1 Playing with tensors

a) Write \(a_{ij}b_{jk} = c_{ik} \) in matrix notation.

b) Show that \(\delta_{ij}\delta_{ij} = 3 \).

c) Show that \(\delta_{ik}\delta_{jm}\delta_{ij} = \delta_{km} \).

d) Write down all intermediate steps to prove why we can write (p. 43)

\[
e_{ij} = \frac{1}{2} \left[\delta_{ij} - \delta_{pq} \left(- \frac{\partial u_p}{\partial x_i} + \delta_{pi} \right) \left(- \frac{\partial u_q}{\partial x_j} + \delta_{qj} \right) \right]
\]

\[
= \frac{1}{2} \left[\frac{\partial u_j}{\partial x_i} + \frac{\partial u_i}{\partial x_j} - \frac{\partial u_p}{\partial x_i} \frac{\partial u_p}{\partial x_j} \right].
\]

2 Basal shear stress

Consider a glacier of \(H = 70 \text{ m} \) thickness at a surface slope of \(\alpha = -10^\circ \). Assume a stress state at the bedrock of the form (in the K-system):

\[
\sigma = \begin{pmatrix}
\delta & 0 & \gamma \\
0 & \delta & 0 \\
\gamma & 0 & \delta
\end{pmatrix}.
\]

with \(\delta = -\rho g H \cos(-\alpha) \) and \(\gamma = \rho g H \sin(-\alpha) \), see Section 2.2 of the script. Suppose there is a “bump” on the bedrock with faces that are inclined with respect to the horizontal by \(\beta_u = 30^\circ \) (upstream face) and \(\beta_d = -50^\circ \) (downstream face).

Compute the normal and tangential stresses acting on the upstream and downstream faces. (Hint: Compute first the unit normals to the two faces in the K-system of coordinates)

Note: The basal shear stress describes how much force is being transmitted from the glacier to the bedrock – and vice versa.
3 Strain rates

Strain rates can be determined by measuring the movement of stakes drilled into the ice. Assume that you have installed 3 stakes A, B and C on Rhone glacier in 2013: B is located on the same flow line than A but 100 m downstream, while C is located in 100 m distance from A across the glacier. When you come back after a year, Stakes A and B have moved by 30 m and 33 m, respectively, along the flow line. In addition, Stake C has moved by 29 m along flow line, and with 2 m across the glacier and away from A.

(a) Represent the movement of Stakes A, B and C between 2013 and 2014 on a drawing.

(b) Calculate the components $\dot{\varepsilon}_{xx}$, $\dot{\varepsilon}_{yy}$, and $\dot{\varepsilon}_{xy}$ of the strain rate tensor.

(c) What can you say about the vertical strain rate?
 (hint: use relation $\dot{\varepsilon}_{ii} = 0$ due to the incompressibility of ice)

(d) Where are the stakes most probably located, in the accumulation area or in the ablation area?

(e) What are the principal strain rates in the horizontal plan (2D).
 (hint: principal strain rates are the eigenvalues of the strain rate tensor, similarly to principal stresses)