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13 Subspace Identification

13.1 Deriving the time-aliased impulse response function

We will derive the following,

hk “
1

N

N´1
ÿ

n“0

Gpnqej2πkn{N .

Substituting the relationship for Gpnq, which is equal to Gpejωnq in the noise-free case,

Gpnq “ Gpejωnq “

8
ÿ

i“0

gpiqe´j2πni{N ,

gives,

hk “
1

N

N´1
ÿ

n“0

8
ÿ

i“0

gpiqej2πnpk´iq{N

This is only non-zero for k and i related by,

i2π

N
“
k2π

N
` 2πl, l “ 0, 1, . . . ,

or equivalently, i “ k `Nl.

So this gives,

hk “
1

N

N´1
ÿ

n“0

8
ÿ

l“0

gpk `Nlq

loooooomoooooon

independent of n

“

8
ÿ

l“0

gpk `Nlq
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This is a time-aliased version of the impulse response.

This infinite summation can be reformulated by noting that,

gpkq “ CApk´1qB,

and so,

gpk `Nlq “ CApk`Nl´1qB.

Summing the impulse response terms gives,

hk “
8
ÿ

l“0

gpk `Nlq “ C

˜

8
ÿ

l“0

Apk`Nl´1q

¸

B

“ CApk´1q
8
ÿ

l“0

ANlB.

If A is stable, ρpAq ă 1, then,

hk “ CApk´1q
8
ÿ

l“0

ANlB

“ CApk´1q
`

I ´ AN
˘´1

B

“ CApk´s´1q
`

I ´ AN
˘´1

AsB.

This last relationship holds for any integer s because A clearly commutes with the inverse
term. It also shows that H has a Hankel structure.

Furthermore, we can write H directly as,

H “

»

—

—

—

—

—

—

—

–

h1 h2 h3 ¨ ¨ ¨ hr

h2 h3 . .
.
. .
.

hr`1

h3 . .
.

. .
.
. .
.

. .
.

. .
. ...

hq hq`1 ¨ ¨ ¨ hq`r´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

–

C
CA
...

CAq´1

fi

ffi

ffi

ffi

fl

`

I ´ AN
˘´1 “

B AB ¨ ¨ ¨ Ar´1B
‰

This factorisation shows that the range space of H is the extended observability space,
O. This is the key feature we require.
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13.2 Noise in the irregularly-spaced frequency case

The situation in the presence of noise requires more careful treatment in order to guarantee
asymptotic consistency. In the noisy case we would have,

G “ OX c ` ΓW ` V ,

with the noise matrix V , having the same structure as G. The noise structure can be
written as,

V “W diag
`

V pejω1q, ¨ ¨ ¨ , V pejωN q
˘

.

Now we can express,

VrVTr “
“

realpVq imagpVq
‰ “

realpVq imagpVq
‰T

“ real
`

W diag
`

V pejω1qV pejω1q
˚, ¨ ¨ ¨ , V pejωN qV pejωN q

˚
˘

W˚
˘

This has expected value,

E
 

VrVTr
(

“ real pW diag pφvpω1q, ¨ ¨ ¨ , φvpωNqqW˚
q

If we know the noise spectra we can define a weighting,

KKT
“ α real pW diag pφvpω1q, ¨ ¨ ¨ , φvpωNqqW˚

q ,

for some α ą 0. The matrix K can be calculated via a Cholesky factorisation.

To achieve asymptotic consistency we solve the weighted problem,

K´1GrWK
r “ K´1OXcrWK

r `K
´1VrWK

r .

McKelvey proves that this gives consistency as,

K´1VrWK
r

`

K´1VrWK
r

˘T
ÝÑ α´1I.

Many of the variants of subspace ID (particularly in the time-domain) differ in the treat-
ment of the noise weighting. Note that the results will depend somewhat on being able
to estimate the noise spectra. A comprehensive summary can be found in [1].

13.3 Shortcomings of standard SVD-based subspace ID meth-
ods

This discussion is taken directly from [2].

There are several difficulties that arise with SVD-based subspace identification.
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Determining the appropriate rank of H This is typically done by selecting an index
where the singular values drop significantly. Unfortunately it is not always straightfor-
ward. The addition of noise to the matrix H makes all of the singular values non-zero and
while the noise added to each element of H is relatively small, the cumulative effect on
the nx ` 1st singular value can be large. This effect is amplified by the Hankel structure
of both H and the added noise. Numerical experiments indicate that the variance of the
non-zero singular values is higher for matrices with Hankel structure than for unstructured
matrices.

The lack of Hankel and shift structure in the truncated SVD Given a Hankel
matrix, H, one can find matrices, A, B and C which reconstruct H exactly. In general,
if H P RnyNˆnuN , the representation will be of order 2N ´ 1. In this case the basis for
the range space of H is U “

“

U1 U2

‰

and U has the required shift structure. However
U1Σ1V

T
1 is not Hankel and U1 does not generically have this shift structure. There is

no reduced order Ĉ and Â from which one can calculate U1. The least-squares estimate
suffers from the problem that errors occur in both the left and righthand factors. Total
least-squares gives some improvement but does not account the for the fact that for the
majority of matrix components in the equation the errors in the left and righthand sides
are actually equal.

The weighting of the effects of the noise The contribution of the noise to the
singular values of the Hankel matrix H is not simple. The effect on the individual blocks,
ĥi, of H is linear (via the Fourier Transform), but different blocks appear in H a different
number of times. One of the consequences of this is that the variance of the effect of noise
on the singular values appears to be larger. If one were to weight the effect of individual
noise on ĥi, this weighting would have to be applied via a Hadamard multiplication.
Multiplicatively weighted SVD problems will not correctly account for such noise.
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