sonable fit of the frequency responses around the 
crossover frequency of the control system is needed 
for robust performance, see e.g. Stein and Doyle- 
(1991). This is also illustrated by examples in e.g. 
Schrama (1992a), showing that a seemingly very 
accurate model in terms of its open-loop transfer 
function, may very well lead to a destabilizing con- 
troller. This supports the earlier statements con- 
cerning control-relevant model errors as put for- 

ward by Skelton (1989), * who pointed out the need 
for iterative solutions to the modelling and control 
design problem. The example of Schrama (1992a) is 
sketched in the magnitude Bodeplot of Fig. 2, where 
an eight-order plant PO, is modelled by two fourth- 
order models, ti and 4. For frequencies smaller 
than 1.2 rad/s, PI cannot be distinguished from PO. 

When using both models for model-based con- 
trol design, aiming at a designed bandwidth of 15 
rad/s, the controller based on pi will destabilize 
the model, whereas the controller based on & will 
achieve the designed performance. This is inspite of 
the model errors of 4 in the low frequency range. 
The higher accuracy of & around the designed 
bandwidth is the crucial thing here. Larger plant- 
model deviations are allowed at other frequencies, 
as long as they do not impair the control design. 
However the extent of the allowed deviations is un- 
clear without any knowledge of the controller yet 
to be designed. For more details on this example we 
refer to Schrama (1992a) and Schrama and Bosgra 
(1993). 

2.2. Approaches in the literature 

The growing interest for the interaction-area 
of system identification and robust control, has 
yielded different lines of research and different 
problem formulations that have been dealt with. 
Here we briefly summarize the main lines. 

2.2.1. Quantzjication of model uncertainty . 
Here the reasoning is that in order to obtain iden- 

* We acknowledge Michel Gevers for bringing this paper to 
our attention. 
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Fig. 2. Log-magnitudes of PO(-), A(- -), &(- . -), 

tified models that are suitable as a basis for robust 
control design, one has to have available a measure 
for the model uncertainty, i.e. an upper bound on 
a mismatch between the plant and the identified 
model. Starting with assumptions on the class of 
systems that is feasible, and with assumptions on 
the class of disturbance signals that is considered 
to be realistic, one chooses a priori an uncertainty 
structure A. Additionally a model p is constructed 
and a bound b is derived such that the data and 
the prior assumptions provide evidence for the ex- 
pression PO E PA@, b). Dependent on the type of 
disturbance signals that are considered, worst-case 
deterministic or stochastic, this expression be- 
comes “hard” (with probability 1) or “soft” (with 
probability < 1). The type of priors that are chosen 
determine the type of results that are obtained. For 
a discussion on this phenomenon see Ljung et al. 
(1991) and Hjalmarsson (1993). 

The worst-case deterministic type of problem has 
been addressed mainly in terms of frequency re- 
sponse data in Parker and Bitmead (1987), Helmic- 
ki et al. (1990) Helmicki et al. (1991), LaMaire et 
al. (199 l), Gu and Khargonekar (1992) Parting- 
ton (1991) and many others. They use uncertainty 
sets that allow for an expression like IIP- Poll o. < b. 
One generally does not achieve a minimization of 
this upper bound over a specified class of models, 
and the choice of nominal model d is just instru- 
mental in arriving at an upper bound of the plant- 
model mismatch. A more pragmatic approach to 
the problem directed towards curve-fitting of fre- 

quency responses is presented in Hakvoort and Van 
den Hof (1994). 

In the case of time-domain data, a deterministic/ 
worst-case approach with disturbance signals that 
are norm-bounded, is often referred to as set- 
membership identljication or - in a parametric 
setting - as parameter-bounding identification. Ac- 
counts are given in Fogel and Huang (1982), Nor- 
ton (1987) and Milanese and Vicino (1991). As in 
the previous situation, a (parametric) uncertainty 
structure A is chosen a priori and, based on the 
available data and prior assumptions, a parametric 
uncertainty set FA(fi, b) is derived, generally by 
parametric outer-bounding techniques. This area 
started off actually long before a connection was 
made with robust control. Originally it was di- 
rected towards the identification of poorly defined 
systems based on short data sequences. Several 
norms are used to outer-bound the obtained para- 
metric uncertainty sets (as e.g. in terms of the 
transfer function magnitude, Wahlberg and Ljung 
(1992), 3&,-norms, Kosut et al. (1992) and Younce 
and Rohrs (1992), and f?t-norms, Makila (1991), 
Jacobson and Nett (1991) and Tse et al. (1993)). 
Direct outer-bounds on the frequency response of 
the model are considered in Hakvoort (1992) and 
Hakvoort (1993). Some important characteristics 
of this line of research are: 

l due to the worst-case/deterministic character 
of the assumed disturbances, the obtained up 
per bounds on model errors will be very con- 
servative if this worst-case disturbance does 
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not actually occur; 
l the worst-case disturbance signal will typically 

be highly correlated with (“deliberately play- 
ing against”) the input signal; 

. model uncertainty will generally not vanish as 
more data become available. 

Approaches that consider disturbance signals to 
be stochastic, but that also account for under- 
modelling are given in Zhu (1989) Goodwin et al. 
(1992) Bayard (1992) and De Vries and Van den 
Hof (1995). 

Model invalidation is another tool for quanti- 
fying model uncertainty. Given a set of priors on 
the data generating system and the type of dis- 
turbances, and a prior uncertainty set ?A@, b), it 
is verified whether measured data invalidates these 
prior assumptions. Accounts of this approach are 
given in Smith and Doyle (1992) and Poolla et al. 
(1994). 

Critical and most interesting discussions on the 
item hard versus soft bounds (or equivalently worst- 
case versus stochastic noise) are provided in Hjal- 
marsson (1993) and Ninness (1993). For a general 
discussion on the problem of quantifying model un- 
certainty and worst-case identification we refer to 
the tutorial papers Ninness and Goodwin (1994) 
and Makila et al. (1994). 

Note that in all approaches presented here the 
control design is not incorporated in the discus- 
sion. Control relevance of the identification meth- 
ods is motivated by the fact that one needs to pro- 
vide a (hard or soft) bound on a model-plant mis- 
match. Although the estimation of error bounds 
on the basis of experimental data has separate in- 
trinsic importance, by itself it is not sufficient for 
high-performance control design. This is caused by 
the fact that they are merely upper bounds of the 
uncertainty that are estimated. As uncertainty can 
be measured in many shapes and forms, the con- 
sequence of over-bounding the plant-model mis- 
match, and the consequence of chasing a specific 
uncertainty structure, for the resulting control per- 
formance should be taken into account. The key 
questions here are: which uncertainty structure to 
use and how to arrive at tight error bounds within 
this structure? 

Whereas the achievable performance is of course 
limited by plant characteristics like (non)minimum- 
phase behaviour, and the ability of the plant to be 
modelled within a linear time-invariant framework, 
the achievable performance for an LTI plant with a 
model-based LTI controller, is additionally limited 
by the mismatch between PO and p, rather than by 
some upper bound. 

2.2.2. Matching of ident@cation and control- 
design criteria A completely different problem 
is how to identify models that provide high- 

performance controllers. This is the motivation for 
the second area, where most attention has been 
paid to the identification of nominal models that 
are suitable for high-performance control design, 
i.e. models that are accurate especially in those 
aspects that are essential for consecutive control 
design. Model-plant mismatches that are con- 
sidered in the identification criterion have to be 
matched with the control-design objectives, and 
the considered uncertainty sets necessarily will be- 
come controller dependent. This has led to the 
construction of iterative schemes of identification, 
control design and renewal of experiments to ob- 
tain controlled plants that exhibit an improving 
control performance; controllers are tuned experi- 
mentally, based on a sequence of identified models. 
In the sequel of this survey we will specifically pay 
attention to this approach. Extended references 
can also be found in the Workshop Proceedings by 
Smith and Dahleh (1994), while the joint design of 
identification and control is very well advocated in 
the extended survey paper by Gevers (1993) and in 
the short survey by Bitmead (1993). 

3. INTERPLAY BETWEEN IDENTIFICATION AND 

CONTROL 

3.1. System set-up 

As a general set-up we will consider the linear 
time-invariant finite-dimensional feedback inter- 
connection of Fig. 3. 

In here u and y are the measurable input and 
output of the plant; rl and r2 are reference signals, 
probing signals or disturbances; and v is a distur- 
bance signal. In the sequel of this paper we will 
mainly deal with the situation that v = Hoe with 
HO a stable and stably invertible filter, and es a 
white noise process. The closed-loop dynamics of 
this feedback interconnection are described by the 
transfer function 

T(Po, C) = 7 
[ 1 [I+CPol[C I], (2) 

which maps col(r2, q) into col(y, u). The feedback 
system is called stable if and only if T(Po, C) E 
ZZH,, where RH, denotes the usual set of real 
rational stable transfer functions, see e.g. Francis- 
(1987). All systems, models and controllers in this 
paper will be considered to be scalar linear, time in- 
variant and finite-dimensional. Whenever appropri- 
ate, we will use notation that allows straightforward 
extension to the multivariable case. For brevity we 
will often deal with the external signal r := rl +Crz. 
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Fig. 3. Feedback configuration. 

3.2. Control-relevant plant-model mismatches 
Given the fact that any model identified from 

plant data can only be an approximation of the 
real plant, we consider the question of what is a 
relevant mismatch between plant and model in view 
of control design. Let us consider the following two 
examples. 

Example 1. Robust stability for a given controller. 
The controller is based on a nominal model, but 
it has to stabilize the (unknown) plant. From the 
small gain theorem we know that for robust stability 
we can employ the expression 

(PO - B)C(Z + PC)_‘, (3) 

where C is known to stabilize the nominal model 
P. If the ZZ,-norm of (3) is smaller than 1, then C 
is guaranteed to stabilize PO as well. 

Example 2. Robust performance for a given con- 
troller. Here the goal is to find a nominal model p, 
such that the performance of the pair (Z? C) is sim- 
ilar to that of the pair (PO, C). A typical mismatch 
that relates to a tracking objective is 

P&(Z + P()c)-’ - $C(Z + PC)_‘, (4) 

which can be verified (Schrama, 1992b) to be equiv- 
alent to 

(I + PoC)_‘(PO - B)C(Z + PC)-‘. (5) 

This mismatch makes sense only if C stabilizes both 
PO and P. 

Note that the two mismatches (3) and (5) differ 
through a premultiplication by the plant sensitivity 
(I + PoC)-~. If the error term of (3) is small, then 
the performances are not (yet) guaranteed to be 
similar; only a small mismatch (5) reflects whether 
(PO. C) and (p, C) have similar performances. 

We like to stress that these considerations are 
restricted to the case of a prespecified and fixed 

controller C. Formally we should have to take into 
account that that controller C is not fixed but is 
again based on the identified model P. This will be 
addressed further in Section 5. 

3.3. A general measure of performance 

When talking about control performance we 
have to specify more clearly what we mean. In gen- 
eral terms a performance function of a closed-loop 
configuration composed of plant PO and controller 
C, is a system property, such as a step response, 
a sensitivity function, a complementary sensitiv- 
ity etc. We formalize this control performance 
function as an element J(Po, C) in some normed 
(Banach) space B. The control performance cost 
is then measured by the norm IIJ(Po, C)11~, and a 
corresponding control design method will provide 
a controller that minimizes this cost. Apart from 
the arguments PO and C in J(Po, C), the perfor- 
mance function can also be dependent on signal 
properties (see examples below). Many control- 
design methods are based on the minimization of 
a control performance cost, as e.g.: 

l LQ tracking/disturbance rejection. The crite- 
rion 

can be reflected by ((J(P0, C) 11: with 

J(P0, C) = [y(t) - r(t) &(t)lT 

being a two-dimensional quasi-stationary sig- 
nal. * 

* With abuse of notation we use II * 112 to indicate 

the corresponding semi-norm on quasi-stationary (infi- 

nite length) signals, defined by Ilxll~ := i?[xT(t)x(t)l = 
lim+ m $ c,“=, Erx~(r)xft)l. 
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l Mixed sensitivity optimization. The mixed sen- 
sitivity design is reflected by the choice 

J(poJ c) = [ 
v, (I + P&y’ 

V2PoC(Z + P&)-’ 1 
E 2W2’(7) 

with weighting functions VI, V2 E 2ZH,, and 
the corresponding control performance cost 

by IIJVo, C) Iloo. 
l H,-design based on robustness optimization. 

This control-design scheme proposed by Mc- 
Farlane and Glover (1990) is reflected by the 
choice for 

J(Po, C) = T(Po, C) E RHc2 (8) 

with T(Po, C) as defined in (2). The cor- 
responding control performance cost is 

IIJ(P0, C)IIc0. 

3.4. A link between iden@cation and control 

Following the starting points as discussed in Sec- 
tion 2, the problem of concern is to identify a model 
P and to design a controller Cp such that the con- 
trolled model and the controlled plant both have 
a high performance. In other words we are look- 
ing for small values of ((J(Po, Cp) 11 and IIJ@, Cp) II, 
where the specific J and norm II . II are dictated by 
the control-design paradigm that is adopted. In this 
section we will not specify any choices for J and 
1) . 1). When a pair (p, Cp) has been derived, it can 
be evaluated as a candidate solution to the joint 
problem of identification and control design by us- 
ing the following triangle inequalities as considered 
by Schrama (1992a,b): 

1 IL@, cp., II - lIJ(Po. Ck, - JCr’, Ck, II 1 

5 IIJ(Po, cp, II (9) 
5 IIJCP cfd II + IIJ(Po, cp., - J@, Cp,II. 

In this triangle inequality we can distinguish: 

IIJ(Po, Cp) II the achievedperformance, 

llJ(p, Ck) 1) the designedperformance, 

IIJ(Po, Cp) - JCP, Cp) (I the performance 

degradation 

This latter term is due to the fact that Cp has been 
designed from rj rather than from PO. 

Taking as a starting point that we have to ob- 
tain a satisfying designed performance (if not we 
would not be willing to implement the controller 
on the plant), we can formulate two requirements 
to achieve a high-performance controlled plant: 

IIJ(P, Cp) II is small, (10) 

IIJ(P0, Cp) - J(B, Cp) II < llJ(P, Cp) [I.(1 1) 

The requirement of (10) pertains to a high nom- 
inal performance. The strong inequality of (11) 
embodies the demand of a robust performance: if 
(11) is satisfied, then the difference between the 
designed performance function J(p, Cp) and the 
achieved performance function J(Po, Cp) is rela- 
tively small. Notice that the latter is not guaranteed 
by IIJ(Po, Cp) 11 = IV@, Cp) II, since these measures 
are aggregated quantities. 

Standard methods for identification and con- 
trol design can optimize either the model or the 
controller, each while the other element is fixed. 
However a simultaneous optimization cannot be 
obtained. This has led to the introduction of sev- 
eral iterative schemes directed towards the use of 
separate stages of identification and (model-based) 
control design, see e.g. Zang et al. (1991a,b), Hak- 
voort (1990), Anderson and Kosut (1991), Lee et 
al. (1992) and Schrama (1992a,b). 

3.5. General form of iterative schemes 

The basic principle behind the iterative schemes 
that have been proposed until now, is the explo- 
ration of the triangle inequality (9), in the sense 
that one aims at minimization of the right part (up- 
per bound of the performance cost), by separate 
stages of minimization of either of the two terms 
(10) and (11). Simultaneous optimization of the up- 
per bound (9) over both P and Ck is intractable 
by common identification and control-design tech- 
niques. Instead, separate optimization over d (iden- 
tification) and over C (control design) is performed. 

In general terms the model and the controller are 
obtained according to (indexes refer to step number 
in the iteration): 

&+i = argmp IIJ(Po, Ci) - J(P, Ci) 11 (12) 

Cj+i = argmin llJ(&+i, C) II 
c (13) 

where p, C vary over appropriate model/controller 
classes, and in the control design one takes account 
of the constraint: 

IIJ(pO, G+l) - Jt9+1, Ci+l)ll << llJt4+*, Ci+i)ll.(l4) 

There are a couple of important observations to 
make here. 

The identification criterion that is reflected in 
(12), is completely determined by the control 
performance function J(rt C) and the chosen 
norm 11 . /I, thus leading to a really control- 
oriented identification. The mismatch between 
plant and model is measured in terms of the 
control performance costs of plant and model, 
when controlled by the controller Cf. 
It is a nontrivial problem how to construct 
identification methods that achieve a criterion 
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(12). Consider e.g. a weighted sensitivity as 
control performance function (i.e. (7) with 
Vi = V and V2 = 0). Then (12) simplifies to a 
norm on the weighted mismatch (5), i.e. 

II VU + POW’(PO - P)CU + PC,-‘11, (15) 

representing a nontrivial identification prob- 
lem. 

. As the control performance cost refers to a 
feedback connection of PO and Ci, the identifi- 
cation criterion (12) points to the use of mea- 
surement data from closed-loop experiments, 
in order to get information about J(P0, Co, 
(Schrama, 1992a). 

l A newly designed controller Ci+ 1 will lead to a 
new performance degradation term (12) which 
in turn points to performing new identifica- 
tion experiments with this new controller Ci+i 
being implemented on the plant PO. 

l The triangle inequality provides both an up- 
per bound and a lower bound for the achieved 
performance, see (9). By making the perfor- 
mance degradation term small compared to 
llJ(p, Cr;)Il as in (1 l), the achieved perfor- 
mance is forced to be very close to the designed 
performance. In this way the control design is 
forced to provide a robust performance. 

Generally design methods will yield their result- 
ing controller through an unconstrained optimiza- 
tion: a criterion is minimized that incorporates 
some user-chosen weighting functions, reflecting 
the nominal performance level, as well as an indi- 
cation on the required robustness. However, there 
will generally not be a prior guarantee that the 
achieved robustness is satisfactory, i.e. whether 
(14) is satisfied. An additional robustness analysis 
of the designed controller has to certify this. This 
is also reflected in the (generic) block diagram of 
an iterative scheme of identification and control, 
as depicted in Fig. 4. If the robustness test is not 
passed satisfactorily, different actions may have to 
be taken as e.g. 

. increasing the complexity (order) of the class 
of controllers considered; 

. redesigning the weighting functions applied in 
the control design; 

. identifying a more accurate (higher-order) 
model. 

It has to be noted that in this discussion we have 
considered the control performance functions to be 
given a priori. To some extent this neglects the im- 
portant choice of appropriate weighting functions 
as e.g. h in (6) and Vi, V2 in (7) that in normal 
practice are being designed (and redesigned) in the 
control-design stage. 

In Section 5 we will take a closer look at different 
iterative schemes that have been elaborated in the 

I 
experiments on (PO, C;) 

i/o-data 

. 

identification 

control design 

robustness analysis 

4 

implementing (PO, C,+l) 

I 

Fig. 4. Iterative scheme of identification and con- 
trol design. 

past few years. They all show the basic components 
as discussed here, and mainly differ in the choice 
of the control performance cost and in the way the 
closed-loop identification is treated. 

As we necessarily have to deal with identtica- 
tion of approximate models from closed-loop ex- 
periments, we will first review some results concem- 
ing approximate closed-loop identification. In that 
discussion we will limit attention to the prediction 
error identification framework. 

4. APPROXIMATE IDENTIFICATION 

4.1. “Classical” prediction error results 

In a prediction error context, given input and 
output data of a plant to be modelled we determine 
the prediction error: 

E(t, 8) = Hfq, W[yW - P(q, e4t)l (16) 

with H( q, 8) the parametrized (output) noise model 
and P(q, 8) the parametrized input/output model, 
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8 running over some appropriate parameter space 
0, while q is the forward shift operator. 

The prediction error estimate (Ljung, 1987) is ob- 
tained by minimizing the squared sum of - possi- 
bly filtered - prediction errors: 

N 

i3~ = argrnn it; C s~(t, 0)* 
f=l 

with ~(t, 8) = L(q)E(t, @, and L(q) some stable 
filter. 

Under weak regularity conditions this prediction 
error estimate is known to converge with probabil- 
ity 1 to 0*, with 

lT 

8* = arg rn> & 
I 

+t,(co)dw, (17) 
-7T 

where in the open-loop case (C = 0): * 

a EF = [ IPO - P(0) I*% + %] jg$ (18) 

and au, aV are the spectral densities of input and 
noise, respectively. A so-called direct ident$cation 
in the closed-loop case with controller C (as in Fig. 
3) yields a similar expression (17) with (see e.g. Gev- 
ers, 1993): 

9 I ISOl 
EF = ISo[Po - fYe)112~r + - 

Iswl*~’ 1 
IL12 .- 

IH(Q) (19) 

where SO is the actual sensitivity (I + P&)-i and 
s(0) = (I + P(&C)-l is the sensitivity of the 
parametrized model. 

by least-squares minimization of the prediction er- 
ror E(t). 

What we are aiming at is to find - based on 
signal measurements - a model P(8* ) that is ob- 
tained as the minimizing argument of an identifica- 
tion (approximation) criterion, that can be flexibly 
tuned, e.g. by appropriate choices of L and a,., to 
our needs in view of the control performance func- 
tion. In order to achieve this, the criterion should 
not be dependent on the unknown noise spectrum 

9”. 

This alternative leads to a complicatedly 
parametrized model set, and as a result it is not 
attractive, although it provides us with an explicitly 
tunable approximation criterion, given by (17) with 

Note that in the open-loop case, with a fixed noise 
model H(q, 0) = 1, as in the case of an output- 
error model structure, it can be verified that 

e* = argm$i Il[& - P(B)]H,LJ(2, (20) 

with H,, a (stable) spectral factor of au. 
In the closed-loop case it follows from (19) that 

there does not exist a simple choice of noise model 
such that the +,-dependent term in (19) will become 

Note that for validity of the asymptotic prediction 
error analysis leading to the above expression, the 
parameter set 0 has to be a connected subset of 
Rd being restricted to contain only models that 
generate stable predictors P(B) [ 1 + CP( 8)]-‘ . 

In the next subsections we will present some re- 
cent developments in the area of closed-loop ap- 
proximate identification, aiming at providing solu- 
tions to the problem sketched above. 

4.2. Two-stage method 

* For brevity the arguments eiO are suppressed in the frequency As an alternative method that can provide an 
domain expressions. explicitly tunable approximation criterion, a two- 

independent of 8. As a result, the identification cri- 
terion (and thus the obtained model 4 will be es- 
sentially dependent on %, which is unknown. This 
is typical for “classical” closed-loop prediction er- 
ror methods, see e.g. Soderstrom and Stoica (1989). 

If open-loop techniques like (20) have to be used 
to obtain a control-relevant mismatch like e.g. (15) 
one can observe that input spectrum a,, and/or pre- 
filter L have to be chosen dependent on the - un- 
known - plant PO and on the parametrized model 
p(e). 

The closed-loop expression (19) nevertheless 
shows some clear resemblance with the desired ap- 
proximation criterion (15) if we consider the first 
term in the expression (19). The weighting factor 
SO which is present in both expressions apparently 
is a weighting function that is obtained by perform- 
ing the identification under closed-loop conditions. 
This is quite understandable if one realizes that 
it is exactly this sensitivity 5’0 that determines the 
relation between the external signal r and the input 
signal 24. 

In an attempt to construct closed-loop approxi- 
mate identification methods that have an explicitly 
tunable bias expression one can consider the fol- 
lowing alternative. For simplicity we will assume 
the signal r to be available from measurements. If 
we know the controller C, one could consider a 
parametrized model P( 8), 0 E 0, and identify 0 
through 

dt, 8) = y(t) - p(e) r(t) 
I + p(e)c (21) 
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stage identification method is proposed in Van den 
Hof and Schrama (1993). 

The idea is that from closed-loop data one can 
first identify the plant sensitivity Sa as a black box 
transfer function S, using measured data (6 u}. 
Since u(t) = So(q)r(t) - C(q)&(q)v(t) and v and 
r are uncorrelated, this is an open-loop type of 
identification problem. In the second step of the 
procedure one identifies PO from: 

y(t) = P(e)&(t) + E(t) (22) 

with a,.(t) := $r(t) (23) 

applying e.g. an output-error model structure in 
(22). The signal z.?,.(t) is simply constructed by the 
measured signal r and the estimate S being the re- 
sult of the first step. 

It can be shown that the approximation criterion 
in the second step of this procedure is determined 
by the spectrum 

@‘EF = I [PO - fYQ)ISo + P(B)[So - s(B*)l I2 
. @JLl*. (24) 

In this expression B* is the (asymptotically) esti- 
mated parameter in the first step and L is a pre- 
filter, filtering the prediction error in the second 
step. Note that when the first step is executed suf- 
ficiently accurately, i.e. S(fi*) - SO, then the ex- 
pression above tends to a simple weighted additive 
mismatch PO -P, where the weighting incorporates 
the actual plant sensitivity SO. This has a clear re- 
semblance with the robust control performance cri- 
terion (15). 

4.3. Dual Youla parametrization 
The basic idea behind this method is introduced 

by Hansen and Franklin (1988) in view of closed- 
loop experiment design. It was further elaborated 
and modified in Hansen et al. (1989), and also em- 
ployed for approximate identification in Schrama 
(199 l), Schrama (1992b) and Anderson and Kosut 
(199 1). It utilizes the (dual) Youla parametrization 
of all plants that are stabilized by a given (known) 
controller. In order to describe this method, we need 
the following concepts. 

Definition 1. (Vidyasagar (1985)). A linear, time- 
invariant, finite-dimensional plant P has a right co- 
prime factorization (rcf) over X,H, if there exist 
N, D, X, Y E ZXH, such that P = ND-’ and XN + 
YD = I.Arcf(N, D)isnormalizedifN*N+D*D = 
I. 

Through coprime factorizations a (possibly un- 
stable) plant is represented by a quotient of two 
stable transfer functions. Coprimeness refers to the 

property that the factorization does not exhibit can- 
celing terms that contain unstable zeros. 

We can employ the following result from stability 
analysis. 

Proposition 2. (Desoer et al. (1980)). Let C be a 
controller with rcf (N,, D,), and let Px with rcf 
(N,, 0,) be any system that is stabilized by C. Then 
the plant PO is stabilized by C if and only if there 
exists an R E RH, such that 

PO = (N, + D,R)(D, -NCR)-! 

The above proposition shows a parametrization 
of the class of all plants that are stabilized by the 
given C. The parametrization is depicted in a block 
diagram in Fig. 5. Note that N,D;’ is just any 
(nominal, auxiliary) system that is stabilized by C. 
In the case of a stable controller C, a valid choice 
is given by N, = 0, D, = I. 

Given the feedback configuration as presented 
in Fig. 3, it can be shown (Schrama, 1992b) that 
the unique value of R that corresponds to the real 
plant (PO) in this dual Youla parametrization is de- 
termined by 

R = D,‘[Z + P&l-’ (PO - P,)D,, (25) 

and that we can rewrite the noise contribution 
v(t) = Ho(q)eo(t) on the output, as in Fig. 3, into 
the form as indicated in Fig. 5 with 

S = D;‘[I + PoC]-‘Ho. (26) 

Now defining the signals z, x as indicated in Fig. 5 
and writing the node equations x = D; * (U + Ncz) 
and y = NXx + Dcz, it follows that: 

z = (D, + P,N,)-‘(y - Pxu), (27) 

x = (D, + CN,)-‘(u + Cy, (28) 

and 

z = Rx + Sea. (2% 

Moreover one can make the following observations: 
l the signals z and x can be reconstructed from 

data through known filters, provided the con- 
troller C is known; 

l signal x is uncorrelated with eo, as u + Cy = 
r1 + Cr2, and the external signals rl, r2 are as- 
sumed to be uncorrelated with eo. 

This shows that we can identify a model 1; of 
PO through identification of R from reconstructed 
measurements {z, x} according to (29). Since x and 
eo are uncorrelated, the identification of R forms 
an open-loop identification problem. This implies 
that an approximate model of R can be obtained, 
where the asymptotic identification criterion is not 
dependent on the noise contribution on the data. 
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Fig. 5. Dual Youla representation of the data generating system 

Using e.g. an output-error model structure and a 
prefilter L, the filtered prediction error becomes 

~0, 0) = L(q)b(t) - Nq, OMt)l. 

A corresponding least-squares identification crite- 
rion leads to the asymptotic estimate 

IL)*)R - R(8) 1*9,dw, (30) 

and the resulting model P(B*) is then calculated 
according to Proposition 2, by 

P(0*) = [N,+D,.R(B*)][D,-N,R(B*)]-‘. (31) 

Careful evaluation of the expressions (30),(3 1) and 
(25) shows that in the scalar case we can rewrite the 
integrand of (30) as 

As a result, the identification criterion can be explic- 
itly tuned to the performance degradation (15) pro- 
vided a 2-norm is used in the performance degra- 
dation, and the identification design variables are 
chosen to satisfy LH, = N,.V. In here, H, is a stable 
spectral factor of cPV. 

The following remarks can be made with respect 
to this identification method. 

9 The identification method fruitfully uses 
knowledge of the controller that is imple- 
mented when experiments are performed. 
Knowledge of this controller is instrumen- 
tal in recasting the closed-loop identification 
problem into an open-loop one. 

l Due to this configuration, an estimated factor 
R(f9*) that is stable, will automatically yield 
a model P(L)* ) that is guaranteed to be stabi- 
lized by C. 

. 

. 

4.4. 

Having identified the parameter 0* and the 
corresponding transfer function R( 8* ) with a 
fixed McMillan degree n,, the McMillan de- 
gree of IYe*) will generally be much larger. 
This is due to the required reparametrization 
as presented in (31). This implies that in the 
identification as discussed above, the complex- 
ity (McMillan degree) of the resulting model P 
is not simply tunable. Constructing an appro- 
priate parameter space 0 in such a way that 
the corresponding set of models {P(O), 8 E 
0) has a fixed McMillan degree, is definitely a 
nontrivial parametrization problem, that has 
not been solved yet. 
The asymptotic identification criterion, as re- 
flected by (32), is not dependent on the chosen 
auxiliary model P, or its factorization. 

Coprime factor identljkation 

Closely related to the previous method is an 
identification method that is directed towards iden- 
tification of coprime factors of PO. It was intro- 
duced in Schrama (1991), and further elaborated 
in Schrama (1992b) and Van den Hof et al. (1995). 
Similarly as above it employs the fact that the sig- 
nal r := u + Cy can be constructed from data and 
knowledge of the controller, and that this signal is 
uncorrelated to the noise signal es. 

Consider a stable filter F that generates an aux- 
iliary signal according to x = Fr, as depicted in 
Fig. 6a. Then we can write 

y = NOX + SoHoeo, (33) 

u = DOX - CSoHoeo, (34) 

with NO = P&F-‘, DO = SOF-’ and SO = (I + 
CPo)-I. Since x and eo are uncorrelated we can 
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identify NO and DO in an open-loop way, thus uti- 
lizing the possibility of an explicitly tunable iden- 
tification criterion. The plant model B is then con- 
structed as B = N(&D(8)-‘. 

Apparently there seems to be a lot of freedom 
in the choice of F. However this is limited if we 
restrict NO and DO to be stable and the signal x to be 
bounded, as is shown in Van den Hof et al. (1995): 

Proposition 3. The filter F yields stable mappings 
(y, U) - x and x - (y, u) if and only if there exists 
an auxiliary system P, with rcf (NX, D,), stabilized 
by C, such that F = (D, + CNJ-*. For all such 
F the induced factorization PO = NOD;’ is right 
coprime. 0 

This Proposition shows the clear resemblance 
of this scheme with the previous dual Youla 
parametrization. The choice of F as given in 
the Proposition shows that the resulting signal x 
matches the same signal in the previous section, cf. 

(28). 
As in the previous method an intermediate signal 

x is reconstructed from data (Fig. 6a). Next the two 
transfer functions between x and (y, U) are identi- 
fied according to the scheme of Fig. 6b. 

If we use a corresponding model structure 

then a least-squares identification criterion will 
yield the asymptotic estimate determined by 

(36) 

According to (33) and (34) and the specific choice of 
F, the coprime plant factors that can be identified 
from closed-loop data satisfy 

No 

( ) 

= 

Do ( 

PoU + CPo)-‘(I + CP,)D, 
(I + CPo)-’ (I + CP,)D, ) (37) 

Now the question is how we can reformulate 
the identification criterion (36) into an expression 
in terms of PO and P(0) = N(B)D(e)-‘. If we 
would be able to construct a parametrization for 
N(B), D(e) that satisfies 

[ ;f;] = [ 
p(e)u + cp(e)P 

(z + cp(e))-~ ] U+ CPx)&W) 

then the integrand expression in (36) can be written 
as 

J IPo(Z + CPi$’ - P(8)(Z + CP(B))_’ 12IL, 12 

+ IU + CPOP - (I + cP(e))-‘121Lz~2) Gp 

(39) 

The latter expression induces a very flexible approx- 
imation criterion in which clearly control-relevant 
mismatches can be recognized. 

Note that the restriction to the parametrization 
(38) is nontrivial. A second remark is that the 
dynamics that are present in the coprime factors 
No, Do strongly depend on the choice of the aux- 
iliary system P,. This also holds for the question 
of whether the factors can be accurately modelled 
by restricted complexity models. If both factors 
exhibit (very) high-order dynamics, then approxi- 
mate identification of these factors may lead to an 
inaccurate plant model. This implies that somehow 
one has to get rid of the common dynamics in both 
factors, and thus also simplifying the parametriza- 
tion restriction (38). In Van den Hof et al. (1995) 
an algorithm is presented in which the freedom in 
choosing P, is employed to arrive at coprime fac- 
tors that are - nearly - normalized. This means 
that the factors (NO, DO) have minimal McMillan 
degree. It is achieved through a similar strategy as 
in the two-stage method, described earlier. First 
an accurate - high-order - estimate is made of 
NO and DO; the resulting coprime factors are nor- 
malized in a normalization procedure, and these 
latter factors are subsequently used as an auxiliary 
model. The factors NO and Do that result from this 
choice of P, and D, will be almost normalized (in 
the sense that N”N + D* D - I), and can be ac- 
curately identified by using a model structure for 
N(B), D(e), given by 

N(0) = b(q-‘, @_f(q-‘, Q)-l, (40) 

D(Q) = a(q-‘, W-(q-l, @-‘, (41) 

with a, b and f polynomials of specified degree. 
This parametrization now approximately satisfies 
the restrictions of (38). Moreover it guarantees that 
the McMillan degree of the resulting plant model 
is equal to the McMillan degree of the estimated 
coprime factors. 

As a final note we remark that due to this co- 
prime factor framework the identification methods 
discussed in the previous Sections 4.3 and 4.4 do 
not meet any problems in handling unstable plants 
and/or unstable controllers. 

5. ITERATIVE SCHEMES UNDER CONSTRUCTION 

5.1. Introduction 
While in the previous section we discussed the 

developments in approximate closed-loop identifi- 
cation, we will now return to the interaction with 
the control design, by addressing several iterative 
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Fig. 6. Coprime factor identification from closed-loop data: (a) construction of auxiliary signal x; and 
(b) open-loop identification of coprime factors. 

methods. We will discuss three different approaches, 
each based on a specific control-design strategy: 
LQ-control, Internal Model Control (IMC) and a 
Hm-design based on robustness optimization. Be- 
sides this design strategy, the main characteristics 
lie in the treatment of the approximate identifica- 
tion and in verifying robustness issues, i.e. in tuning 
the control design in order to prevent large perfor- 
mance degradations (cf. (14)). All schemes follow 
the basic iterative strategy as presented in Section 
3. As the method based on Hm-design allows a 
stability robustness test utilizing experimental data, 
we will specifically pay attention to this. 

5.2. LQ-control 

Zang et al. (I 99 1 a,b) developed an iterative iden- 
tification and control-design strategy, taking an in- 
finite horizon LQ-control objective as a starting 
point. The seeds for this approach were already 

planted in Bitmead et al. (1990), while it is further 
refined in Zang et al. (1992) and Partanen and Bit- 
mead (1993). The global control performance cost 
is denoted by 

hQ(~O, C,i; = 8[b’(t)-r2W2 + h&)*1> (42) 

where 

The system configuration is taken as sketched in 
Fig. 3, with ri = 0. * The triangle inequality now 
becomes 

IIJLQ(pO> c) 112 5 ikQ(p, c) 112 

+IIJLQ(h c) - &Q(k c) 112444) 

* For simplicity of notation we have neglected the fact that 
the optimal LQ controller will generally be a two degree of 
freedom controller. 
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where JLQ @, C) = 
I 

y,(t) - f-20) 

A~,,(~) ) and am, 1 

The LQ controller is obtained by minimizing the 
performance cost &., 

uc(t) the corresponding output/inpu< signal in the 
design loop, i.e. 

yc = F&r2 + SAel, (45) 

uc = 532 - CSAel. (46) 

In this expression ,? and fi denote the sensitivity 
function of the i/o model 3 and the estimated noise 
model, respectively. The signal ei is the assumed 
noise signal in the design loop. 

Through careful evaluation of the performance 
degradation term, JLQ(Po, C) -JLQ(P, C), it follows 
that the (squared) norm of this term becomes 

B[(y(t) - Y,W2 + A(u(t) - ~c(~)~21. (47) 

This is the related identification criterion that is in- 
duced by (42). In order to come to an identification 
set-up in which this criterion is minimized, (47) can 
be rewritten as 

1 lT 

G l{ 
Iso~o12(l + hlC12)@~” 

-7T 

+ICSo[Po - PWlS(0)12(1 + hlC12)9,,) dco. 

(48) 

In this latter derivation, Zang et al. (1991b), have 
taken ei = 0. As an identification set-up, it is pro- 
posed to apply a direct-type closed-loop predic- 
tion error criterion conformable to (19) with r := 
C(q)r2, with a fixed noise model H(q, 8) = 1 and 
a prefilter L satisfying 

1 + NCl2 
ILWI~ = (1 + wmswl2 = II + cptej12. 

(49) 

Such a choice of L makes the closed-loop identi- 
fication criterion (17) and (19) equivalent to (48). 
(Note that we may neglect the e-independent terms 
in the integrands.) A remaining problem is the fact 
that this optimal prefilter is again a function of the 
unknown parameter 8, which implies that the re- 
quired model structure is not a regular output-error 
model structure. An “approximate” solution is pro- 
vided by using the model estimate from the previ- 
ous step in the iteration, i.e. L(8) = L( 8i-1). In this 
way the prefilter becomes fixed, but the two criteria 
(17) and (19) and (48) no longer match exactly. 

Remark 4. A similar approach to the identification 
problem is taken in Hakvoort (1990) and Hakvoort 
et al. (1994). There, the design loop is chosen to 
be contaminated by the same noise eo as in the 
achieved loop. For that case the same choice of op- 
timal prefilter L( 8) (49) is obtained, and conditions 
are given for which a choice L( 8) = L( Bi-1) pro- 
vides equivalent criteria (17),(19) and (48). 

IIJLQP, C) II; = i?[(y,(t) - r2(t)J2 + hu,.(t)21. (50) 

This design strategy does not account for any mis- 
match between the nominal model and the actual 
plant. This implies that during the control design we 
have to verify whether (14) is satisfied. Only under 
this condition can one guarantee that the achieved 
performance will be similar to the designed one. 
Zang et al. (1991 b) propose a local design crite- 
rion that accounts for this mismatch. This local de- 
sign criterion should prevent a decreasing designed 
(nominal) performance cost which would dramati- 
cally increase the performance degradation cost. It 
takes the form of 

IIJLQ,~~~~~~(~, C)llz = ~{[Fl(q)(yAt) - r2(t))12 

+ m~qMN2~~ (51) 

with Fi (eiW) = 
l/2 

, F2(eiW) = 

The spectra in this expression are estimated on 
the basis of measurement data from the actual sys- 
tem and of simulation data from the designed loop. 

Recent contributions to this iterative scheme are 
presented in Zang et al. (1995). 

5.3. Internal Model Control (IMC) 

In Lee et al. (1992), Lee et al. (1993a) and Lee et 
al. (1993b) an iterative scheme of identification and 
control design is proposed based upon the internal 
model control (IMC) design paradigm. The result- 
ing iterative scheme is often indicated as the “wind- 
surfer approach” * (Anderson and Kosut, 1991), 
referring to the presumed iterative way that peo- 
ple take when learning windsurfing: starting with a 
control system with moderate bandwidth, while ex- 
perimentally refining the model and increasing the 
bandwidth of the controlled “plant”. 

The control performance is based on 

pot JIMCU’O, Cl = - - 
1 +P& 

Ti. (52) 

with JIMC E RH,, Td is some prechosen desired 
complementary sensitivity, and the performance 
cost is taken to be the 3fm-norm of J,Mc. Td is 
chosen to be of the form ( & jn+’ , with h E a the 
closed-loop bandwidth, and n a prechosen integer. 

The choice of control performance cost induces 
the performance degradation 

II JIMCU’O, C) - JIM& 0 Ilo 

* Due to local climate conditions this term is not so often 
used by the north-west European iterators. 



Identification and control - closed-loop issues 
A 

=((poc_ 
1 + P& 

+llm. (53) 
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C = argm$n IIT/T($, c)Wlloo. (55) 

The mismatch between complementary sensitivity 
functions has already been shown to be a control- 
relevant plant-model mismatch, see e.g. (4) and (5). 
In Lee et al. (1992) the closed-loop identification 
scheme based on the dual Youla parametrization is 
employed to identify a stable transfer function R, 
as described in Section 4.3 and equation (29). By 
choosing a least-squares prediction error criterion 
with a prefilter L = A’,., the resulting parameter 
estimate will converge to (assuming +,- z 1) 

Tr 

0* = argmjn 
I 

I* - 
0 

1 ~~;&12dw. (54) 
--TT 

where the plant model P( 6) is parametrized accord- 
ing to (3 1). In this setting the tim-norm of the per- 
formance degradation is replaced by the 2-norm of 
the least-squares prediction error criterion. Due to 
the parametrization (3 1) the estimated plant model 
will generally be of high order; a subsequent model- 
reduction procedure based on frequency-weighted 
balanced reduction, conformable to (53) is applied 
to keep control over the model order of P and the 
resulting order of the controller. 

The control design uses IMC-design techniques 
for a nominal design that achieves the predesigned 
closed-loop bandwidth. During the iterations of 
identification and control design, the nominal 
closed-loop bandwidth h is gradually increased 
as the identified model becomes more accurate 
around and beyond the designed closed-loop band- 
width. When increasing h for a specific model Ii, 
the performance degradation is monitored through 
step response experiments on the achieved and de- 
signed loop. When the responses are different, this 
indicates either the limit of validity of the current 
model Pi, and thus the need for a new model Pi+,, 
or the limits of performance that can be achieved. 
In Lee et al. (1993b). considerations of variance 
of the model estimates are also gathered into the 
iterative scheme. While the original method has 
been worked out for stable plants and stable con- 
trollers only, a further extension to the handling of 
unstable plants is presented in Lee (1994). 

5.4. H,-design based on robustness optimization 
III the work of Schrama (1992a,b), Schrama 

and Van den Hof (1992) and Schrama and Bosgra 
(1993) an iterative scheme of identification and 
control design is elaborated, utilizing the robust 
control-design method of Bongers and Bosgra- 
(1990) and McFarlane and Glover (1990). The 
control-design criterion is: 

T(p, C) is the 2 x 2 transfer matrix as defined in (2) 
that embodies all feedback properties of the closed- 
loop system, including disturbance and noise at- 
tenuation, sensitivity and robustness margins, and 
with V and W appropriate stable weighting func- 
tions. Through specific choices of I’ and W this 
method reduces to specific methods like weighted- 
sensitivity minimization or mixed-sensitivity mini- 
mization (see also Section 3.3). 

For V = W = I, the following robustness result 
is known from Glover and McFarlane (1989) and 
Bongers and Bosgra (1990). 

Proposition 5. Let T(p, C) be stable, and let 
($,,, fi,) be a normalized rcf of P. Define the un- 
certainty set PA@, y) := {PA = (& + AiV)(b, + 

AD)-‘, ;; 
/I II 

< y). Then ah plants in FA@, y) 

are stabilized by C if and only if II T(k C) Ilm I 
‘y-1. cl 

As the control design amounts to minimizing 
II T(?, C) Iloo this corresponds to a maximization 
of the stability robustness margin with respect to 
(stable) perturbations of normalized rcfs of the 
plant model. Additionally the resulting controller 
pursues some traditional control objectives like 
a small sensitivity at the lower frequencies and a 
small complementary sensitivity at the higher fre- 
quencies. The bandwidth of the designed loop will 
be close to the crossover frequency of the nominal 
model P. This controller is also known to optimize 
the stability robustness margin in the sense of the 
gap metric, see Bongers and Bosgra (1990) and 
Georgiou and Smith (1990). 

In the given situation the control performance 
function is defined by 

JRO(pO,c) = TU'o, c), (56) 

while its cost is measured as the corresponding 3&,- 
norm. The induced performance degradation be- 
comes 

II TWO, C) - TCt C) Ilm. (57) 

It can simply be verified that this performance 
degradation is an extended version of the degrada- 
tion (53) in the case of the IMC design. 

5.4.1. Zden tification . The identification method 
has to provide a model p that (asymptotically) 
minimizes the performance degradation (57). In 
the proposed iterative scheme an identification cri- 
terion is chosen that equals II T(Po, C) - T(j, C)llz, 
where minimization of the 2-norm is used to ob- 
tain a reduction of the co-norm of the correspond- 
ing mismatch. This replacement is justified by the 
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fact that an accurate &-approximation implies an 
accurate L,-approximation, provided that the er- 
ror term is sufficiently smooth and small, see e.g. 
Caines and Baykal-Gtirsoy (1989). Identification 
of P = argminp II T(Po, C) - T@‘, C) 112 is obtained 
by applying the coprime factor identification as de- 
scribed in Section 4.4. Under the parametrization 
restriction (38) it can be verified that 

TWO, Cl - TV(Q), C) 

(58) 

Minimization of the 2-norm of this expression can 
be achieved through least-squares identification as 
in (36) with L, = L2 = L, satisfying IL12@,. = 
1 + I C12. In the first versions of this iterative scheme, 
the identification was actually performed based on 
frequency response data of the plant. Later exten- 
sions in Van den Hof et al. (1995) also show the use 
of time-domain data. 

54.2. Control performance enhancement . The 
controller C of (55) with I/ = W = I depends 
solely on the nominal model p. As a result the 
achieved performance II T(Po, C) II to may be sub- 
stantially different from the designed performance 
IIT& C)llw. In order to preclude large perfor- 
mance degradations the nominal control design is 
furnished with weighting functions. Like in McFar- 
lane and Glover (1990) this iterative scheme uses 
just a simple scalar weight, W-’ = V = diag(or, I), 
leading to the control design 

C = argmin IIT(d, z)II,. 
? 

(59) 

The resulting controller yields optimal robustness 
for H,-bounded perturbations of normalized rcf s 
of the weighted model c&. Additionally, the band- 
width of the feedback system will be around the 
crossover frequency of otp. When the frequency re- 
sponse of the nominal model p rolls off in the range 
where I &(eiw) I - 1, one can push out the designed 
bandwidth by increasing the weight o(, thus allow- 
ing more control action. In other words, a large a 
corresponds to a high nominal performance. 

Note that the introduction of this weighting does 
not hinder the identification part, as it simply acts 
as a scalar weight on i), PO and C. 

At each control-design step the weight o( is in- 
creased just gradually in order to enhance the nom- 
inal performance, while the performance degrada- 
tion has to remain acceptably small. This implies 
that at iteration step i, having available pi+,, O(~, Ci, 
a choice is made for ai+i > c+ requiring that 

Hof and R. J. I? Schrama 

G+l IIT(ai+Po, - ai+l ) - T(ai+l&+l, o(i+l 
Ci+l ) II 

m 

<< IIT(aj+l&):+l, 
(60) 

while the sum of left- and right-hand expression has 
to remain sufficiently small. 

The right-hand side of (60) is actually minimized 
in the control design and thus can be calculated 
simply. The left-hand side is not directly available, 
as experiments with the new controller Cj+i are not 
yet available. From the identification in step i we 
have obtained knowledge of 

G IIT(%Po. F) - T(cx#~+~, ~)ll,. (61) I I 
which is clearly different from the left-hand side of 
(60). In the proposed iterative scheme a high-order 
frequency response estimate of PO is employed in 
order to estimate this left-hand side of (60) for each 
new candidate ai+ 1. 

5.4.3. Robust stability analysis . Having se- 
lected ar+i and calculated Cj+i, there is no formal 
guarantee that the plant PO is stabilized by Ci+i. 
This is due to the fact that the design (55) is an 
unconstrained optimization; although the robust- 
ness is optimized, there is no prior guarantee about 
the extent of the robustness margin. Moreover, 
(60) can be verified only by replacing PO by some 
estimate of PO. 

In order to test the robust stability before actu- 
ally implementing the newly-designed controller, we 
can exploit a robust stability result that utilizes an 
uncertainty structure on (coprime factors of) Pj+* 

that is controller dependent. 

Proposition 6. (Schrama (1992b).) Let controller Cr 
stabilize both the mode1 fii+i and the plant PO. Let 
c~+ i&+i have a normalized rcf (fin, &,> and let 
cxz,Ci have a normalized rcf (IV,, D,). Let O(r+iPo 
have an rcf (NO, DO) that satisfies NO = fi + AN and 
DO = b + AD, with IlLAN AD] (lm < y. Then PO is 
stabilized by Ci+i if 

L 1 
ll[~i+lDn +- G+lNnl-‘[G+1 - GlDcIIw < Y- ‘. (62) 

This result is based on a Youla parametrization 
for both the controller Ci+i and the plant PO. The 
resulting stability test is non-conservative in the 
case Ci+i = Ci, as in that case it matches with the 
Youla parametrization. Note that the left-hand side 
of (62) is completely known. This stability test calls 
for identification methods that provide a 3f--error 
bound on the normalized rcf of the weighted model 
ai+ iPi+i. Once an upper bound y can be found 
from data, (62) can be verified. In Schrama (1992b) 
high-order frequency domain estimates of PO are 
taken to construct the required error bounds and 
to verify robust stability. 
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5.5. Other approaches 

Apart from the three methods presented in this 
section so far, there are a couple of alternatives that 
all incorporate iterations between model identifica- 
tion and control design. 

In Liu and Skelton (1990) an iterative method 
is presented that relies on closed-loop impulse re- 
sponse experiments for identifying a model using 
the q-Markov cover theory; the model matches the 
first sequence of Markov parameters and the first 
elements of the output covariance function of the 
closed-loop plant. An open-loop model is recon- 
structed by employing knowledge of the controller 
and through application of a model reduction tech- 
nique. This identification is iterated with a control- 
design scheme that minimizes the control energy of 
the closed loop subjected to inequality constraints 
on the output variance. 

In Astrom (1993) considerations are given for the 
matching of criteria in identification and control. 
For several control-design strategies the relevance 
of least-squares identification in closed loop using 
appropriate data filters is discussed. This leads to 
results that are in line with the ones obtained for 
LQ-control as discussed in Section 5.2. 

In Graebe et al. (1993) and Graebe and Good- 
win (1993) an iterative scheme is proposed that is 
based on closed-loop identification of multiphca- 
tive model increments, a stochastic embedding ap- 
proach for quantifying the model uncertainty and 
an IMC control-design method. With each itera- 
tion the model complexity is increased so as to cap- 
ture more of the relevant plant dynamics in the 
model. Due to the model uncertainty quantifica- 
tion a bandwidth of robust performance can be pre- 
dicted at each iteration. 

In a number of approaches one does not ex- 
plicitly use closed-loop experiments. Bayard et 
al. (1992) matches the identification and control 
design for a mixed sensitivity type of control de- 
sign, where the actual identification is replaced by 
a control-relevant weighted curve fit on the fre- 
quency response of the (noiseless) plant. In Rivera 
et al. (1992), considering several control objectives, 
an account is given on the construction of control- 
relevant prefilters to be applied in open-loop iden- 
tification in order to arrive at control-relevant 
models. Shook et al. (1992) propose data prefilters 
in order to provide an identification criterion that 
matches a generalized predictive control criterion; 
this method is worked out for a noise-free situation. 

5.6. Evaluation 

Despite their differences, the iterative schemes 
presented in the previous subsections find their 
roots in a similar philosophy to the problem, for 

which a generic formulation has been given in 
Section 3. Basic features are: 

l An appropriate nominal model is indispens- 
able for achieving a high performance con- 
trolled plant. 

l Approximate identification in closed loop 
serves to match the achieved and designed 
performance as close as possible. 

l Generally the iterative algorithms start off 
with a moderate nominal performance re- 
quirement (loose controller) and pursue a 
nominal performance improvement by grad- 
ually increasing the nominal performance re- 
quirement (cf. increasing designed bandwidth 
in the IMC-design and increasing o( in the 
robustness optimization of Section 5.4). 

l Decision points occur whenever one is no 
longer able to achieve a performance degrada- 
tion cost that is (far) lower than the designed 
performance cost. In that situation one either 
has to increase the complexity of the model 
(to reduce the performance degradation) or to 
increase the complexity of the controller (to 
reduce the nominal performance cost), or to 
realize that one may have reached the limits 
of achievable performance. 

l Convergence of the iterative schemes is ob- 
tained through monitoring the iterations, 
rather than by formal theoretical justification. 

The approach that is present in these iterative 
schemes can be viewed as a means of letting ex- 
periments reveal what control performance can be 
achieved for the plant under consideration. In this 
way one can “learn” about the achievable plant 
performance as the iterations go by, by succes- 
sively retuning the controller based on information 
obtained from experiments. Referring back to the 
problem as stated in the introduction of this paper, 
the surveyed area offers a clear approach to the 
goal of arriving at appropriate controlled plants on 
the basis of experiment-based plant models. How- 
ever, we are not yet in a situation in which full an- 
swers are provided, and many questions remain to 
be solved. We list only a few of the open problems. 

l Attention is focused to bias aspects of the 
identified models, rather than to variance as- 
pects. A recent contribution that supports the 
approach presented here and that focuses on 
variance aspects in the considered identifi- 
cation setting, is given in Hjalmarsson et al. 
(1994a). 

l Attention is restricted to classical prediction 
error methods leading to the use of 3-&norms 
in model approximation, while actually from 
a point of view of control performance cost 
an 3& criterion would be most suitable; see 
e.g. the methods in Sections 5.3 and 5.4. This 
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mismatch of norms requires attention in future 
research, and may lead to the explicit use of 
3-1,~norms in identification procedures. 

l The possible convergence of these schemes has 
to be further analysed, and conditions have 
to be formulated for avoiding divergent be- 
haviour. 

l The prediction of performance degradation 
every time a new controller is designed calls 
for the explicit use of uncertainty models. This 
point refers to the problem of satisfying (14) 
after a controller redesign. In this uncertainty 
modelling, uncertainty structures have to be 
used that are specifically suited for the con- 
sidered control performance cost, in the sense 
that non-conservative statements can be made 
with respect to the left-hand side of (14). 

One can argue whether one needs closed-loop ex- 
periments and closed-loop identification in order to 
obtain identified models that serve our goal. As ap- 
parent in the analysis of this paper, performing the 
identification in closed loop provides a weighting of 
the identification criterion that can exactly support 
the intended control application of the model. The 
controller shapes the input of the plant to a form 
that stresses those components that are control rele- 
vant. The experimental situation under which mod- 
els are obtained is closely matched to the exper- 
imental situation in which the model and its in- 
duced controller, have to perform particularly well. 
A similar situation can be approximated by open- 
loop identification employing weighting functions 
(prefilters) that are plant and controller dependent. 
Consequently, that similarity can only be approxi- 
mative. 

The presented iterative ways of increasing the 
plant performance are specifically directed towards 
situations in which the achievable plant perfor- 
mance is not known a priori. In the case in which 
one knows that a specific (moderate) plant perfor- 
mance can be obtained and which control-design 
weights have to be used, it may not be too hard to 
find appropriate prefilters in open-loop identifica- 
tion, that will provide a model that supports the 
required control design. 

When arriving at a model that is suited for high- 
performance control, one is not automatically as- 
sured of an overall accurate open-loop model. It 
has been shown in a number of situations that one 
can easily arrive at high-performance control SYS- 

terns with only a moderate, or even a bad, open- 
loop performance of the nominal model, see e.g. 
Zang et al. (1991a) and Schrama (1992a) as also il- 
lustrated in Section 2. If one additionally wishes a 
model that satisfies the experimenter’s prior knowl- 
edge or that is an accurate open-loop description of 
the plant, this will have to be considered as an addi- 

tional model requirement, for which a price has to 
be paid, generally in terms of a higher model order 
and/or more experiments. 

We also would like to point to the “inner” iter- 
ative loop that is present in the block diagram in 
Fig. 4. Especially in situations where experiments 
are expensive and time consuming, it can be advan- 
tageous to fully exploit the possibilities of this “in- 
ner” loop, i.e. repeating identification and control 
design without renewing the experiments. 

We have focused on the problem of arriving at 
well-controlled plants by separate though related 
stages of model identification and model-based 
control design. An interesting account of a direct 
controller tuning based on experimental data is 
given in Hjalmarsson et al. (1994b). 

Successful real-life applications of high-perfor- 
mance control design will have to be the ultimate 
justification for the methods presented in this sur- 
vey. While most of the techniques presented here are 
supported by simulation examples, it is gratifying 
that also a couple of real-life applications have al- 
ready been reported. The iterative scheme of Zang 
and co-workers with LQ control has been applied 
to a sugar crane crushing mill, see Partanen and- 
Bitmead (1995) while the scheme of Schrama and 
co-workers with the Hm-design has been applied 
to a servomechanical system in Schrama and Bos- 
gra (1993). One single step in this latter scheme has 
also been applied to the pick-up mechanism in a 
Compact Disc player, see De Callafon et al. (1994). 

6. FINAL REMARKS 

In this paper we have reviewed some aspects of 
the research related to the problem of designing a 
high-performance controller for a plant with un- 
known dynamics through separate identification 
and control design. The underlying ideas in this 
area are quite close to adaptive control. Whereas 
in adaptive control the procedures of identification 
and control design are completely intertwined, the 
approaches discussed here attempt to provide a 
separate analysis of both steps, and to accomplish 
a joint performance criterion of both parts. 

Iterative procedures in which the performance 
level of the controlled plant is gradually increased 
are actually quite appealing. In engineering practice 
a product is commonly accomplished by a number 
of successive improvements rather than by a one- 
step design that starts from scratch. Why should 
control engineering be different? The implication 
of this is that one should not focus on an ideal but 
possibly unachievable desired control performance. 
Instead one better aims at an improvement of the 
performance that has already been achieved. 
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