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Non-minimum phase behaviour (stable systems)

Right-half plane zeros
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Non-minimum phase behaviour

Can also be interpreted as a negative derivative response:
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Non-minimum phase systems

Some common examples

I Longitudinal aircraft dynamics

I Human digestion (energy from food)

I Investment effects on profitability

I Bicycle steering dynamics
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Non-minimum phase systems in feedback

Non-minimum phase response in closed-loop
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Non-minimum phase systems: r.h.p. zeros

Magnitude
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Non-minimum phase systems: delays

Magnitude
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Non-minimum phase systems in feedback

Delays in feedback
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Performance limitations from delays

If G(s) contains a delay, e−θs, then T (s) also contains e−θs.

Under these circumstances the ideal T (s) ≈ e−θs,
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Which implies that we must have ωc < 1/θ.
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Controllability (summary)

Actuation constraints: from disturbances
|G(jω)| > |Gd(jω)| for frequencies where |Gd(jω)| > 1.

Actuation constraints: from reference
|G(jω)| > R up to frequency: ωr.

Disturbance rejection

ωc > ωd
or more specifically |S(jω)| ≤ |1/Gd(jω)| for all ω.

Reference tracking

|S(jω)| ≤ 1/R up to frequency: ωr.
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Controllability (summary)

Right-half plane zeros

For a single, real, RHP-zero: ωB < z/2.

Time delays

Approximately require: ωc < 1/θ.

Phase lag

Most practical controllers (PID/lead-lag): ωc < ω180

G(jω180) = −180 deg.

Unstable real pole

Require ωc > 2p.
Also require |G(jω)| > |Gd(jω)| up to ω = p.
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Controllability (summary)
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Example: controllability analysis

G(s)+

Gd(s)

+

K(s) +

d

y u r

n
ym

−

G(s) = k
e−θs

1 + τs
Gd(s) = kd

e−θds

1 + τds
, |kd| > 1.

What are the requirements on k, kd, τ , τd, θ and θd in order to obtain good
performance. And how good is it?
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Example: controllability analysis

Objective:

|e| ≤ 1 for all |u| < 1, |d| < 1.

Disturbance rejection (satisfying actuation bound)

|G(jω)| > |Gd(jω)| for all ω < ωd.
=⇒ k > kd and k/τ > kd/τd.

Disturbance rejection

ωc > ωd ≈ kd/τd.

Delay constraints

ωc < 1/θ (assuming θ is the total delay in the loop).
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Example: controllability analysis

Delay and disturbance rejection requirements.

θ < τd/kd.

Plant requirements:

k > kd and k/τ > kd/τd
θ < τd/kd.

Required/achievable bandwidth

kd/τd < ωc < 1/θ.
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Bicycle dynamics
F E A T U R E

This article analyzes the dynamics of bicy-
cles from the perspective of control.
Models of different complexity are pre-
sented, starting with simple ones and
ending with more realistic models gener-
ated from multibody software. We con-

sider models that capture essential behavior such as
self-stabilization as well as models that demon-
strate difficulties with rear wheel steering. We
relate our experiences using bicycles in control
education along with suggestions for fun and
thought-provoking experiments with proven

student attraction. Finally, we describe bicycles
and clinical programs designed for children with

disabilities.

The Bicycle
Bicycles are used everywhere—for transportation, exer-
cise, and recreation. The bicycle’s evolution over time
has been a product of necessity, ingenuity, materials, and
industrialization. While efficient and highly maneuverable,
the bicycle represents a tantalizing enigma. Learning to
ride a bicycle is an acquired skill, often obtained with some
difficulty; once mastered, the skill becomes subconscious
and second nature, literally just “as easy as riding a bike.”

Bicycles display interesting dynamic behavior. For
example, bicycles are statically unstable like the invert-
ed pendulum, but can, under certain conditions, be sta-

ble in forward motion. Bicycles also exhibit nonminimum
phase steering behavior. 

Bicycles have intrigued scientists ever since they appeared in
the middle of the 19th century. A thorough presentation of the
history of the bicycle is given in the recent book [1]. The papers
[2]–[6] and the classic book by Sharp from 1896, which has
recently been reprinted [7], are good sources for early work.
Notable contributions include Whipple [4] and Carvallo
[5], [6], who derived equations of motion, linearized around the
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Bike parameter definitions

the forces acting between ground and wheel. Since we do
not consider extreme conditions and tight turns, we
assume that the bicycle tire rolls without longitudinal or
lateral slippage. Control of acceleration and braking is not
considered explicitly, but we often assume that the forward
velocity is constant. To summarize, we simply assume that
the bicycle moves on a horizontal plane and that the
wheels always maintain contact with the ground.

Geometry
The parameters that describe the geometry of a bicycle
are defined in Figure 1. The key parameters are wheelbase b,
head angle λ, and trail c. The front fork is angled and
shaped so that the contact point of the front wheel with
the road is behind the extension of the steer axis. Trail is
defined as the horizontal distance c between the contact
point and the steer axis when the bicycle is upright with
zero steer angle. The riding properties of the bicycle are
strongly affected by the trail. In particular, a large trail
improves stability but makes steering less agile. Typical
values for c range 0.03–0.08 m.

Geometrically, it is convenient to view the bicycle as
composed of two hinged planes, the frame plane and the
front fork plane. The frame and the rear wheel lie in the
frame plane, while the front wheel lies in the front fork
plane. The planes are joined at the steer axis. The points
P1 and P2 are the contact points of the wheels with the
horizontal plane, and the point P3 is the intersection of the
steer axis with the horizontal plane (Figure 1).

Coordinates
The coordinates used to analyze the system, which fol-
low the ISO 8855 standard, are defined in Figure 2. There
is an inertial system with axes ξηζ and origin O. The
coordinate system xyz has its origin at the contact point
P1 of the rear wheel and the horizontal plane. The x axis
is aligned with the line of contact of the rear plane with
the horizontal plane. The x axis also goes through the
point P3 , which is the intersection between the steer
axis and the horizontal plane. The orientation of the
rear wheel plane is defined by the angle ψ , which is the
angle between the ξ -axis and the x-axis. The z axis is
vertical, and y is perpendicular to x and positive on the
left side of the bicycle so that a right-hand system is
obtained. The roll angle ϕ of the rear frame is positive
when leaning to the right. The roll angle of the front fork
plane is ϕf . The steer angle δ is the angle of intersection
between the rear and front planes, positive when steer-
ing left. The effective steer angle δf is the angle between
the lines of intersection of the rear and front planes with
the horizontal plane.

Simple Second-Order Models
Second-order models will now be derived based on addi-
tional simplifying assumptions. It is assumed that the
bicycle rolls on the horizontal plane, that the rider has
fixed position and orientation relative to the frame, and
that the forward velocity at the rear wheel V is constant.
For simplicity, we assume that the steer axis is vertical,
which implies that the head angle λ is 90◦ and that the
trail c is zero. We also assume that the steer angle δ is the
control variable. The rotational degree of freedom associ-
ated with the front fork then disappears, and the system is
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Figure 1. Parameters defining the bicycle geometry. The
points P1 and P2 are the contact points of the wheels with the
ground, the point P3 is the intersection of the steer axis with the
horizontal plane, a is the distance from a vertical line through
the center of mass to P1, b is the wheel base, c is the trail, h is
the height of the center of mass, and λ is the head angle.
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Figure 2. Coordinate systems. The orthogonal system ξηζ is
fixed to inertial space, and the ζ -axis is vertical. The orthogo-
nal system xyz has its origin at the contact point of the rear
wheel with the ξη plane. The x axis passes through the points
P1 and P3, while the z axis is vertical and passes through P1.
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Reference frame definitions

the forces acting between ground and wheel. Since we do
not consider extreme conditions and tight turns, we
assume that the bicycle tire rolls without longitudinal or
lateral slippage. Control of acceleration and braking is not
considered explicitly, but we often assume that the forward
velocity is constant. To summarize, we simply assume that
the bicycle moves on a horizontal plane and that the
wheels always maintain contact with the ground.

Geometry
The parameters that describe the geometry of a bicycle
are defined in Figure 1. The key parameters are wheelbase b,
head angle λ, and trail c. The front fork is angled and
shaped so that the contact point of the front wheel with
the road is behind the extension of the steer axis. Trail is
defined as the horizontal distance c between the contact
point and the steer axis when the bicycle is upright with
zero steer angle. The riding properties of the bicycle are
strongly affected by the trail. In particular, a large trail
improves stability but makes steering less agile. Typical
values for c range 0.03–0.08 m.
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plane. The planes are joined at the steer axis. The points
P1 and P2 are the contact points of the wheels with the
horizontal plane, and the point P3 is the intersection of the
steer axis with the horizontal plane (Figure 1).

Coordinates
The coordinates used to analyze the system, which fol-
low the ISO 8855 standard, are defined in Figure 2. There
is an inertial system with axes ξηζ and origin O. The
coordinate system xyz has its origin at the contact point
P1 of the rear wheel and the horizontal plane. The x axis
is aligned with the line of contact of the rear plane with
the horizontal plane. The x axis also goes through the
point P3 , which is the intersection between the steer
axis and the horizontal plane. The orientation of the
rear wheel plane is defined by the angle ψ , which is the
angle between the ξ -axis and the x-axis. The z axis is
vertical, and y is perpendicular to x and positive on the
left side of the bicycle so that a right-hand system is
obtained. The roll angle ϕ of the rear frame is positive
when leaning to the right. The roll angle of the front fork
plane is ϕf . The steer angle δ is the angle of intersection
between the rear and front planes, positive when steer-
ing left. The effective steer angle δf is the angle between
the lines of intersection of the rear and front planes with
the horizontal plane.

Simple Second-Order Models
Second-order models will now be derived based on addi-
tional simplifying assumptions. It is assumed that the
bicycle rolls on the horizontal plane, that the rider has
fixed position and orientation relative to the frame, and
that the forward velocity at the rear wheel V is constant.
For simplicity, we assume that the steer axis is vertical,
which implies that the head angle λ is 90◦ and that the
trail c is zero. We also assume that the steer angle δ is the
control variable. The rotational degree of freedom associ-
ated with the front fork then disappears, and the system is
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Näıve analysis

August 2005 29IEEE Control Systems Magazine

left with the roll angle ϕ as the only degree of freedom. All
angles are assumed to be small so that the equations can
be linearized.

Top and rear views of the bicycle are shown in Figure 3.
The coordinate system xyz rotates around the vertical axis
with the angular velocity ω = Vδ/b, where b is the wheel
base. An observer fixed to the coordinate system xyz expe-
riences forces due to the acceleration of the coordinate
system relative to inertial space.

Let m be the total mass of the system. Consider the
rigid body obtained when the wheels, the rider, and the
front fork assembly are fixed to the rear frame with δ = 0,
let J denote the moment of inertia of this body with
respect to the x-axis, and let D = − Jxz denote the inertia
product with respect to the xz axes. Furthermore, let the x
and z coordinates of the center of mass be a and h, respec-
tively. The angular momentum of the system with respect
to the x axis is [62]

Lx = J
dϕ

dt
− Dω = J

dϕ

dt
− VD

b
δ.

The torques acting on the system are due to gravity and
centrifugal forces, and the angular momentum balance
becomes

J
d2ϕ

dt2
− mghϕ = DV

b
dδ

dt
+ mV2h

b
δ. (1)

The term mghϕ is the torque generated by gravity. The
terms on the right-hand side of (1) are the torques gen-
erated by steering, with the first term due to inertial
forces and the second term due to centrifugal forces.
The model is called the inverted pendulum model
because of the similarity with the linearized equation for
the inverted pendulum.

Approximating the moment of inertia as J ≈ mh2 and
the inertia product as D ≈ mah, the model becomes

d2ϕ

dt2
− g

h
ϕ = aV

bh
dδ

dt
+ V2

bh
δ.

The model (1), used in [37] and [21], is a linear dynamical
system of second order with two real poles

p1,2 = ±
√

mgh
J

≈ ±
√

g
h

(2)

and one zero

z = −mVh
D

≈ −V
a

. (3)

It follows from (1) that the transfer function from steer
angle δ to tilt angle ϕ is

Gϕδ(s) = V(Ds + mVh)

b( Js2 − mgh)

= VD
bJ

s + mVh
D

s2 − mgh
J

≈ aV
bh

s + V
a

s2 − g
h

. (4)

Notice that both the gain and the zero of this transfer func-
tion depend on the velocity V. 

The model (4) is unstable and thus cannot explain why
it is possible to ride with no hands. The system (4), howev-
er, can be stabilized by active control using the propor-
tional feedback law

δ = −k2 ϕ, (5)

which yields the closed-loop system

J
d2ϕ

dt2
+ DVk2

b
dδ

dt
+

(
mV2hk2

b
− mgh

)
ϕ = 0. (6)

This closed-loop system is asymptotically stable if and only
if k2 > bg/V2, which is the case when V is sufficiently large.

Figure 3. Schematic (a) top and (b) rear views of a naive
(λ = 0) bicycle. The steer angle is δ, and the roll angle is ϕ.
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Näıve analysis: simple second order models

Steering angle, δ, to tilt angle, φ, transfer function

Lx = J
dφ

dt
−Dω = J

dφ

dt
− V D

b
δ Angular momentum about x

J
d2φ

dt2
−mghφ =

DV

b

dδ

dt
+
mV 2h

b
δ Torque balance

J ≈ mh2 and D ≈ mah Inertia approximations

d2φ

dt2
− g

h
φ =

aV

bh

dδ

dt
+
V 2

bh
δ Simplified model
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Näıve analysis: simple second order models

Steering angle, δ, to tilt angle, φ, transfer function

Transfer function:

Gφδ(s) =
φ(s)

δ(s)
=
V (Ds+mV h)

b(Js2 −mgh) ≈
aV

bh

(s+ V/a)

(s2 − g/h)

poles: p1,2 = ±
√
mgh

J
≈ ±

√
g

h

zero: z1 = −mV h
D
≈ −V

a
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Näıve analysis: simple second order models

Steering angle, δ, to tilt angle, φ, transfer function
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Bike parameter definitions

the forces acting between ground and wheel. Since we do
not consider extreme conditions and tight turns, we
assume that the bicycle tire rolls without longitudinal or
lateral slippage. Control of acceleration and braking is not
considered explicitly, but we often assume that the forward
velocity is constant. To summarize, we simply assume that
the bicycle moves on a horizontal plane and that the
wheels always maintain contact with the ground.

Geometry
The parameters that describe the geometry of a bicycle
are defined in Figure 1. The key parameters are wheelbase b,
head angle λ, and trail c. The front fork is angled and
shaped so that the contact point of the front wheel with
the road is behind the extension of the steer axis. Trail is
defined as the horizontal distance c between the contact
point and the steer axis when the bicycle is upright with
zero steer angle. The riding properties of the bicycle are
strongly affected by the trail. In particular, a large trail
improves stability but makes steering less agile. Typical
values for c range 0.03–0.08 m.

Geometrically, it is convenient to view the bicycle as
composed of two hinged planes, the frame plane and the
front fork plane. The frame and the rear wheel lie in the
frame plane, while the front wheel lies in the front fork
plane. The planes are joined at the steer axis. The points
P1 and P2 are the contact points of the wheels with the
horizontal plane, and the point P3 is the intersection of the
steer axis with the horizontal plane (Figure 1).

Coordinates
The coordinates used to analyze the system, which fol-
low the ISO 8855 standard, are defined in Figure 2. There
is an inertial system with axes ξηζ and origin O. The
coordinate system xyz has its origin at the contact point
P1 of the rear wheel and the horizontal plane. The x axis
is aligned with the line of contact of the rear plane with
the horizontal plane. The x axis also goes through the
point P3 , which is the intersection between the steer
axis and the horizontal plane. The orientation of the
rear wheel plane is defined by the angle ψ , which is the
angle between the ξ -axis and the x-axis. The z axis is
vertical, and y is perpendicular to x and positive on the
left side of the bicycle so that a right-hand system is
obtained. The roll angle ϕ of the rear frame is positive
when leaning to the right. The roll angle of the front fork
plane is ϕf . The steer angle δ is the angle of intersection
between the rear and front planes, positive when steer-
ing left. The effective steer angle δf is the angle between
the lines of intersection of the rear and front planes with
the horizontal plane.

Simple Second-Order Models
Second-order models will now be derived based on addi-
tional simplifying assumptions. It is assumed that the
bicycle rolls on the horizontal plane, that the rider has
fixed position and orientation relative to the frame, and
that the forward velocity at the rear wheel V is constant.
For simplicity, we assume that the steer axis is vertical,
which implies that the head angle λ is 90◦ and that the
trail c is zero. We also assume that the steer angle δ is the
control variable. The rotational degree of freedom associ-
ated with the front fork then disappears, and the system is
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Figure 1. Parameters defining the bicycle geometry. The
points P1 and P2 are the contact points of the wheels with the
ground, the point P3 is the intersection of the steer axis with the
horizontal plane, a is the distance from a vertical line through
the center of mass to P1, b is the wheel base, c is the trail, h is
the height of the center of mass, and λ is the head angle.
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Figure 2. Coordinate systems. The orthogonal system ξηζ is
fixed to inertial space, and the ζ -axis is vertical. The orthogo-
nal system xyz has its origin at the contact point of the rear
wheel with the ξη plane. The x axis passes through the points
P1 and P3, while the z axis is vertical and passes through P1.
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Front fork model

Handlebar torque, T , to tilt angle, φ, transfer function

Model the actuation as a torque to the handlebars, T .

J
d2φ

dt2
+

DV g

V 2 sinλ − bg cosλ

dφ

dt
+

mg2(bh cosλ − ac sinλ)

V 2 sinλ − bg cosλ
φ

=
DV b

acm(V 2 sinλ − bg cosλ)

dT

dt
+

b(V 2h − acg)

ac(V 2 sinλ − bg cosλ)
T

The system is stable if V > Vc =
√
bg cotλ and bh > ac tanλ

Gyroscopic effects could be included (giving additional damping).
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Front fork model

Torque to steering angle transfer function

With a stabilizable bicycle going at sufficiently high speed, V ,

δ

T
= GδT (s) =

k1(V )

1 + k2(V )Gφδ(s)
,

where, as before, Gφδ(s) =
V (Ds+mV h)

b(Js2 −mgh) ≈
aV

bh

(s+ V/a)

(s2 − g/h)

So, GδT (s) =
k1(V )

(
s2 − mgh

J

)

s2 +
k2(V )DV

bJ
s +

k2(V )V 2mh
bJ

− mgh
J
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Front fork model

Torque to path deviation transfer function

If η is the deviation in path,

GηT (s) =
k1(V )V 2

b

(
s2 − mgh

J

)

s2
(
s2 +

k2(V )DV
bJ

s +
mgh
J

(
V 2

V 2
c

− 1

))
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Non-minimum phase behaviour

Counter-steering

“I have asked dozens of bicycle riders how they turn to the
left. I have never found a single person who stated all the
facts correctly when first asked. They almost invariably
said that to turn to the left, they turned the handlebar to
the left and as a result made a turn to the left. But on
further questioning them, some would agree that they first
turned the handlebar a little to the right, and then as the
machine inclined to the left they turned the handlebar to
the left, and as a result made the circle inclining inwardly.”
Wilbur Wright.
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Non-minimum phase behaviour

Counter-steering
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Non-minimum phase behaviour

Aircraft control

“Men know how to construct airplanes. Men also know
how to build engines. Inability to balance and steer still
confronts students of the flying problem. When this one
feature has been worked out, the age of flying will have
arrived, for all other difficulties are of minor importance.”
Wilbur Wright, 1901.
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Rear-wheel steered bicycles

Klein’s Ridable Bike

c! K. J. Åström, Delft, June, 2004 32
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Rear-wheel steered bicycles

Stabilization: simple model

The sign of V is reversed in all of the equations.

Gφδ(s) =
−V Ds+mV 2h

b(Js2 −mgh) =
V D

bJ

(
−s + mV h

D

)

(
s2 − mgh

J

)

≈ aV

bh

(−s + V/a)

(s2 − g/h)

This now has a RHP pole and a RHP zero.

The zero/pole ratio is:
z

p
=

mV h

D

√
J

mgh
≈ V

a

√
h

g
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Rear-wheel steered bicycles

Stabilization: simple model

The sign of V is reversed in all of the equations.

Gφδ(s) =
−V Ds+mV 2h

b(Js2 −mgh) =
V D

bJ

(
−s + mV h

D

)

(
s2 − mgh

J

)

≈ aV

bh

(−s + V/a)

(s2 − g/h)

This now has a RHP pole and a RHP zero.

The zero/pole ratio is:
z

p
=

mV h

D

√
J

mgh
≈ V

a

√
h

g
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Rear-wheel steered motorbikes

NHSA Rear-steered Motorcycle

I 1970’s research program sponsored by the US National Highway Safety
Administration.

I Rear steering benefits: Low center of mass.
Long wheel base.
Braking/steering on different wheels

I Design, analysis and building by South Coast Technologies, Santa
Barbara, CA.

I Theoretical study: real(p) in range 4 – 12 rad/sec. for V of 3 – 50 m/sec.

I Impossible for a human to stabilize.
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Rear-wheel steered motorbikes

NHSA Rear-steered MotorcycleThe NHSA Rear Steered Motorcycle

c! K. J. Åström, Delft, June, 2004 37
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Rear-wheel steered motorbikes

NHSA Rear-steered Motorcycle

“The outriggers were essential; in fact, the only way to
keep the machine upright for any measurable period of time
was to start out down on one outrigger, apply a steer input
to generate enough yaw velocity to pick up the outrigger,
and then attempt to catch it as the machine approached
vertical. Analysis of film data indicated that the longest
stretch on two wheels was about 2.5 seconds.”
Robert Schwartz, South Coast Technology, 1977.
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Rear-wheel steered motorbikes

Meeks’ bike: “Quantum Leap”

www.autoevolution.com

www.robbreport.com

Meeks’ reason for not riding it

“The bike’s so expensive, it’s a concept that’s going to be shown and to ride it
and to take a chance of chipping or scratching it, it’s not worth it. All we
wanted to do was make sure it worked, which we did.”
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Rear-wheel steered motorbikes
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Rear-wheel steered bicycles

UCSB bike

The Front Fork
The front fork is essential for the behavior of the bicycle,
particularly the self-stabilization property. A simple experi-
ment is to hold the bicycle gently in the saddle and lean
the bicycle. For a bicycle with a positive trail, the front fork
will then flip towards the lean. Repeating the experiment
while walking at different speeds shows that the front fork

aligns with the frame when the speed is sufficiently large.
Another experiment is to ride a bicycle in a straight path
on a flat surface, lean gently to one side, and apply the
steer torque to maintain a straight-line path. The torque
required can be sensed by holding the handlebars with a
light fingered grip. Torque and lean can also be measured
with simple devices as discussed below. The functions

August 2005 41IEEE Control Systems Magazine

Figure 20. The UCSB rear-steered bicycle. This bicycle is rid-
able as demonstrated by Dave Bothman, who supervised the
construction of the bicycle. Riding this bicycle requires skill
and dare because the rider has to reach high speed quickly.

Figure 19. Klein’s ridable rear-steered bicycle. This bicycle
is ridable because the rider has a high center of gravity and
because the vertical projection of the center of mass of the
rider is close to the contact point of the driving wheel with
the ground.
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Engineering systems are traditionally designed based
on static reasoning, which does not account for sta-
bility and controllability. An advantage of studying

control is that the fundamental limitations on design
options caused by dynamics can be detected at an early
stage. Here is a scenario that has been used successfully in
many introductory courses.

Start a lecture by discussing the design of a recumbent
bicycle. Lead the discussion into a configuration that has a
front-wheel drive and rear-wheel steering. Have students
elaborate the design, then take a break and say, “I have a
device with this configuration. Let’s go outside and try it.”
Bring the students to the yard for experiments with the rear-
steered bicycle, and observe their reactions. The riding
challenge invariably brings forth willing and overly coura-
geous test riders who are destined to fail in spite of repeat-
ed attempts. After a sufficient number of failed attempts,
bring the students back into the classroom for a discussion.
Emphasize that the design was beautiful from a static point
of view but useless because of dynamics. Start a discussion

about what knowledge is required to avoid this trap,
emphasizing the role of dynamics and control. You can
spice up the presentation with the true story about the
NHSA rear-steered motorcycle. You can also briefly men-
tion that poles and zeros in the right-half plane are crucial
concepts for understanding dynamics limitations. Return to
a discussion of the rear-steered bicycle later in the course
when more material has been presented. Tell students how
important it is to recognize systems that are difficult to con-
trol because of inherently bad dynamics. Make sure that
everyone knows that the presence of poles and zeros in the
right-half plane indicates that there are severe difficulties in
controlling a system and also that the poles and zeros are
influenced by sensors and actuators.

This approach, which has been used by one of the authors
in introductory classes on control, shows that a basic knowl-
edge of control is essential for all engineers. The approach also
illustrates the advantage of formulating a simple dynamic
model at an early stage in a design project to uncover potential
problems caused by unsuitable system dynamics.

Control Is Important for Design
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The UCSB Rideable Bike

c! K. J. Åström, Delft, June, 2004 33
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Rear-wheel steered bicycles

An unridable bike

Klein’s Unridable Bike

c! K. J. Åström, Delft, June, 2004 31
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Rear-wheel steered bicycles

This one had another problem!
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Notes and references

Skogestad & Postlethwaite (2nd Ed.)

Control limitations: sections 5.6 – 5.11

Practical controllability examples: sections 5.13 – 5.15.

More on bicycles

TU Delft: http://bicycle.tudelft.nl/schwab/Bicycle/index.htm

Veritasium “Most people don’t know how bicycles actually work,”
https://www.youtube.com/watch?v=9cNmUNHSBac

Article: Karl J. Åström, Richard E. Klein & Anders Lennartsson,
“Bicycle dynamics and control,” IEEE Control Systems
Magazine, vol. 25, no. 4, pp. 26–47, 2005.
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