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System Identification
Supplementary notes: lecture 4

Roy Smith

4 Sampled dynamic models & frequency-domain anal-

ysis

4.1 Convergence of the periodogram to the spectral density

It is fairly straightforward to show that the periodogram is an asymptotically unbiased
estimate of the power spectral density,
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We begin with a useful result from Stoica & Moses [1, Ex. 1.6, p. 17].

Lemma 4.1. Given an arbitrary function of a discrete-variable, fpτq,

N´1
ÿ

t“0

N´1
ÿ

s“0

fpt´ sq “
N´1
ÿ

τ“´N`1

pN ´ |τ |qfpτq.

Proof of lemma: 4.1: Define τ “ t´ s and note that given the bounds on the left-hand
summation τ can range from ´N ` 1 (corresponding to t “ 0, s “ N ´ 1) to N ´ 1
(corresponding to t “ N ´ 1, s “ 0).

For any given τ in the range ´N`1 to N´1 we have multiple instances of fpτq appearing
in the left-hand summation. We can therefore write this as,

N´1
ÿ

t“0

N´1
ÿ

s“0

fpt´ sq “
N´1
ÿ

τ“´N`1

αpτqfpτq,

where αpτq is the number of instances where τ “ t ´ s for all t “ 1, . . . , N and all
s “ 1, . . . , N . It is easy to count up these instances to get,

αpτq “ N ´ |τ |.
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Now to show the periodogram convergence result (based on Stoica & Moses [1, p. 7]):
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ÿ
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ÿ
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Etvptqv˚psque´jωpt´sq
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ÿ
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ÿ
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φvpe
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1
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N´1
ÿ

τ“´N`1

|τ |Rvpτqe
´jωτ

loooooooooooooooooomoooooooooooooooooon

ÝÑ 0 via Lemma 4.1

Note that this is only asymptotically unbiased. Simply averaging repeated periodograms
will not converge to the spectrum. The error results from the Fourier Transform calcula-
tion truncation for finite N .

The N ´ |τ | term gives an indication of how this might be corrected in an estimate of
Rvpτq.

Ljung [2, Section 2.3] introduces “quasi-stationarity” as a means of treating combinations
of stochastic and deterministic signals. This essentially says that stationarity holds only
in the limit as N ÝÑ 8. Under this assumption the above result holds only weakly; i.e.

lim
NÝÑ8
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ψpejωq dω “

ż π

´π

φpejωqψpejωq dω,

for any smooth function, ψpejωq. The above has been modified slightly to account for the
1{
?
N definition that Ljung uses for his DFT.

Obviously ψpejωq can be chosen to focus on a very narrow range of frequencies. This
is a similar result to the convergence of the Fourier Transform—the Gibbs phenomenon
illustrates that the Fourier Transform does not converge point-wise.

4.2 Finite-length data estimates of the power spectral density

In practice we can only estimate Rxpτq from one or more data records, xpkq, k “ 0, . . . , N´
1. We will denote estimates of the autocorrelation by R̂xpτq. There are two common
choices for the calculation of such estimates,
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1. R̂xpτq “
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xpkqxpk ´ τq, for τ ě 0,
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ÿ
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xpkqxpk ´ τq, for τ ă 0,
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N ´ |τ |

N´1
ÿ

k“τ

vpkqvpk ´ τq, for τ ě 0,

1

N ´ |τ |

N`τ´1
ÿ

k“0

vpkqvpk ´ τq, for τ ă 0,

Note that using either of the above gives us estimates of Rxpτq for 2N ´ 1 values of τ ,

R̂xpτq, with τ “ ´N ` 1, . . . , 0, . . . , N ´ 1.

The Fourier transform of R̂xpτq is now our estimate of the power spectral density, φxpe
jωq.

φ̂xpe
jω
q “

8
ÿ

τ“´8

R̂xpτqe
jωτ .

This immediately gives a problem as we only have autocorrelation estimates, R̂xpτq, for
τ P t´N ` 1, . . . , N ´ 1u. The obvious approximation is to use only those values in the
calculation, giving,

φ̂xpe
jω
q “

N´1
ÿ

τ“´N`1

R̂xpτqe
jωτ .

Keep in mind that there is an implicit assumption (which probably will not be satisfied
exactly) that Rxpτq “ 0 for |τ | ě N . This is an additional source of potential error in the
finite data calculation.

We can compare this to the Fourier transform1 of the sequence, xpkq, k “ 0, . . . , N ´ 1,
which is given by,

Xpωnq “
N´1
ÿ

k“0

xpkqe´jωnk, for ωn “
2πn

N
, n “ 0, . . . , N ´ 1.

In the case where we choose the first estimator estimator R̂xpτq, (i.e. with 1{N scaling),
it is possible to show that,

φ̂xpωnq “
1

N
|Xpωnq|

2.

1The definition of the discrete Fourier Transform given here is standard but differs in scaling and
indexing from that used by Lennart Ljung [2]. Ljung’s definition of the periodogram therefore differs
slightly.
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This estimate of the power spectral density is also known as the periodogram.

We are interested in the “quality” of each of the R̂xpτq estimates given above, and how
the quality of the resulting estimates of the power spectral density, φ̂xpe

jωq. First consider
the case for a fixed value of τ and for an independent, identically distributed, stochastic
signal. By definition, for stochastic signals,

Rxpτq “ Etxpkqxpk ` τqu.

In a finite data record of length N , we can find N ´ |τ | product pairs xpkqxpk ` τq upon
which to base our estimate of Etxpkqxpk ` τqu. One estimate of Etxpkqxpk ` τqu is
simply the mean of the N ´ |τ | samples that can be calculated from our data. Note that
each of these product pairs are independent (as the underlying samples xpkq are assumed
independent of one another) and so the sample estimate is unbiased. In other words, if

R̂xpτq “
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N ´ |τ |

N´1
ÿ

k“τ

vpkqvpk ´ τq, for τ ě 0,

1

N ´ |τ |

N`τ´1
ÿ

k“0

vpkqvpk ´ τq, for τ ă 0,

then,

E
!

R̂xpτq
)

“ Rxpτq.

The 1{pN ´ |τ |q scaling therefore gives an unbiased estimate of the autocorrelation func-
tion. In this case, this is the same as the autocovariance function.

Now look at the corresponding estimate of the power spectral density at the discrete
frequency points.

E
!

φ̂xpωnq
)

“ E

#

N´1
ÿ

τ“´N`1

R̂xpτqe
jωnτ

+

“

N´1
ÿ

τ“´N`1

E
!

R̂xpτq
)

ejωnτ

“

N´1
ÿ

τ“´N`1

Rxpτqe
jωnτ

‰

8
ÿ

τ“´8

Rxpτqe
jωnτ “ φxpωnq.

So the power spectral density estimate is biased in this case, but as a result of the finite
summation. If, for |τ | ą N , the autocorrelation function has decayed to essentially zero
then there will be very little bias as a result of the finite summation.
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Does the first autocorrelation estimate (with 1{N scaling) give a better result? Because
the only difference is a scaling we can see that if,

R̂xpτq “
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N´1
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k“τ

xpkqxpk ´ τq, for τ ě 0,

1
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N`τ´1
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k“0

xpkqxpk ´ τq, for τ ă 0,

then,

E
!

R̂xpτq
)

“
N ´ |τ |

N
Rxpτq.

This is clearly a biased estimate of the autocorrelation for stochastic signals. The resulting
power spectral density estimate is therefore also biased,

E
!

φ̂xpωnq
)

“ E

#

N´1
ÿ

τ“´N`1

R̂xpτqe
jωnτ

+

“

N´1
ÿ

τ“´N`1

N ´ |τ |

N
Rxpτqe

jωnτ ‰ φxpωnq.

As N becomes large, and τ{N becomes small, the distinction in bias error between the
two methods lessens. Note that,

lim
NÝÑ8
τ{NÝÑ0

E
!

R̂xpτq
)

“ Rxpτq,

for both autocorrelation estimation methods. The finite summation bias in the power
spectral density estimate also decays for both methods,

lim
NÝÑ8
τ{NÝÑ0

E
!

φ̂xpe
jω
q

)

“ φxpe
jω
q.

Both estimation methods therefore give asymptotically unbiased estimates of the power
spectral density.

The situation is reversed for a periodic signal. In the periodic case the autocorrelation of
a signal xpkq is defined as

Rxpτq “
1

N

N´1
ÿ

k“0

xpkqxpk ´ τq, τ “ ´N{2` 1, . . . , N{2.

The autocorrelation, Rxpτq, is also periodic of period N . If we apply the first of the
autocorrelation estimation methods,
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for τ “ 0, . . . , N ´ 1, (or indeed for any choice of N consecutive τ values), then we will
have exactly calculated one period of the true autocorrelation function, Rxpτq. So this
estimate is exact in the case where there is no noise and no transient.

Furthermore, estimating the power spectral density, φ̂xpωnq, by taking the Fourier trans-
form of the 1{N scaled estimate, is also exact. This is because the autocorrelation func-
tion is periodic and there is no approximation involved in using the DFT to calculate the
Fourier transform on a single period. This means that

φ̂xpωnq “ φxpωnq.

Therefore in the case where xpkq is a periodic signal, the 1{N scaling gives the best result.

This leads to a difficulty in deciding which method to use for estimating the autocorrela-
tion of an arbitrary signal, xpkq. In system identification the measured output is almost
always composed of the sum of a stochastic signal (from the noise) and a deterministic, or
even periodic, signal from the convolution of the plant with a deterministic input signal,
upkq. This means that there is no obvious correct choice in deciding which autocorrelation
estimation method to apply. The better method will inevitably be problem dependent.

So how important is the distinction between autocorrelation estimation methods for a
practical (finite data length) problem?

One thing to observe is that if we scale the autocorrelation estimate by 1{N we make the
estimate of the tail of Rxpτq (i.e. for τ close to N) smaller than it would otherwise be in
the case of a 1{pN ´ |τ |q scaling. This reduces the truncation error which comes from
calculating the spectral estimate over a finite range of autocorrelation lags. In contrast,
scaling by 1{pN ´ τq, can result in large values of Rxpτq when τ is close to N . This can
result in what appear to be “oscillations” on the spectral estimate.

One way of viewing this is to consider the 1{N scaling as time-domain multiplication by
the function

fpτq :“
N ´ τ

N
, for 0 ď τ ď N,

which decays linearly from 1 (at τ “ 0) to zero (at τ “ N). In the frequency domain the
effect of the scaling by fpτq corresponds to convolving φxpe

jωq with the Fourier transform
of fpτq. By noting that fpτq looks something like the impulse response of a low-pass
filter, we see that this choice of scaling effectively smooths the frequency domain estimate
of φxpe

jωq. This will often make the 1{N based estimate, φ̂xpe
jωq, appear more realistic.

However, for finite N , it is still biased. And if the true spectral density is discontinuous—
as might be the case if electric noise from the power grid is a significant component of the
noise—then the low pass filtering of the spectral density will give a poor estimate of the
true spectral density.
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