Appendix C

Vectors and Tensors

C.1 Vectors

A vector \(\mathbf{x} \) can be represented in a (not necessarily orthogonal) coordinate system

\[
\mathbf{x} = x_1 \hat{\mathbf{e}}_1 + x_2 \hat{\mathbf{e}}_2 + x_3 \hat{\mathbf{e}}_3 \\
= x_p \hat{\mathbf{e}}_p
\]

(C.1)

where \(\hat{\mathbf{e}}_i \) are unit length basis vectors. They form a base for a cartesian (orthogonal) coordinate system if all of the following conditions are fulfilled

\[
\hat{\mathbf{e}}_i \cdot \hat{\mathbf{e}}_j = \delta_{ij}.
\]

(C.2)

The symbol \(\delta_{ij} \) is the Kronecker symbol and is defined by

\[
\delta_{ij} := \begin{cases}
1 & \text{if } i = j, \\
0 & \text{if } i \neq j.
\end{cases}
\]

In Equation (C.1) we have used the summation convention: we sum over all indices that appear twice.

We now consider another orthogonal coordinate system \(K' \) that is rotated with respect to the original coordinate system \(K \), but has the same origin. The new base vectors \(\hat{\mathbf{e}}'_i \) also fulfill the condition

\[
\hat{\mathbf{e}}'_i \cdot \hat{\mathbf{e}}'_j = \delta_{ij}.
\]

(C.3)

The vector \(\mathbf{x} \) can then be written in the new base as

\[
\mathbf{x} = x'_1 \hat{\mathbf{e}}'_1 + x'_2 \hat{\mathbf{e}}'_2 + x'_3 \hat{\mathbf{e}}'_3 \\
= x'_p \hat{\mathbf{e}}'_p.
\]

(C.4)

The vector \(\mathbf{x} \) stays the same, its representation is different in both coordinate systems (the components \(x_i \) and \(x'_i \) are different).
Rotation matrix

We now derive the connection between the representations of the vector \mathbf{x} in both coordinate systems. For this we first define the direction cosine

$$\alpha_{ij} := \hat{e}_i' \cdot \hat{e}_j = \cos(\hat{e}_i', \hat{e}_j)$$ \hspace{1cm} \text{(C.5)}

The quantity α_{ij} is the scalar product of the unit vectors \hat{e}_i' and \hat{e}_j and therefore also the cosine of the angle between the vectors \hat{e}_i' and \hat{e}_j (remember $\mathbf{a} \cdot \mathbf{b} = ab \cos \theta$).

With help of the summation convention (Eq. C.1) we write

$$\mathbf{x} = x_p \hat{e}_p,$$ \hspace{1cm} \text{(C.6)}

an make the scalar product with the unit vector \hat{e}_i

$$\mathbf{x} \cdot \hat{e}_i = x_p \hat{e}_p \cdot \hat{e}_i = x_p \delta_{pi} = x_i$$ \hspace{1cm} \text{(C.7)}

and therefore

$$x_i = \mathbf{x} \cdot \hat{e}_i = x_p' \hat{e}_p' \cdot \hat{e}_i = x_p' \alpha_{pi} \cdot$$ \hspace{1cm} \text{(Equation C.4)} \hspace{1cm} \text{(Equation C.5)} \hspace{1cm} \text{(C.8)}

Therefore we have shown that the representations of the vector \mathbf{x} in both coordinate systems K and K' are linked by

$$x_i = \alpha_{pi} x_p'.$$ \hspace{1cm} \text{(C.9)}
It can also be shown that the inverse transformation is given by
\[x'_i = \alpha_{ip}x_p. \] (C.10)

We now derive the same rules for the direction cosines \(\alpha_{ij} \). First we write
\[x'_i = x_p \alpha_{ip} \quad \text{(Equation C.10)} \]
\[= \alpha_{jp} x'_j \alpha_{ip} \quad \text{(Equation C.9)} \]
and use \(x'_i = \delta_{ij} x'_j \) so that we obtain \(\delta_{ij} x'_j = \alpha_{jp} \alpha_{ip} x'_j \). This is true for all values of \(x'_j \) so that we arrive at
\[\alpha_{ip} \alpha_{jp} = \delta_{ij}. \] (C.11)
Similarly it can be shown that
\[\alpha_{pi} \alpha_{pj} = \delta_{ij}. \] (C.12)

It is convenient to write the direction cosines as a matrix
\[[\alpha_{ij}] = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{pmatrix} \] (C.13)

Equations (C.11) and (C.12) can then be written more compactly as
\[\alpha_{ip} \alpha_{jp} = \delta_{ij} \quad \text{or} \quad [\alpha_{ij}] [\alpha_{ij}]^T = 1, \]
\[\alpha_{pi} \alpha_{pj} = \delta_{ij} \quad \text{or} \quad [\alpha_{ij}]^T [\alpha_{ij}] = 1, \] (C.14)
and Equation (C.9) is written as
\[x = [\alpha_{ij}]^T x'. \] (C.15)

The matrix \([\alpha_{ij}]\) is called the rotation matrix. As Equation (C.14) shows, it has the important property that the transpose of the rotation matrix is identical to its inverse
\[[\alpha_{ij}]^T = [\alpha_{ij}]^{-1}. \] (C.16)

The inverse matrix \([\alpha_{ij}]^{-1}\) is defined through
\[[\alpha_{ij}] [\alpha_{ij}]^{-1} = [\alpha_{ij}]^{-1} [\alpha_{ij}] = 1. \] (C.17)

Example We assume that the coordinate system \(K' \) is rotated by the angle \(\theta \) with respect to the coordinate system \(K \) (Figure C.1). The components of the rotation matrix can be obtained by calculating the scalar products \(\hat{e}_i \cdot \hat{e}'_j \):

<table>
<thead>
<tr>
<th>(\hat{e}'_1)</th>
<th>(\hat{e}'_2)</th>
<th>(\hat{e}'_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{e}_1)</td>
<td>(\cos \theta)</td>
<td>(\sin \theta)</td>
</tr>
<tr>
<td>(\hat{e}_2)</td>
<td>(-\sin \theta)</td>
<td>(\cos \theta)</td>
</tr>
<tr>
<td>(\hat{e}_3)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
For the calculation of the components α_{21} and α_{12} in the table we have made use of the relations

\begin{align*}
\cos(\theta - \pi/2) &= \sin(\theta) \\
\cos(\theta + \pi/2) &= -\sin(\theta)
\end{align*}

For example

\[\alpha_{21} = \cos(\hat{e}_{2}', \hat{e}_{1}) = \cos(-\pi/2 - \theta) = -\sin(\theta).\]

Therefore the rotation matrix is

\[
[\alpha_{ij}] = \begin{pmatrix}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{pmatrix} \tag{C.18}
\]

Next we take a point P which position vector has the coordinates $(2,1,3)$ in the coordinate system K

\[P = 2\hat{e}_1 + \hat{e}_2 + 3\hat{e}_3.\]

We want to calculate the coordinates of P in the system K'. With the relation (Eq. C.10)

\[x'_i = \alpha_{ip}x_p\]

we obtain

\begin{align*}
x'_1 &= \alpha_{11}x_1 + \alpha_{12}x_2 + \alpha_{13}x_3 \\
&= \cos \theta \cdot 2 + \sin \theta \cdot 1 + 0 \cdot 3 \\
x'_2 &= \alpha_{21}x_1 + \alpha_{22}x_2 + \alpha_{23}x_3 \\
&= -\sin \theta \cdot 2 + \cos \theta \cdot 1 + 0 \cdot 3 \\
x'_3 &= \alpha_{31}x_1 + \alpha_{32}x_2 + \alpha_{33}x_3 \\
&= 0 \cdot 2 + 0 \cdot 1 + 1 \cdot 3,
\end{align*}

and arrive at

\[P = (2\cos \theta + \sin \theta)\hat{e}_1' + (-2\sin \theta + \cos \theta)\hat{e}_2' + 3\hat{e}_3'.\]
Comma notation

We consider the scalar field \(f = f(x) \) (e.g. temperature field), the vector field \(f_k = f_k(x) \) (e.g. velocity field) and the tensor field \(f_{pq} = f_{pq}(x) \) (e.g. stress field). We introduce the compact **comma notation** \(f_i \) for the derivative of \(f \) with respect to spatial direction \(x_i \)

\[
f_i := \frac{\partial f}{\partial x_i} \quad i = 1, 2, 3.
\]

Examples of the comma notation

(I) \((x_k f_k)_i = f_i + x_k f_{k,i} \)

(II) \((x_k f_k)_{ij} = f_{i,j} + f_{j,i} + x_k f_{k,ij} \)

Proofs:

(I) \((x_k f_k)_i = x_{k,i} f_k + x_k f_{k,i} \)
\[= \delta_{ki} f_k + x_k f_{k,i} \]
\[= f_i + x_k f_{k,i} \]

(II) \((x_k f_k)_{ij} = (f_i + x_k f_{k,i})_{,j} \)
\[= f_{i,j} + x_{k,j} f_{k,i} + x_k f_{k,ij} \]
\[= f_{i,j} + f_{j,i} + x_k f_{k,ij} \]
C.2 Tensors

First order tensor

A vector a can be written in two different bases \mathbf{e}_k and $\mathbf{e'}_k$ as

$$a = a_p \mathbf{e}_p \quad \text{and} \quad a = a'_p \mathbf{e'}_p.$$ \hfill (C.19)

Further valid expressions are

$$a'_i = \alpha_{ip} a_p \quad \text{and} \quad a_i = \alpha_{pi} a'_p,$$ \hfill (C.20)

where α_{ij} are the components of a rotation matrix. We now define a (cartesian) tensor of order 1 as a quantity, which is represented by three real numbers that under the change from the $\{x_i\}$-system to the $\{x'_i\}$-system are transformed as

$$a'_i = \alpha_{ip} a_p.$$ \hfill (C.21)

Second order tensor

The above definition is extendable. We consider two vectors a and b. Analogous to Equation (C.20) we can write

$$b'_i = \alpha_{ip} b_p \quad \text{and} \quad b_i = \alpha_{pi} b'_p.$$ \hfill (C.22)

We now form the product $a_i b_j$ and look at its transformation behavior

$$a'_i b'_j = (\alpha_{ip} a_p)(\alpha_{jq} b_q)$$
$$= \alpha_{ip}\alpha_{jq} a_p b_q \quad \text{and}$$
$$a_i b_j = (\alpha_{pi} a'_p)(\alpha_{qj} b'_q)$$
$$= \alpha_{pi}\alpha_{qj} a'_p b'_q.$$ \hfill (C.23)

These equations yield the relation between $a_i b_j$ and $a'_i b'_j$. We now write the product $a_i b_j$ as a new quantity

$$c_{ij} := a_i b_j$$

and also

$$c'_{ij} := a'_i b'_j.$$ \hfill (C.24)

The new quantity $[a_ib_j] = [c_{ij}]$ can be written as 3×3 matrix, the tensor product

\[\begin{array}{ccc}c_{ij} & = & a_i b_j \\
\end{array}\]
of the vectors \(\mathbf{a} \) and \(\mathbf{b} \)

\[
[a, b] = \begin{pmatrix}
a_1 b_1 & a_1 b_2 & a_1 b_3 \\
a_2 b_1 & a_2 b_2 & a_2 b_3 \\
a_3 b_1 & a_3 b_2 & a_3 b_3
\end{pmatrix} = \mathbf{a} \otimes \mathbf{b}
\]

(tensor product)

With the above definitions, Equations (C.23) can be written

\[
c_{ij} = a_i b_j = \alpha_p \alpha_q a'_p b'_q = \alpha_p \alpha_q c'_{pq} \quad \text{and} \quad c'_{ij} = a'_i b'_j = \alpha_{ip} \alpha_{jq} a_p b_q = \alpha_{ip} \alpha_{jq} c_{pq}.
\]

(C.24)

A tensor of order 2 is defined by this transformation rule, i.e. a tensor \(\mathbf{A} \) of order 2 with the components \([A]_{ij} = A_{ij}\) always transforms like

\[
A'_{ij} = \alpha_{ip} \alpha_{jq} A_{pq}.
\]

(C.25)

Tensor of order \(n \)

Definition: Given the \(3^n \) numbers \(a'_{i_1, i_2, \ldots, i_n} \) that transform as

\[
a'_{i_1, i_2, \ldots, i_n} = \alpha_{i_1, j_1} \alpha_{i_2, j_2} \cdots \alpha_{i_n, j_n} a_{j_1, j_2, \ldots, j_n}
\]

under the change from the cartesian coordinate system \(x_i \) to \(x'_i \). These numbers are called cartesian tensor of order \(n \)

A tensor is defined by its transformation properties. To test whether a given quantity is a tensor, the components have to transform according to Equation (C.26).

Example: We take some scalar field \(\phi = \phi(\mathbf{x}) \), which could be for example the temperature field. We define the quantity \(a_i := \phi, i \) (the temperature gradient) in any coordinate system \(K \). Are the three numbers \((a_1, a_2, a_3) \) the components of a tensor?

To answer this question we inquire the transformation properties of \(a_i \). Following the definition of \(a_i \), which is valid for all coordinate systems, we have

\[
a'_i = \frac{\partial \phi}{\partial x'_i},
\]

and with the chain rule

\[
a'_i = \frac{\partial \phi}{\partial x'_i} = \frac{\partial \phi}{\partial x_k} \frac{\partial x_k}{\partial x'_i} = \phi_k \frac{\partial x_k}{\partial x'_i}.
\]
Equation shows that

\[
\frac{\partial x_k}{\partial x'_i} = \alpha_{ik},
\]

such that

\[
a'_i = \alpha_{ik} \phi_k = \alpha_{ik} a_k.
\]

Comparison with Equation (C.26) shows that \(a_i\) is indeed a tensor of first order.

Example: We now figure out how the second order tensor \(\mathbf{A}\) looks in the \(K'\)-system, when it has the following form in the \(K\)-system

\[
\mathbf{A} = \begin{pmatrix}
0 & \gamma & 0 \\
\gamma & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\]

The \(K'\)-system is rotated with respect to the \(K\)-system about the \(\hat{e}_3\) axis by an angle of \(\theta = \pi/4\).

Since \(\mathbf{A}\) is a second order tensor, we have

\[
a'_{ij} = \alpha_{ik} \alpha_{jl} a_{kl} \quad \text{with} \quad [\alpha_{ij}] = \begin{pmatrix}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{pmatrix},
\]

with \(\theta = \pi/4\). Using the transformation formula we obtain

\[
a'_{11} = \alpha_{1k} \alpha_{1l} a_{kl} = \alpha_{11}(\alpha_{11} a_{11} + \alpha_{12} a_{12} + \alpha_{13} a_{13}) + \alpha_{12}(\alpha_{11} a_{21} + \alpha_{12} a_{22} + \alpha_{13} a_{23}) + \alpha_{13}(\alpha_{11} a_{31} + \alpha_{12} a_{32} + \alpha_{13} a_{33}) = \cos \theta(0 \cos \theta + \gamma \sin \theta + 0) + \sin \theta(\gamma \cos \theta + 0 \sin \theta + 0) + 0 (\ldots)
\]

\[
= 2\gamma \cos \theta \sin \theta = 2\gamma \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} = \gamma.
\]

Therefore we have

\[
a'_{11} = \gamma.
\]
Similarly for the next component we get
\[a'_{12} = \alpha_{1k} \alpha_{2l} a_{kl} \]
\[= \alpha_{11} (\alpha_{21} a_{11} + \alpha_{22} a_{12} + \alpha_{23} a_{13}) \]
\[+ \alpha_{12} (\alpha_{21} a_{21} + \alpha_{22} a_{22} + \alpha_{23} a_{23}) \]
\[+ \alpha_{13} (\alpha_{21} a_{31} + \alpha_{22} a_{32} + \alpha_{23} a_{33}) \]
\[= \cos \theta (-0 \sin \theta + \gamma \cos \theta + 0) \]
\[+ \sin \theta (-\gamma \sin \theta + 0 \cos \theta + 0) \]
\[+ 0 (\ldots) \]
\[= \gamma (\cos^2 \theta - \sin^2 \theta) \]
\[= \gamma (\cos^2 \theta - \sin^2 \theta) \big|_{\theta = \pi/4} = 0, \]
and therefore
\[a'_{12} = \gamma. \]

With this we arrive at the representation of tensor \(A\) in the \(K'\) system
\[
A = \begin{pmatrix}
\gamma & 0 & 0 \\
0 & -\gamma & 0 \\
0 & 0 & 1
\end{pmatrix}.
\]
Invariants

A quantity which is independent of the orientation of the coordinate system is called an **invariant**. This is best explained with some examples.

Example: a and b are vectors with components a_i and b_j. Show that the scalar product $c = a \cdot b$ is invariant.

To show this we have to prove that the scalar product is independent of the orientation of the coordinate system, i.e. that $c' = a'_i b'_i$ and $c = a_i b_i$ are the same

$$c' = a'_i b'_i$$
$$= \alpha_{ip} a_p \alpha_{iq} b_q$$
$$= \alpha_{ip} \alpha_{iq} a_p b_q$$
$$= \delta_{pq} a_p b_q$$
$$= a_p b_p$$
$$= a_i b_i$$
$$= c$$

Example: c_{ij} are the components of a second order tensor. Show that the trace c_{ii} is an invariant.

$$c'_{ii} = \alpha_{ip} \alpha_{iq} c_{pq}$$
$$= \delta_{pq} c_{pq}$$
$$= c_{pp} = c_{ii}$$

Example: Show that $c_{ik} c_{ki}$ is an invariant.

$$c'_{ik} c'_{ki} = \alpha_{iq} \alpha_{kp} c_{qp} \alpha_{kr} \alpha_{is} c_{rs}$$
$$= \alpha_{iq} \alpha_{is} \alpha_{kp} \alpha_{kr} c_{qp} c_{rs}$$
$$= \delta_{qs} \delta_{pr} c_{qp} c_{rs}$$
$$= c_{qp} c_{pq} = c_{ik} c_{ki}$$
Appendix C Vectors and tensors

The permutation symbol ϵ_{ijk}

The **permutation symbol** ϵ_{ijk} has the value zero if at least two of the indices are the same. Otherwise the symbol has the value +1 or -1, depending on whether the order of the indices is cyclic or anticyclic. Thus we have $\epsilon_{123} = \epsilon_{231} = \epsilon_{312} = 1$ (cyclic indices), $\epsilon_{132} = \epsilon_{213} = \epsilon_{321} = -1$ (anticyclic indices), and $\epsilon_{iij} = \epsilon_{ijj} = \epsilon_{jii} = 0$ (no summation over repeated indices!) for i and $j = 1, 2, 3$.

$$\epsilon_{ijk} := \begin{cases} +1, & i, j, k \text{ in cyclic order} \\ -1, & i, j, k \text{ in anticyclic order} \\ 0, & \text{two or more indices have the same value} \end{cases}$$

The permutation symbol is also known as the Levi-Civita ε symbol. This symbol is mainly used to write the vector product in index notation. One valid expression is

$$\epsilon_{ijk} = \hat{e}_i \cdot (\hat{e}_j \times \hat{e}_k).$$

A useful relation between the Kronecker symbol and the permutation symbol is the $\delta - \varepsilon$ relation

$$\epsilon_{ijk} \delta_{kpq} = \delta_{ip} \delta_{jq} - \delta_{jp} \delta_{iq}. \quad (C.27)$$

Isotropic tensors

An **isotropic tensor** is a tensor with the same entries in each coordinate system. For each isotropic tensor of order n this relation holds

$$A'_{ijk...} = A_{ijk...}.$$

The unit tensor δ_{ij} is an example of an isotropic tensor, since

$$\delta'_{ij} = \alpha_{ip} \alpha_{jq} \delta_{pq} \quad (\text{Eq. C.25})$$

$$= \alpha_{ip} \alpha_{jp} \quad (\text{Eq. C.11}),$$

and therefore $\delta'_{ij} = \delta_{ij}$.

C 11
We note some relations without proof, that will be useful in further sections.

- Each isotropic second order tensor \mathbf{A} with components $[\mathbf{A}]_{ij}$ can be written in the form

 $$[\mathbf{A}]_{ij} = \alpha \delta_{ij}$$

 where α is a scalar.

- Each isotropic third order tensor \mathbf{A} with components $[\mathbf{A}]_{ijk}$ can be written in the form

 $$[\mathbf{A}]_{ijk} = \alpha \varepsilon_{ijk}$$

 where α is a scalar.

- Each isotropic fourth order tensor \mathbf{A} with components $[\mathbf{A}]_{ijkl}$ can be written in the form

 $$[\mathbf{A}]_{ijkl} = \alpha \delta_{ij} \delta_{kl} + \beta \delta_{ik} \delta_{jl} + \gamma \delta_{il} \delta_{jk}$$

 where α, β and γ are scalar quantities.