System Identification

Supplementary notes: lecture 6

Roy Smith

6 Spectral estimation, smoothing, \& input signals

6.1 Spectral estimation: auto-spectra

The input-output relationship between the auto-spectra,

$$
\begin{aligned}
& \phi_{y}\left(\mathrm{e}^{j \omega}\right)=G\left(\mathrm{e}^{j \omega}\right) \phi_{u}\left(\mathrm{e}^{j \omega}\right) G^{*}\left(\mathrm{e}^{j \omega}\right)+\phi_{v} \\
&+G\left(\mathrm{e}^{j \omega}\right) \phi_{u v}\left(\mathrm{e}^{j \omega}\right)+\phi_{v u}\left(\mathrm{e}^{j \omega}\right) G^{*}\left(\mathrm{e}^{j \omega}\right),
\end{aligned}
$$

is relatively easy to show.
Begin with the noise-free case. We do this for the multivariable case as it makes generalising to the noisy case easier. To avoid writing out the indices for the input-output components we must interpret $g(m)$, etc. as a matrix and $u(k)$, etc., as vectors.

$$
\begin{aligned}
\phi_{y}\left(\mathrm{e}^{j \omega}\right) & =\sum_{\tau=-\infty}^{\infty} E\left\{y(k) y^{T}(k-\tau)\right\} \mathrm{e}^{-j \omega \tau} \\
& =\sum_{\tau=-\infty}^{\infty} E\left\{\left(G\left(\mathrm{e}^{j \omega}\right) u(k)\right)\left(G\left(\mathrm{e}^{j \omega}\right) u(k-\tau)\right)^{T}\right\} \mathrm{e}^{-j \omega \tau} \\
& =\sum_{\tau=-\infty}^{\infty} E\left\{\left(\sum_{l=-\infty}^{\infty} g(l) u(k-l)\right)\left(\sum_{m=-\infty}^{\infty} u^{T}(k-\tau-m) g^{T}(m)\right)\right\} \mathrm{e}^{-j \omega \tau} \\
& =\sum_{l=-\infty}^{\infty} g(l) \sum_{m=-\infty}^{\infty} \sum_{\tau=-\infty}^{\infty} E\left\{u(k-l) u^{T}(k-\tau-m)\right\} g(m) \mathrm{e}^{-j \omega \tau} \\
& =\sum_{l=-\infty}^{\infty} g(l) \mathrm{e}^{-j \omega l} \sum_{m=-\infty}^{\infty} \sum_{\tau=-\infty}^{\infty} E\left\{u(k-l) u^{T}(k-\tau-m)\right\} \mathrm{e}^{-j \omega(\tau-l+m)} g^{T}(m) \mathrm{e}^{j \omega m}
\end{aligned}
$$

and by substituting $s=k-l$,

$$
=\sum_{l=-\infty}^{\infty} g(l) \mathrm{e}^{-j \omega l} \sum_{m=-\infty}^{\infty} \sum_{\tau=-\infty}^{\infty} E\left\{u(s) u^{T}(s+l-\tau-m)\right\} \mathrm{e}^{-j \omega(\tau-l+m)} g^{T}(m) \mathrm{e}^{j \omega m}
$$

and by substituting $t=\tau-l+m$,

$$
\begin{aligned}
& =\underbrace{\sum_{l=-\infty}^{\infty} g(l) \mathrm{e}^{-j \omega l}}_{G\left(\mathrm{e}^{j \omega}\right)} \underbrace{\sum_{\tau=-\infty}^{\infty} E\left\{u(s) u^{T}(s-t)\right\} \mathrm{e}^{-j \omega t}}_{\phi_{u}\left(\mathrm{e}^{j \omega}\right)} \underbrace{\sum_{m=-\infty}^{\infty} g^{T}(m) \mathrm{e}^{j \omega m}}_{G^{T}\left(\mathrm{e}^{-j \omega}\right)} \\
& =G\left(\mathrm{e}^{j \omega}\right) \phi_{u}\left(\mathrm{e}^{j \omega}\right) G^{T}\left(\mathrm{e}^{-j \omega}\right) \\
& =G\left(\mathrm{e}^{j \omega}\right) \phi_{u}\left(\mathrm{e}^{j \omega}\right) G^{*}\left(\mathrm{e}^{j \omega}\right)
\end{aligned}
$$

To extend this to the system plus noise use,

$$
\begin{aligned}
y(k) & =G\left(\mathrm{e}^{j \omega}\right) u(k)+v(k) \\
& =\left[\begin{array}{ll}
G\left(\mathrm{e}^{j \omega}\right) & I
\end{array}\right]\left[\begin{array}{l}
u(k) \\
v(k)
\end{array}\right] .
\end{aligned}
$$

Then,

$$
\begin{aligned}
\phi_{y}\left(\mathrm{e}^{j \omega}\right) & =\left[\begin{array}{ll}
G\left(\mathrm{e}^{j \omega}\right) & I
\end{array}\right]\left[\begin{array}{cc}
\phi_{u}\left(\mathrm{e}^{\mathrm{j} \omega}\right) & \phi_{u v}\left(\mathrm{e}^{\mathrm{j} \omega}\right) \\
\phi_{v u}\left(\mathrm{e}^{j \omega}\right) & \phi_{v}\left(\mathrm{e}^{j \omega}\right)
\end{array}\right]\left[\begin{array}{c}
G^{*}\left(\mathrm{e}^{j \omega}\right) \\
I
\end{array}\right] \\
& =G\left(\mathrm{e}^{j \omega}\right) \phi_{u}\left(\mathrm{e}^{j \omega}\right) G^{*}\left(\mathrm{e}^{j \omega}\right)+G\left(\mathrm{e}^{j \omega}\right) \phi_{u v}\left(\mathrm{e}^{j \omega}\right)+\phi_{v u}\left(\mathrm{e}^{j \omega}\right) G^{*}\left(\mathrm{e}^{j \omega}\right)+\phi_{v} .
\end{aligned}
$$

When $u(k)$ and $v(k)$ are uncorrelated we have $\phi_{u v}\left(\mathrm{e}^{j \omega}\right)=0$ and the simplifications given in the slide immediately follow.

Note that only in the SISO case do we have,

$$
G\left(\mathrm{e}^{j \omega}\right) \phi_{u v}\left(\mathrm{e}^{j \omega}\right)+\phi_{v u}\left(\mathrm{e}^{j \omega}\right) G^{*}\left(\mathrm{e}^{j \omega}\right)=2 \operatorname{real}\left\{G\left(\mathrm{e}^{j \omega}\right) \phi_{u v}\left(\mathrm{e}^{j \omega}\right)\right\} .
$$

See also [1, p. 45].

6.2 Spectral estimation: cross-spectra

The cross-spectral input-output relationship for our system is,

$$
\phi_{y u}\left(\mathrm{e}^{j \omega}\right)=G\left(\mathrm{e}^{j \omega}\right) \phi_{u}\left(\mathrm{e}^{\mathrm{j} \omega}\right)+\phi_{u v}\left(\mathrm{e}^{j \omega}\right) .
$$

To show this we first consider the $v(k)=0$ (noise-free) result,

$$
\begin{aligned}
\phi_{y u}\left(\mathrm{e}^{j \omega}\right) & =\sum_{\tau=-\infty}^{\infty} E\left\{y(k) u^{T}(k-\tau)\right\} \mathrm{e}^{-j \omega \tau} \\
& =\sum_{\tau=-\infty}^{\infty} E\left\{\left(\sum_{l=-\infty}^{\infty} g(l) u(k-l)\right) u^{T}(k-\tau)\right\} \mathrm{e}^{-j \omega \tau} \\
& =\sum_{l=-\infty}^{\infty} g(l) \mathrm{e}^{-j \omega l} \sum_{\tau=-\infty}^{\infty} E\left\{u(k-l) u^{T}(k-\tau)\right\} \mathrm{e}^{-j \omega(\tau-l)}
\end{aligned}
$$

and by substituting $s=k-l$,

$$
=G\left(\mathrm{e}^{j \omega}\right) \sum_{\tau=-\infty}^{\infty} E\left\{u(s) u^{T}(s+l-\tau)\right\} \mathrm{e}^{-j \omega(\tau-l)}
$$

and by substituting $t=\tau-l$,

$$
\begin{aligned}
& =G\left(\mathrm{e}^{j \omega}\right) \underbrace{\sum_{\tau=-\infty}^{\infty} E\left\{u(s) u^{T}(s-t)\right\} \mathrm{e}^{-j \omega t}}_{\phi_{u}\left(\mathrm{e}^{j \omega}\right)} \\
& =G\left(\mathrm{e}^{j \omega}\right) \phi_{u}\left(\mathrm{e}^{j \omega}\right)
\end{aligned}
$$

The general $(v(k) \neq 0)$ result is the MIMO application of the above to,

$$
y(k)=\left[\begin{array}{ll}
G\left(\mathrm{e}^{j \omega}\right) & I
\end{array}\right]\left[\begin{array}{l}
u(k) \\
v(k)
\end{array}\right] .
$$

6.3 Time-domain window functions

There is a subtlety in the construction of the time-domain window, $w_{\gamma}(\tau)$. Consider a Bartlett window defined by the width parameter γ,

$$
w_{\gamma}(\tau)= \begin{cases}0 & \tau<-\gamma \\ 1-\frac{|\tau|}{\gamma} & -\gamma \leqslant \tau \leqslant \gamma \\ 0 & \tau>\gamma\end{cases}
$$

The window has a peak value of 1 at $\tau=0$. Examine what happens when we choose $\gamma=N / 2$. In this case

$$
w_{\gamma=N / 2}(-N / 2)=0 \quad \text { and } \quad w_{\gamma=N / 2}(N / 2)=0
$$

Careful counting reveals that for N even the window has $N / 2-1$ non-zero values ${ }^{1}$.

[^0]The correct interpretation is that the window is of length N and includes (at either the beginning or the end) a single zero value. This definition makes the Bartlett window a triangular waveform of periodicity N. And from the Fourier series of a triangular waveform we know that it has spectral components,

$$
\omega=\frac{2 \pi}{N}, 0, \frac{3 \times 2 \pi}{N}, 0, \frac{5 \times 2 \pi}{N}, 0, \ldots
$$

If we had defined our Bartlett window to have two zeros (one at the start and one at the end) within the length N window then it would not exactly correspond to a triangular waveform and would have a slightly "messier" spectrum.

The reason that this will make a difference is that we will see that the spectrum that we will measure at the N DFT frequencies $(2 \pi n / N, n=0,1, \ldots, N / 2)$ is the convolution of the frequency responses of the window function and the underlying signal.

References

[1] L. Ljung, System Identification: Theory for the User, 2nd ed. Prentice-Hall, 1999.

[^0]: ${ }^{1}$ For some windows, such as a Hamming window, the edge of the window is defined with a non-zero value. In this case a $\gamma=N / 2$ width window will have $N / 2+1$ non-zero values.

