Core-Selecting Mechanisms in Electricity Markets

Orcun Karaca
joint work with M. Kamgarpour

Institut für Automatik, ETH Zürich

Isaac Newton Institute, Flexible operation and advanced control for energy systems
January 10th, 2019, Cambridge, UK
Electricity markets for stability

- Transformation to deregulated competitive markets
- *Stability*: Supply and demand balance at every instance
Electricity markets for stability

- Transformation to deregulated competitive markets
- *Stability*: Supply and demand balance at every instance
Electricity markets for stability

- Transformation to deregulated competitive markets
- *Stability*: Supply and demand balance at every instance
- Role of electricity markets in ensuring this stability

Intermittent & Uncertain
Control reserves market

- Different supplies depending on **speed and direction (sign)**
- Involves a probabilistic dimensioning criteria
Control reserves market

- Different supplies depending on **speed and direction (sign)**
- Involves a probabilistic dimensioning criteria
Wholesale electricity markets

- Different supplies depending on **bus/node**
- Considers the physics behind the transmission network
Market design criteria

Efficiency: Immunity to strategic manipulations
Market design criteria

Efficiency: Immunity to strategic manipulations

How can we **eliminate strategic manipulations** to achieve a stable and an efficient grid?
Outline

Electricity market framework

Characterizing coalition-proofness using the core

Competitive equilibrium using core-selecting mechanisms

Design considerations for core-selecting mechanisms

Numerical results
Outline

Electricity market framework

Characterizing coalition-proofness using the core

Competitive equilibrium using core-selecting mechanisms

Design considerations for core-selecting mechanisms

Numerical results
Electricity market framework

- Wholesale electricity markets, control reserve markets, and many others; generalization of reverse auctions

Bid profile $\mathcal{B} = \{b_l\}_{l \in L}$

Central Operator (CO)

Bid b_1

Bid $b_{|L|}$

Bidder 1

True cost c_1

Bidder $|L|$

True cost $c_{|L|}$
Electricity market framework

- Wholesale electricity markets, control reserve markets, and many others; generalization of reverse auctions

Bid profile \(B = \{ b_l \}_{l \in L} \)

Central Operator (CO)

Bidder 1

\(c_1 \)

Bid profile

Payment rule \(p_1 \)

Allocation rule \(x_1^* \)

Bid \(b_1 \)

...

Bidder \(|L| \)

True cost \(c_{|L|} \)

Payment rule \(p_{|L|} \)

Allocation rule \(x_{|L|}^* \)

Bid \(b_{|L|} \)
Electricity market framework

- Wholesale electricity markets, control reserve markets, and many others; generalization of reverse auctions

Bid profile $\mathcal{B} = \{b_l\}_{l \in L}$

Central Operator (CO)

Utility of bidders = Payment − True cost

Utility of CO = − Total payment
Allocation rule as an optimization problem

- Private true cost of bidder l

$$c_l : \mathbb{X}_l \rightarrow \mathbb{R}_+ \text{ s.t. } 0 \in \mathbb{X}_l \subset \mathbb{R}_+ \text{ and } c_l(0) = 0$$

- Reported cost of bidder l

$$b_l : \hat{\mathbb{X}}_l \rightarrow \mathbb{R}_+ \text{ s.t. } 0 \in \hat{\mathbb{X}}_l \subset \mathbb{R}_+ \text{ and } b_l(0) = 0$$
Allocation rule as an optimization problem

- Private true cost of bidder l
 \[c_l : \mathbb{X}_l \rightarrow \mathbb{R}_+ \quad \text{s.t.} \quad 0 \in \mathbb{X}_l \subset \mathbb{R}_+^t \quad \text{and} \quad c_l(0) = 0 \]

- Reported cost of bidder l
 \[b_l : \hat{\mathbb{X}}_l \rightarrow \mathbb{R}_+ \quad \text{s.t.} \quad 0 \in \hat{\mathbb{X}}_l \subset \mathbb{R}_+^t \quad \text{and} \quad b_l(0) = 0 \]

- The central operator solves for the economic dispatch
 \[J(\mathcal{B}) = \min_{x \in \hat{\mathbb{X}}, y \in \mathbb{R}_p} \sum_{l \in \mathcal{L}} b_l(x_l) + d(x, y) \]
 \[\text{s.t. } g(x, y) \leq 0 \]

- Suppl. cost $d : \mathbb{R}_+^{t|\mathcal{L}|} \times \mathbb{R}_p \rightarrow \mathbb{R}$—e.g., second-stage market

- Additional variables $y \in \mathbb{R}_p$

- Constraints $g : \mathbb{R}_+^{t|\mathcal{L}|} \times \mathbb{R}_p \rightarrow \mathbb{R}_q$—e.g., security constraints
Updating the framework with the allocation rule

Central Operator

\[J(\mathcal{B}) = \min_{x \in \hat{X}, y} \sum_{l \in L} b_l(x_l) + d(x, y) \text{ s.t. } g(x, y) \leq 0 \]

\((CO) \)

The allocation rule \(x^*(\mathcal{B}) \) is the minimizer

\[\text{Bidder } l \]

\[b_l, \quad p_l(\mathcal{B}) \in \mathbb{R}, \quad x_l^*(\mathcal{B}) \in \hat{X}_l \]
Updating the framework with the allocation rule

Central Operator

\[J(\mathcal{B}) = \min_{x \in \hat{X}, y \in L} \sum_{l \in L} b_l(x_l) + d(x, y) \quad \text{s.t.} \quad g(x, y) \leq 0 \]

The allocation rule \(x^*(\mathcal{B}) \) is the minimizer

Bidder’s utility:
\[u_l(\mathcal{B}) = p_l(\mathcal{B}) - c_l(x_l^*(\mathcal{B})) \]
Updating the framework with the allocation rule

Central Operator

\[J(\mathcal{B}) = \min_{x \in \hat{X}, y} \sum_{l \in L} b_l(x_l) + d(x, y) \text{ s.t. } g(x, y) \leq 0 \]

The allocation rule \(x^*(\mathcal{B}) \) is the minimizer

\[(CO) \]

▶ Bidder’s utility: \(u_l(\mathcal{B}) = p_l(\mathcal{B}) - c_l(x_l^*(\mathcal{B})) \)

▶ CO’s utility: \(u_{CO}(\mathcal{B}) = - \sum_{l \in L} p_l(\mathcal{B}) - d(x^*(\mathcal{B}), y^*(\mathcal{B})) \)
Desirable properties for the payment rules

- *Individually rational*: Nonnegative utilities for bidders
- *Efficient*: Sum of all utilities is maximized
- *Incentive-compatible*: Truthfulness is the dominant strategy
Desirable properties for the payment rules

- **Individually rational**: Nonnegative utilities for bidders
- **Efficient**: Sum of all utilities is maximized
- **Incentive-compatible**: Truthfulness is the dominant strategy

Pay-as-bid mechanism:

\[p_l(B) = b_l(x^*_l(B)) \]

Not incentive-compatible, not efficient
Desirable properties for the payment rules

- **Individually rational:** Nonnegative utilities for bidders
- **Efficient:** Sum of all utilities is maximized
- **Incentive-compatible:** Truthfulness is the dominant strategy

- **Pay-as-bid mechanism:**
 \[p_l(B) = b_l(x^*_l(B)) \]
 Not incentive-compatible, not efficient

- **Locational marginal pricing (LMP) mechanism:**
 \[p_l(B) = \lambda^*_l(B)x^*_l(B) \]
 If each bidder is a *price-taker*, then it is incentive-compatible
Desirable properties for the payment rules

▶ *Individually rational:* Nonnegative utilities for bidders

▶ *Efficient:* Sum of all utilities is maximized

▶ *Incentive-compatible:* Truthfulness is the dominant strategy

▶ *Pay-as-bid mechanism:*

\[
p_l(B) = b_l(x_l^*(B))
\]

Not incentive-compatible, not efficient

▶ *Locational marginal pricing (LMP) mechanism:*

\[
p_l(B) = \lambda_l^*(B)x_l^*(B)
\]

If each bidder is a *price-taker*, then it is incentive-compatible

- **Strong assumption** not found in practice

[Wolfram 1997], [Joskow et al. 2001]
Desirable properties for the payment rules

- *Individually rational:* Nonnegative utilities for bidders
- *Efficient:* Sum of all utilities is maximized
- *Incentive-compatible:* Truthfulness is the dominant strategy

- *Pay-as-bid mechanism:*
 \[
 p_l(B) = b_l(x_l^*(B))
 \]
 Not incentive-compatible, not efficient

- *Locational marginal pricing (LMP) mechanism:*
 \[
 p_l(B) = \lambda_l^*(B)x_l^*(B)
 \]
 If each bidder is a *price-taker*, then it is incentive-compatible
 - **Strong assumption** not found in practice
 [Wolfram 1997], [Joskow et al. 2001]
 - This economic rationale relies on **strong duality**
 [Bikhchandani and Mamer 1997], [Lavaei and Sojoudi 2012]
Desirable properties for the payment rules

- ✓ *Individually rational:* Nonnegative utilities for bidders
- × *Efficient:* Sum of all utilities is maximized
- × *Incentive-compatible:* Truthfulness is the dominant strategy

- *Pay-as-bid mechanism:*
 \[p_l(B) = b_l(x_l^*(B)) \]

 Not incentive-compatible, not efficient

- *Locational marginal pricing (LMP) mechanism:*
 \[p_l(B) = \lambda_l^*(B)x_l^*(B) \]

 If each bidder is a *price-taker*, then it is incentive-compatible
 - **Strong assumption** not found in practice
 [Wolfram 1997], [Joskow et al. 2001]
 - This economic rationale **relies on strong duality**
 [Bikhchandani and Mamer 1997], [Lavaei and Sojoudi 2012]
The Vickrey-Clarke-Groves (VCG) mechanism
[Vickrey 1961], [Clarke 1971], [Groves 1973]

- Optimal value of (CO) with $x_l = 0$
 \[J(B_{-l}) \geq J(B) \]

- VCG payment is the externality
 \[p_l(B) = J(B_{-l}) - \left(J(B) - b_l(x_l^*(B)) \right) \]
 cost of others in the absence of l
 cost of others when l is present
The Vickrey-Clarke-Groves (VCG) mechanism
[Vickrey 1961], [Clarke 1971], [Groves 1973]

- Optimal value of (CO) with $x_l = 0$

$$J(B_{-l}) \geq J(B)$$

- VCG payment is the externality

$$p_l(B) = \underbrace{J(B_{-l})} - \underbrace{(J(B) - b_l(x^*_l(B)))}$$

 cost of others in the absence of l
 cost of others when l is present

Theorem 1

Given (CO), the VCG mechanism is

a) Incentive-compatible
b) Efficient
c) Individually rational
The Vickrey-Clarke-Groves (VCG) mechanism

[Vickrey 1961], [Clarke 1971], [Groves 1973]

- Optimal value of (CO) with $x_l = 0$

$$J(B_{-l}) \geq J(B)$$

- VCG payment is the externality

$$p_l(B) = J(B_{-l}) - (J(B) - b_l(x^*_l(B)))$$

 cost of others in the absence of l

 cost of others when l is present

Theorem 1

Given (CO), the VCG mechanism is

 a) *Incentive-compatible*
 b) *Efficient*
 c) *Individually rational*

- Recently been proposed for a broad class of electricity markets

 [Samadi et al. 2012], [Xu and Low 2017], [Sessa et al. 2017]
The lovely but lonely VCG mechanism [Ausubel and Milgrom 2006]

\[c_3(x_3) = 0.1x_3^2 + 5x_3 \]

\[c_1(x_1) = 0.1x_1^2 + 12x_2 \]

\[c_2(x_2) = 0.1x_2^2 + 12x_2 \]

Table: VCG outcomes for the model (CHF) (p: payment, u: utility)

<table>
<thead>
<tr>
<th></th>
<th>Truthful Bidding</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(p) ((u))</td>
</tr>
<tr>
<td>Generator 1</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Generator 2</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Generator 3</td>
<td>260 (120)</td>
</tr>
</tbody>
</table>
The lovely but lonely VCG mechanism \cite{Ausubel and Milgrom 2006}

\[c_1(x_1) = 0.1x_1^2 + 12x_2 \]

\[c_2(x_2) = 0.1x_2^2 + 12x_2 \]

\[c_3(x_3) = 0.1x_3^2 + 5x_3 \]

Table: VCG outcomes for the model (CHF) (p: payment, u: utility)

<table>
<thead>
<tr>
<th>Generator</th>
<th>p (u)</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generator 1</td>
<td>0 (0)</td>
<td>0</td>
</tr>
<tr>
<td>Generator 2</td>
<td>0 (0)</td>
<td>0</td>
</tr>
<tr>
<td>Generator 3</td>
<td>260 (120)</td>
<td>20</td>
</tr>
</tbody>
</table>

Truthful bidding is the dominant strategy
The lovely but lonely VCG mechanism [Ausubel and Milgrom 2006]

\[c_3(x_3) = 0.1x_3^2 + 5x_3 \]

\[b_1(x_1) = 0 \]

\[b_2(x_2) = 0 \]

Table: VCG outcomes for the model (CHF) (p: payment, u: utility)

<table>
<thead>
<tr>
<th></th>
<th>Truthful Bidding</th>
<th>1 and 2 collude</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(p (u))</td>
<td>(x)</td>
</tr>
<tr>
<td>Generator 1</td>
<td>0 (0)</td>
<td>0</td>
</tr>
<tr>
<td>Generator 2</td>
<td>0 (0)</td>
<td>0</td>
</tr>
<tr>
<td>Generator 3</td>
<td>260 (120)</td>
<td>20</td>
</tr>
</tbody>
</table>
The lovely but lonely VCG mechanism

\[C_3,2 = 10 \text{ MW} \]
\[C_3,1 = 10 \text{ MW} \]
\[C_2,4 = 10 \text{ MW} \]
\[C_1,4 = 10 \text{ MW} \]
\[\theta_2 \]
\[\theta_1 \]
\[\theta_4 \]
\[\theta_3 \]
\[b_1(x_1) = 0 \]
\[b_2(x_2) = 0 \]

\[c_3(x_3) = 0.1x_3^2 + 5x_3 \]

Table: VCG outcomes for the model (CHF) (p: payment, u: utility)

<table>
<thead>
<tr>
<th></th>
<th>Truthful Bidding</th>
<th>1 and 2 collude</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(p (u))</td>
<td>(x)</td>
</tr>
<tr>
<td>Generator 1</td>
<td>0 (0)</td>
<td>0</td>
</tr>
<tr>
<td>Generator 2</td>
<td>0 (0)</td>
<td>0</td>
</tr>
<tr>
<td>Generator 3</td>
<td>260 (120)</td>
<td>20</td>
</tr>
</tbody>
</table>
The lovely but lonely VCG mechanism [Ausubel and Milgrom 2006]

Another important property:

Coalition-proofness
- Joint deviation is not profitable for losing bidders
- Bidding with multiple identities is not profitable for any bidder
Which mechanisms attain the \textit{coalition-proofness} property?
Outline

Electricity market framework

Characterizing coalition-proofness using the core

Competitive equilibrium using core-selecting mechanisms

Design considerations for core-selecting mechanisms

Numerical results
Bringing in the core from coalitional game theory

- Bidder’s *revealed* utility:
 \[\bar{u}_l(B) = p_l(B) - b_l(x^*_l(B)) \]

- Central operator’s *revealed* utility:
 \[\bar{u}_{CO}(B) = - \sum_{l \in L} p_l(B) - d(x^*(B), y^*(B)) \]
Bringing in the core from coalitional game theory

- Bidder’s *revealed* utility: \(\bar{u}_l(B) = p_l(B) - b_l(x^*_l(B)) \)
- Central operator’s *revealed* utility:

\[
\bar{u}_{CO}(B) = - \sum_{l \in L} p_l(B) - d(x^*(B), y^*(B))
\]

- Objective value under the profile \(B_S = \{b_l\}_{l \in S}, S \subseteq L \)

\[
J(B_S) = \min_{x \in \hat{X}, y} \sum_{l \in S} b_l(x_l) + d(x, y) \\
\text{s.t. } g(x, y) \leq 0, \ x_{-S} = 0
\]
Bringing in the core from coalitional game theory

- Bidder’s revealed utility: $\bar{u}_l(B) = p_l(B) - b_l(x_l^*(B))$

- Central operator’s revealed utility:

$$\bar{u}_{CO}(B) = - \sum_{l \in L} p_l(B) - d(x^*(B), y^*(B))$$

$$J(B_S) = \min_{x \in \hat{x}, y \in S} \sum_{l \in S} b_l(x_l) + d(x, y)$$

s.t. $g(x, y) \leq 0$, $x_{-S} = 0$
Bringing in the core from coalitional game theory

- Bidder’s revealed utility: \(\tilde{u}_l(B) = p_l(B) - b_l(x^*_l(B)) \)
- Central operator’s revealed utility:

\[
\tilde{u}_{CO}(B) = - \sum_{l \in L} p_l(B) - d(x^*(B), y^*(B))
\]

- The core: set of revealed utilities that cannot be improved upon by forming coalitions

\[
J(B_S) = \min_{x \in \hat{x}, y \in S} \sum_{l \in S} b_l(x_l) + d(x, y) \\
\text{s.t. } g(x, y) \leq 0, \ x_S = 0
\]
Bringing in the core from coalitional game theory

- Bidder’s revealed utility: \(\tilde{u}_l(B) = p_l(B) - b_l(x^*_l(B)) \)

- Central operator’s revealed utility:

\[
\tilde{u}_{CO}(B) = - \sum_{l \in L} p_l(B) - d(x^*(B), y^*(B))
\]

- The core: set of revealed utilities that cannot be improved upon by forming coalitions

\[
Core(B) = \left\{ \tilde{u} \in \mathbb{R} \times \mathbb{R}_{+}^{L} \mid \tilde{u}_{CO} + \sum_{l \in L} \tilde{u}_l = -J(B), \right. \\
\left. \tilde{u}_{CO} + \sum_{l \in S} \tilde{u}_l \geq -J(B_S), \forall S \subset L \right\}
\]

\[
J(B_S) = \min_{x \in \mathbb{R}^L, y \in \mathbb{R}^S} \sum b_l(x_l) + d(x, y) \\
\text{s.t. } g(x, y) \leq 0, \ x_{-S} = 0
\]
Bringing in the core from coalitional game theory

- Bidder’s revealed utility: \(\tilde{u}_l(B) = p_l(B) - b_l(x^*_l(B)) \)
- Central operator’s revealed utility:
 \[
 \tilde{u}_{CO}(B) = - \sum_{l \in L} p_l(B) - d(x^*(B), y^*(B))
 \]
- The core: set of revealed utilities that cannot be improved upon by forming coalitions
 \[
 Core(B) = \left\{ \tilde{u} \in \mathbb{R} \times \mathbb{R}^{L} \mid \tilde{u}_{CO} + \sum_{l \in L} \tilde{u}_l = -J(B), \quad \text{individ. rational} \right\}
 \]

 \[
 J(B_S) = \min_{x \in X, y \in S} \sum_{l \in S} b_l(x_l) + d(x, y)
 \]

 subject to: \(g(x, y) \leq 0, \quad x_{-S} = 0 \)
Bringing in the core from coalitional game theory

- Bidder’s *revealed* utility: \(\bar{u}_l(B) = p_l(B) - b_l(x^*_l(B)) \)
- Central operator’s *revealed* utility:
 \[
 \bar{u}_{CO}(B) = -\sum_{l \in L} p_l(B) - d(x^*(B), y^*(B))
 \]

- The core: **set of revealed utilities** that cannot be improved upon by forming coalitions
 \[
 Core(B) = \left\{ \bar{u} \in \mathbb{R} \times \mathbb{R}_+^{\left| L \right|} \mid \bar{u}_{CO} + \sum_{l \in L} \bar{u}_l = -J(B), \underbrace{\bar{u}_{CO} + \sum_{l \in S} \bar{u}_l \geq -J(B_S), \forall S \subset L}_{\text{efficient}, \text{individ. rational}} \right\}
 \]

\[
J(B_S) = \min_{x \in \hat{x}, y \in S} \sum_{l \in S} b_l(x_l) + d(x, y)
\]

s.t. \(g(x, y) \leq 0, x_{-S} = 0 \)
Bringing in the core from coalitional game theory

- **Bidder’s revealed utility:** \(\tilde{u}_l(\mathcal{B}) = p_l(\mathcal{B}) - b_l(x^*_l(\mathcal{B})) \)
- **Central operator’s revealed utility:**

\[
\tilde{u}_{CO}(\mathcal{B}) = - \sum_{l \in L} p_l(\mathcal{B}) - d(x^*(\mathcal{B}), y^*(\mathcal{B}))
\]

- **The core:** **set of revealed utilities** that cannot be improved upon by forming coalitions

\[
Core(\mathcal{B}) = \left\{ \tilde{u} \in \mathbb{R} \times \mathbb{R}^{\left|L\right|} \mid \tilde{u}_{CO} + \sum_{l \in L} \tilde{u}_l = -J(\mathcal{B}), \begin{array}{c}
\text{individ. rational} \\
\text{efficient}
\end{array} \right. \}
\]

\[
J(\mathcal{B}_S) = \min_{x \in \tilde{x}, y \in S} \sum_{l \in S} b_l(x_l) + d(x, y)
\text{ s.t. } g(x, y) \leq 0, \ x_{-S} = 0
\]
Characterization of coalition-proof mechanisms

- Core-selecting payment rule

\[p_l(B) = b_l(x_l^*(B)) + \bar{u}_l(B), \forall l, \text{ where } \bar{u} \in Core(B) \]

- Equivalently, revealed utilities lie in the core

\[\bar{u}_{PAB} \in Core(B) \]
Characterization of coalition-proof mechanisms

- Core-selecting payment rule

\[p_l(B) = b_l(x^*_l(B)) + \bar{u}_l(B), \forall l, \text{ where } \bar{u} \in Core(B) \]

- Equivalently, **revealed utilities lie in the core**

Theorem 2

Core-selecting mechanisms \(\iff \) Coalition-proof mechanisms
Characterization of coalition-proof mechanisms

- Core-selecting payment rule

\[p_l(B) = b_l(x_l^*(B)) + \bar{u}_l(B), \quad \forall l, \text{ where } \bar{u} \in \text{Core}(B) \]

- Equivalently, **revealed utilities lie in the core**

Theorem 2

Core-selecting mechanisms \iff Coalition-proof mechanisms

- Pay-as-bid is core-selecting since

\[\bar{u}^{\text{PAB}}_l(B) = 0, \quad \forall l \in L, \quad \bar{u}^{\text{PAB}}_C(B) = -J(B) \]
Characterization of coalition-proof mechanisms

- Core-selecting payment rule

\[p_l(B) = b_l(x_i^*(B)) + \bar{u}_l(B), \forall l, \text{ where } \bar{u} \in Core(B) \]

- Equivalently, revealed utilities lie in the core

Theorem 2

Core-selecting mechanisms \iff Coalition-proof mechanisms

- Pay-as-bid is core-selecting since

\[\bar{u}_l^{PAB}(B) = 0, \forall l \in L, \quad \bar{u}_C^{PAB}(B) = -J(B) \implies \bar{u}_P^{PAB} \in Core(B) \]
Characterization of coalition-proof mechanisms

- Core-selecting payment rule

\[p_l(B) = b_l(x^*_l(B)) + \bar{u}_l(B), \forall l, \text{ where } \bar{u} \in \text{Core}(B) \]

- Equivalently, revealed utilities lie in the core

Theorem 2

Core-selecting mechanisms \iff Coalition-proof mechanisms

- Pay-as-bid is core-selecting since

\[\bar{u}^{\text{PAB}}_l(B) = 0, \forall l \in L, \quad \bar{u}^{\text{PAB}}_\text{CO}(B) = -J(B) \implies \bar{u}^{\text{PAB}} \in \text{Core}(B) \]

- Core-selecting payments are upper bounded by the VCG payments

\[\bar{u}^{\text{VCG}}_l(B) = J(B_{-l}) - J(B) = \max \{ \bar{u}_l | \bar{u} \in \text{Core}(B) \} \]
Characterization of coalition-proof mechanisms

- Core-selecting payment rule
 \[p_l(B) = b_l(x_l^*(B)) + \bar{u}_l(B), \quad \forall l, \text{ where } \bar{u} \in Core(B) \]

- Equivalently, revealed utilities lie in the core

Theorem 2

Core-selecting mechanisms \iff Coalition-proof mechanisms

- Pay-as-bid is core-selecting since
 \[\bar{u}_{l}^{PAB}(B) = 0, \forall l \in L, \quad \bar{u}_{CO}^{PAB}(B) = -J(B) \implies \bar{u}^{PAB} \in Core(B) \]

- Core-selecting payments are upper bounded by the VCG payments
 \[\bar{u}_{l}^{VCG}(B) = J(B_{-l}) - J(B) = \max \{ \bar{u}_l | \bar{u} \in Core(B) \} \]
For which markets can we ensure that the VCG mechanism is core-selecting?
Polymatroid + Convex bids \implies Core-selecting VCG

- Let $[t] = \{1, \ldots, t\}$ be the set of types of supplies
- *Contra-Polymatroid*: a polytope \mathcal{P} defined by a nondecreasing supermodular function $f : 2^{[t]} \to \mathbb{R}_+$

$$\mathcal{P} = \left\{ x \mid \bar{X}_i \geq x_i \geq 0, \forall i \in L, \text{ and } \sum_{\tau \in T} \sum_{i \in L} x_{i,\tau} \geq f(T), \forall T \subseteq [t] \right\}$$
Polymatroid + Convex bids \implies Core-selecting VCG

- Let $[t] = \{1, \ldots, t\}$ be the set of types of supplies
- *Contra-Polymatroid*: a polytope \mathcal{P} defined by a nondecreasing supermodular function $f : 2^{[t]} \to \mathbb{R}_+$

\[
\mathcal{P} = \left\{ x \mid \bar{X}_i \geq x_i \geq 0, \forall i \in L, \text{ and } \sum_{\tau \in T} \sum_{i \in L} x_{i,\tau} \geq f(T), \forall T \subseteq [t] \right\}
\]

production capacity constraints
Polymatroid + Convex bids \implies Core-selecting VCG

- Let $[t] = \{1, \ldots, t\}$ be the set of types of supplies
- **Contra-Polymatroid**: a polytope \mathcal{P} defined by a nondecreasing supermodular function $f : 2^{[t]} \to \mathbb{R}_+$

\[
\mathcal{P} = \left\{ x \mid \begin{array}{c}
\tilde{X}_i \geq x_i \geq 0, \forall i \in L, \\
\text{production capacity constraints}
\end{array}
\right\}
\]

\[
\text{and } \sum_{\tau \in T} \sum_{i \in L} x_{i,\tau} \geq f(T), \forall T \subseteq [t]
\]

\[
\text{procurement constraints for different subsets of types}
\]
Polymatroid + Convex bids \implies Core-selecting VCG

- Let $[t] = \{1, \ldots, t\}$ be the set of types of supplies
- **Contra-Polymatroid**: a polytope \mathcal{P} defined by a nondecreasing supermodular function $f : 2^{|t|} \to \mathbb{R}_+$

$$\mathcal{P} = \left\{ x \mid \bar{X}_i \geq x_i \geq 0, \forall i \in L, \text{ and } \sum_{\tau \in T} \sum_{i \in L} x_{i,\tau} \geq f(T), \forall T \subseteq [t] \right\}$$

- **production capacity constraints**
- **procurement constraints for different subsets of types**

Theorem 3

Bids are convex (or marginally nondecreasing) and the constraint set is a contra-polymatroid

\implies *The VCG mechanism is core-selecting*
Optimal power flow problems, and control reserves markets do not satisfy this restrictive condition...

The VCG mechanism is in general not core-selecting!
Optimal power flow problems, and control reserves markets do not satisfy this **restrictive** condition...

The VCG mechanism is in general not core-selecting!

- The maximal point is not in the core
Is the LMP mechanism core-selecting?
Outline

Electricity market framework

Characterizing coalition-proofness using the core

Competitive equilibrium using core-selecting mechanisms

Design considerations for core-selecting mechanisms

Numerical results
Bringing in the competitive equilibrium

▶ An allocation $x^* \in \mathbb{R}^{t|L|}$ and a set of price functions $\{\psi_l\}_{l \in L}$, where $\psi_l : \mathbb{R}_+^t \to \mathbb{R}$ and $\psi_l(0) = 0$, constitute a competitive equilibrium (CE) if and only if

(i) $x_l^* \in \arg \max_{x_l \in X_l} \psi_l(x_l) - c_l(x_l), \ \forall l \in L,$

(ii) $x^* \in \arg \min_{x \in \mathbb{R}_+^{t|L|}} \left\{ \min_{y : h(x,y)=0, g(x,y) \leq 0} \sum_{l \in L} \psi_l(x_l) + d(x,y) \right\}.$

▶ Consistency conditions: Allocations are optimal at the prices
▶ Extends the traditional definition with linear prices
Bringing in the competitive equilibrium

- An allocation \(x^* \in \mathbb{R}^{t|L|}_+ \) and a set of price functions \(\{\psi_l\}_{l\in L} \), where \(\psi_l : \mathbb{R}^t_+ \to \mathbb{R} \) and \(\psi_l(0) = 0 \), constitute a competitive equilibrium (CE) if and only if

\[
\begin{align*}
(i) \quad & x_l^* \in \arg\max_{x_l \in X_l} \psi_l(x_l) - c_l(x_l), \quad \forall l \in L, \\
(ii) \quad & x^* \in \arg\min_{x \in \mathbb{R}^{t|L|}_+} \left\{ \min_{y: h(x,y) = 0} \sum_{l \in L} \psi_l(x_l) + d(x,y) \right\}.
\end{align*}
\]

- Consistency conditions: Allocations are optimal at the prices
- Extends the traditional definition with linear prices

Lemma 1

Competitive equilibrium exists only for \(x^(C) \), that is, the optimal allocation of the market under true costs*
Competitive equilibrium using mechanism design

\[
x_l^*(C) \in \arg \max_{x_l \in X_l} \psi_l(x_l) - c_l(x_l), \forall l \in L
\]

\[
x^*(C) \in \arg \min_{x \in \mathbb{R}^{t|L|}} \left\{ \min_{y: h(x,y)=0} \sum_{l \in L} \psi_l(x_l) + d(x, y)\right\}
\]
Competitive equilibrium using mechanism design

- A mechanism ensures the existence of a CE, if for any \(C \), \(\exists \{ \psi_l \}_{l \in L} \) s.t. \(\psi_l(x^*_l(C)) = p_l(C) \), and \((\{ \psi_l \}_{l \in L}, x^*(C)) \) constitutes a CE

\[
x^*_l(C) \in \arg \max_{x_l \in X_l} \psi_l(x_l) - c_l(x_l), \quad \forall l \in L
\]

\[
x^*(C) \in \arg \min_{x \in \mathbb{R}^{t|L|}_+} \left\{ \min_{y : h(x,y) = 0, g(x,y) \leq 0} \sum_{l \in L} \psi_l(x_l) + d(x, y) \right\}
\]
Competitive equilibrium using mechanism design

- A mechanism ensures the existence of a CE, if for any \(C \), \(\exists \{ \psi_l \}_{l \in L} \) s.t. \(\psi_l(x^*_l(C)) = p_l(C) \), and \((\{ \psi_l \}_{l \in L}, x^*(C)) \) constitutes a CE

- Under strong duality, the LMP mechanism satisfies this with

\[
\psi_l(x) = \lambda^*(C)x, \quad \forall x \in \mathbb{R}^t_+, \quad \forall l \in L,
\]

where \(\lambda^*(C) \in \mathbb{R}^t \) concatenates the Lagrange multipliers

- Remark: Sets a linear price for each supply type
Competitive equilibrium using mechanism design

- A mechanism ensures the existence of a CE, if for any C, $\exists \{\psi_l\}_{l \in L}$ s.t. $\psi_l(x_l^*(C)) = p_l(C)$, and $(\{\psi_l\}_{l \in L}, x^*(C))$ constitutes a CE

- Under strong duality, the LMP mechanism satisfies this with

$$
\psi_l(x) = \lambda^*(C) x, \quad \forall x \in \mathbb{R}^t_+, \quad \forall l \in L,
$$

where $\lambda^*(C) \in \mathbb{R}^t$ concatenates the Lagrange multipliers

- Remark: Sets a linear price for each supply type

$$
x_l^*(C) \in \arg \max_{x_l \in X_l} \lambda^*(C) x_l - c_l(x_l), \quad \forall l \in L
$$

$$
x^*(C) \in \arg \min_{x \in \mathbb{R}^t_+} \left\{ \min_{y \colon h(x,y) = 0} \left(\sum_{l \in L} \lambda^*(C) x_l + d(x,y) \right) \right\}
$$
Competitive equilibrium using mechanism design

- A mechanism ensures the existence of a CE, if for any C, $\exists \{\psi_l\}_{l \in L}$ s.t. $\psi_l(x_l^*(C)) = p_l(C)$, and $(\{\psi_l\}_{l \in L}, x^*(C))$ constitutes a CE.

- **Under strong duality**, the LMP mechanism satisfies this with

 $$\psi_l(x) = \lambda^*(C)x, \quad \forall x \in \mathbb{R}_+, \quad \forall l \in L,$$

 where $\lambda^*(C) \in \mathbb{R}^t$ concatenates the Lagrange multipliers.

- **Remark**: Sets a linear price for each supply type.

- First condition implies *price-taker incentive-compatibility*

\[
\begin{align*}
x_l^*(C) &\in \arg \max_{x_l \in \mathcal{X}_l} \lambda^*(C)x_l - c_l(x_l), \quad \forall l \in L \\
x^*(C) &\in \arg \min_{x \in \mathbb{R}_+^{t|L|}} \left\{ \min_{y: h(x,y) = 0, g(x,y) \leq 0} \sum_{l \in L} \lambda^*(C)x_l + d(x,y) \right\}
\end{align*}
\]
Equivalence of the core and the competitive equilibrium

Theorem 4

A mechanism is core-selecting if and only if it ensures the existence of a CE

- The proof involves price functions of the form

\[\psi_l(x) = \begin{cases}
0 & x = 0 \\
cl(x) + \bar{u}_l & x \in X_l \setminus \{0\} \\
\infty & \text{otherwise}
\end{cases} \]

- Extends the line of works from [Shapley and Shubik 1971], [Bikhchandani and Ostroy 2002]
Equivalence of the core and the competitive equilibrium

Theorem 4

A mechanism is core-selecting if and only if it ensures the existence of a CE

- The proof involves price functions of the form

\[
\psi_l(x) = \begin{cases}
0 & x = 0 \\
cl(x) + \bar{u}_l & x \in X_l \setminus \{0\} \\
\infty & \text{otherwise}
\end{cases}
\]

- Extends the line of works from [Shapley and Shubik 1971], [Bikhchandani and Ostroy 2002]

- Two implications:
 - LMP is core-selecting
 - VCG payments upper bound LMP payments
Equivalence of the core and the competitive equilibrium

Theorem 4

A mechanism is core-selecting if and only if it ensures the existence of a CE

The proof involves price functions of the form

\[
\psi_l(x) = \begin{cases}
0 & x = 0 \\
cl(x) + \bar{u}_l & x \in X_l \setminus \{0\} \\
\infty & \text{otherwise}
\end{cases}
\]

Extends the line of works from [Shapley and Shubik 1971], [Bikhchandani and Ostroy 2002]

Two implications:

- LMP is core-selecting
- VCG payments upper bound LMP payments

Core-selecting mechanisms exist even under nonconvex bids and nonconvex constraint sets
Outline

Electricity market framework

Characterizing coalition-proofness using the core

Competitive equilibrium using core-selecting mechanisms

Design considerations for core-selecting mechanisms

Numerical results
Core-selecting is in general **not incentive-compatible** and there are **many points** to choose from the core...

Can core-selecting mechanisms **approximate incentive-compatibility** without the price-taking assumption?
Approximating incentive-compatibility using core-selecting

- We quantify the violation of incentive-compatibility under any core-selecting mechanism.

Lemma 2

The maximum gain of bidder l by a unilateral deviation from its true cost is tightly upperbounded by

$$\bar{u}_l^{\text{VCG}}(C_l, B_{-l}) - \bar{u}_l(C_l, B_{-l})$$
We quantify the violation of incentive-compatibility under any core-selecting mechanism.

Lemma 2

The maximum gain of bidder \(l \) by a unilateral deviation from its true cost is tightly upperbounded by

\[
\bar{u}^\text{VCG}_l(C_l, B_{-l}) - \bar{u}_l(C_l, B_{-l})
\]

Idea: The closer you get to the VCG payments, the better you approximate incentive-compatibility.
Maximum payment core-selecting mechanism

- Maximum payment core-selecting (MPCS) mechanism:

\[\bar{u}^{\text{MPCS}}(B) = \arg \max_{u \in \text{Core}(B)} \sum_{l \in L} u_l - \epsilon \left\| u_l - \bar{u}_l^{\text{VCG}}(B) \right\|^2 \]

Theorem 5

The MPCS mechanism minimizes the sum of maximum gains from unilateral deviations
Maximum payment core-selecting mechanism

- Maximum payment core-selecting (MPCS) mechanism:

\[
\tilde{u}^{\text{MPCS}}(\mathcal{B}) = \arg\max_{u \in \text{Core}(\mathcal{B})} \sum_{l \in L} u_l - \epsilon \left\| u_l - \tilde{u}^{\text{VCG}}_l(\mathcal{B}) \right\|_2^2
\]

Theorem 5

The MPCS mechanism minimizes the sum of maximum gains from unilateral deviations

- Problem size is **exponential in the number of bidders**!
 - Characterizing the core requires solutions to the market under \(2^{|L|}\) subsets of bidders
Maximum payment core-selecting mechanism

- **Maximum payment core-selecting (MPCS) mechanism:**

\[
\bar{u}^{\text{MPCS}}(B) = \arg \max_{u \in \text{Core}(B)} \sum_{l \in L} u_l - \epsilon \left\| u_l - \bar{u}_l^{\text{VCG}}(B) \right\|_2^2
\]

Theorem 5

The MPCS mechanism minimizes the sum of maximum gains from unilateral deviations

- Problem size is **exponential in the number of bidders!**
 - Characterizing the core requires solutions to the market under \(2^{|L|}\) subsets of bidders
 - Can be tackled via **iterative constraint generation**
 - [Dantzig et al. 1954], [Hallefjord et al. 1995]
Comparison of revealed utilities under different mechanisms

\[\bar{u}_1, \bar{u}_2 \]

Core

\[(0, 0) \]

\[\bar{u}_1^{\text{LMP}}, \bar{u}_1^{\text{MPCS}}, \bar{u}_1^{\text{VCG}} \]

\[\bar{u}_2^{\text{LMP}}, \bar{u}_2^{\text{MPCS}}, \bar{u}_2^{\text{VCG}} \]

\[(\bar{u}_1^{\text{VCG}}, \bar{u}_2^{\text{VCG}}) \]
Comparison of revealed utilities under different mechanisms

\[\begin{align*}
\bar{u}_1 &= \bar{u}_{VCG}^1, \\
\bar{u}_2 &= \bar{u}_{VCG}^2
\end{align*} \]

The MPCS mechanism:

+ Does not rely on price-taker assumption
+ Equivalent to the VCG if VCG is core-selecting
- Payments are nonlinear and bidder-dependent

The MPCS mechanism:

+ Does not rely on price-taker assumption
+ Equivalent to the VCG if VCG is core-selecting
- Payments are nonlinear and bidder-dependent
We extend our model to exchanges (and two-sided markets)

Can we quantify the budget-balance of the MPCS mechanism?
Budget-balance in exchanges

- Exchange relaxes the domains of the functions to \mathbb{R}^t

 $$c_l : \mathbb{X}_l \rightarrow \mathbb{R} \text{ s.t. } 0 \in \mathbb{X}_1 \subset \mathbb{R}^t \text{ and } c_l(0) = 0$$

 $$b_l : \hat{\mathbb{X}}_l \rightarrow \mathbb{R} \text{ s.t. } 0 \in \hat{\mathbb{X}}_1 \subset \mathbb{R}^t \text{ and } b_l(0) = 0$$

- All the results hold in exchanges (e.g., coalition-proofness, CE)
Budget-balance in exchanges

- Exchange relaxes the domains of the functions to \mathbb{R}^t

 \[c_l : \mathbb{X}_l \to \mathbb{R} \text{ s.t. } 0 \in \mathbb{X}_l \subset \mathbb{R}^t \text{ and } c_l(0) = 0 \]

 \[b_l : \hat{\mathbb{X}}_l \to \mathbb{R} \text{ s.t. } 0 \in \hat{\mathbb{X}}_l \subset \mathbb{R}^t \text{ and } b_l(0) = 0 \]

- All the results hold in exchanges (e.g., coalition-proofness, CE)

- Another important property:
 - Budget-balance: $u_{CO} \geq 0$ (Central operator’s utility)
Budget-balance in exchanges

- Exchange relaxes the domains of the functions to \mathbb{R}^t

 $$c_l : \mathbb{X}_l \rightarrow \mathbb{R} \text{ s.t. } 0 \in \mathbb{X}_l \subset \mathbb{R}^t \text{ and } c_l(0) = 0$$

 $$b_l : \hat{\mathbb{X}}_l \rightarrow \mathbb{R} \text{ s.t. } 0 \in \hat{\mathbb{X}}_l \subset \mathbb{R}^t \text{ and } b_l(0) = 0$$

- All the results hold in exchanges (e.g., coalition-proofness, CE)

- Another important property:
 - Budget-balance: $u_{CO} \geq 0$ (Central operator’s utility)

- The LMP mechanism is budget-balanced

- The VCG mechanism is not always budget-balanced

[Myerson and Satterthwhite 1983], [Krishna and Perry 1998]
Budget-balance in exchanges

- Exchange relaxes the domains of the functions to \mathbb{R}^t

$$c_l : \mathbb{X}_l \to \mathbb{R} \text{ s.t. } 0 \in \mathbb{X}_1 \subset \mathbb{R}^t \text{ and } c_l(0) = 0$$

$$b_l : \hat{\mathbb{X}}_l \to \mathbb{R} \text{ s.t. } 0 \in \hat{\mathbb{X}}_1 \subset \mathbb{R}^t \text{ and } b_l(0) = 0$$

- All the results hold in exchanges (e.g., coalition-proofness, CE)

- Another important property:

 - *Budget-balance:* $u_{co} \geq 0$ (Central operator’s utility)

- The LMP mechanism is budget-balanced

- The VCG mechanism is *not* always budget-balanced

 [Myerson and Satterthwhite 1983], [Krishna and Perry 1998]

Theorem 6

Any core-selecting mechanism is budget-balanced
Outline

Electricity market framework

Characterizing coalition-proofness using the core

Competitive equilibrium using core-selecting mechanisms

Design considerations for core-selecting mechanisms

Numerical results
AC-OPF problem with a duality gap

- A simulation based on the 5-bus model in [Bukhsh et al. 2013]

![Diagram of a 5-bus model with bus connections and admittances.]
AC-OPF problem with a duality gap

- A simulation based on the 5-bus model in [Bukhsh et al. 2013]
- SDP relaxation is not tight \Rightarrow Nonzero duality gap [Lavaei and Low 2012]
- Can be solved via second level of moment hierarchy
AC-OPF problem with a duality gap

- A simulation based on the 5-bus model in [Bukhsh et al. 2013]
- SDP relaxation is not tight \implies Nonzero duality gap [Lavaei and Low 2012]
- Can be solved via second level of moment hierarchy

<table>
<thead>
<tr>
<th>Table: Generator data and market outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gen.</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>
AC-OPF problem with a duality gap

- A simulation based on the 5-bus model in [Bukhsh et al. 2013]

- SDP relaxation is not tight \implies Nonzero duality gap [Lavaei and Low 2012]

- Can be solved via second level of moment hierarchy

Table: Generator data and market outcome

<table>
<thead>
<tr>
<th>Gen.</th>
<th>Node</th>
<th>Cost</th>
<th>x_i^* MW</th>
<th>Pay-as-bid</th>
<th>MPCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>$0.1x_1^2 + 4x_1$</td>
<td>246.0</td>
<td>7038.0</td>
<td>12772.3</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>$0.1x_2^2 + 1x_2$</td>
<td>98.2</td>
<td>1061.5</td>
<td>2435.6</td>
</tr>
</tbody>
</table>

- There are no linear prices that would constitute a CE

Reason: Since the bids are strictly convex, CE assigns bidder 1 a linear price equal to its marginal cost at $x_1^* = 246$MW, that is, $\$53.2$/MW. This yields the payment $\$13087.2$.

\[\]
AC-OPF problem with a duality gap

- A simulation based on the 5-bus model in [Bukhsh et al. 2013]
- SDP relaxation is not tight \implies Nonzero duality gap [Lavaei and Low 2012]
- Can be solved via second level of moment hierarchy

Table: Generator data and market outcome

<table>
<thead>
<tr>
<th>Gen.</th>
<th>Node</th>
<th>Cost</th>
<th>x_i^* MW</th>
<th>Pay-as-bid</th>
<th>MPCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>$0.1x_1^2 + 4x_1$</td>
<td>246.0</td>
<td>7038.0</td>
<td>12772.3</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>$0.1x_2^2 + x_2$</td>
<td>98.2</td>
<td>1061.5</td>
<td>2435.6</td>
</tr>
</tbody>
</table>

- There are no linear prices that would constitute a CE

Reason: Since the bids are strictly convex, CE assigns bidder 1 a linear price equal to its marginal cost at $x_1^* = 246$ MW, that is, 53.2/MW. This yields the payment 13087.2.

This payment is greater than its VCG payment, cannot be in the core!
Swiss reserve procurement auctions

- Two-stage stochastic weekly market for secondary and tertiary reserves [Abbaspourtoobati and Zima 2016]
- Mutually exclusive bids are submitted

\[
J(B) = \min_{x \in \hat{X}, y} \sum_{l \in L} b_l(x_l) + d(y)
\]

s.t. \(g(x, y) \leq 0 \)

- Power to be purchased in the weekly market \(x \in \hat{X} \subset \mathbb{R}_+^{t|L|} \)
- Power to be purchased in the daily market \(y \in \mathbb{R}^p_+ \)
- Expected daily market cost \(d : \mathbb{R}^p_+ \to \mathbb{R} \)
- Reserves ensure a deficit probability of less than 0.2%
Swiss reserve procurement auctions

- Based on 2014 data—67 bidders

Table: Total payments of the two-stage auction

<table>
<thead>
<tr>
<th>Total Pay-as-bid payment</th>
<th>2.293 million CHF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total MPCS payment</td>
<td>2.437 million CHF</td>
</tr>
<tr>
<td>Total VCG payment</td>
<td>2.529 million CHF</td>
</tr>
</tbody>
</table>

- Computation times for different mechanisms
 - VCG: 580.6 seconds
 - MPCS: 659.2 seconds
Two-sided markets with DC-OPF constraints

\[c_3(x_3) = x_3^2 + x_3, \quad x_3 \geq 0 \]

\[c_1(x_1) = 5x_1^2 + 4x_1, \quad x_1 \geq 0 \]

\[c_2(x_2) = 4x_2^2 + 5x_2, \quad x_2 \geq 0 \]

\[c_4(x_4) = x_4^2 + 20x_4, \quad -8 \leq x_4 \leq 0 \]
Two-sided markets with DC-OPF constraints

\[c_1(x_1) = 5x_1^2 + 4x_1, \quad x_1 \geq 0 \]

\[c_2(x_2) = 4x_2^2 + 5x_2, \quad x_2 \geq 0 \]

\[c_3(x_3) = x_3^2 + x_3, \quad x_3 \geq 0 \]

\[c_4(x_4) = x_4^2 + 20x_4, \quad -8 \leq x_4 \leq 0 \]

Table: Budget-balance comparison

<table>
<thead>
<tr>
<th></th>
<th>Pay-as-bid</th>
<th>LMP</th>
<th>MPCS</th>
<th>VCG</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u_{CO})</td>
<td>$48.3</td>
<td>$2.8</td>
<td>$0</td>
<td>-$34.8</td>
</tr>
</tbody>
</table>
Conclusion

▶ Summary
 ▶ Derived conditions for core-selecting VCG mechanism
 ▶ Showed the equivalence of the core and the competitive equilibrium
 ▶ Designed core-selecting mechanisms with desirable properties
 ▶ Verified with OPF test systems and Swiss reserve market

▶ Outlook
 ▶ Ways to reallocate the budget surplus
 ▶ Learning in a repeated setting
Thank you for your attention

The results from this talk appear in

- ArXiv:1811.09646 (under review)
- ArXiv:1711.06774 (under review)

You may contact me: okaraca@ethz.ch