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Case 1: If this number is 1, then 

+P( q q ( l S l  - I)]. 

In this case, the number M,(g) of nonzero elements a in F is the 
cardinality of E ( u )  = U l t S ( a l G f l ) .  That is, M , ( g ) )  = 

nw[ p,(x)I. 
Case 2: Otherwise, 

The number M,(g)  of nonzero elements a in F is M2(g)  = 

22‘ - 1 - Ml(g). Now using IS( = w[ p,(x)] = w ,  ns = 2,‘ - 1, 
0 

Corollary 4.7: If a) F,k is the splitting field of x “  - 1 over F,, 
b) If k = 2t, s = 2d + 1, where d is a divisor of t ,  and if g(x) is 
a primitiue divisor of xs - 1 over F,, then the weight distribu- 
tion of C is given by Theorem 4.5 for all integer w such that w 
is even and 

and Proposition 4.6, we obtain the expected result. 

with A ,  = (2d + 1)A(2w - 2d) where A(x)  = #{x E F2d \ 

Proofi This is a direct consequence of Theorem 4.5 and 
{O): Kl,(a) = 2d - 1 - 4x1. 

Proposition 4.2. 0 

V. EXAMPLES 
From [7], we can find the weight distributions for irreducible 

cyclic codes. These results can be used to  apply Theorem 4.1 and 
Theorem 4.4. A numerical table obtained in this way is given in 
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An Upper Bound on the Volume of Discrete Spheres 

Hans-Andrea Loeliger, Member, IEEE 

Abstract-Finite-length sequences over a finite alphabet with weights 
are considered. An information-theoretic upper bound on the number of 
such sequences whose weight does not exceed some given threshold is 
given. 

Index Terms-Volume bound, entropy. 

Let A = { a l ,  a2;“ ,  a,,,} be a finite alphabet, each element of 
which has a nonnegative real weight w(a, ) .  We define the weight 
of an n-tuple over A (i.e., an element of A ” )  as the sum of the 
weights of the components. Let 

be the “discrete ball” of normalized radius’ p .  The problem of 
upper bounding the volume lBfl( p)J of such discrete spheres and 
of computing its asymptotic growth rate (or “entropy”) limn 
( l /n) log [BE( p)l is ubiquitous in coding theory. In particular, it 
arises in sphere packing and Gilbert-Varshamov type arguments 
in both Hamming space [1] and Euclidean space (e.g., [2]), and in 
spherical “shaping” of high-dimensional signal constellations 
(e.g., [31). 

The bound of this note is well known for the special case 
where A is the binary alphabet {O, 1) and w(.) is Hamming 
weight: it is stated in almost every textbook on coding that, for 

(1) 

where h( p )  4 - p  log, p - (1 - p)log, (1 - p )  is the binary 
entropy function and 1.1 denotes rounding down to the nearest 
integer. Somewhat surprisingly, however, the corresponding 
bound for the general case seems not to have appeared in the 
literature other than as an asymptotic result (e.g., [2]); a suitable 
reference with a clear-cut, explicit formulation of the general 
version of (1) (with coefficient 1 and no “epsilon” term in the 
exponent) seems not to exist. The purpose of this note is to fill 
this gap. 

Theorem: Let p be a real number such that w,,, < p 5 W, 
where w,,, 4 mina,, w(a> and W ~ A ~ - l E o E , w ( a )  are the 
minimum and the average weight, respectively, of the elements 
of A .  Then 

where p ( . )  is the probability distribution on A defined by 

B,( p )  e {U E A“ : w(v) 5 n p )  

0 < p I 1/2, 
Lnpl 

IB,(p)l = c (;) 5 2nh(p) 
m =  0 

IB,( ,011 I 2nH(p) (2) 

p ( a )  = A) (3) 
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In Euclidean-space applications, “weight” is usually taken to be 
squared norm, in which case p is actually the normalized squared 
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with Z ( A )  e C,, A 

A is uniquely determined by the condition 
where the nonnegative real number 

p ( a ) w ( a )  = p (4) 
a t A  

and where H ( p )  is the entropy -CaeAp(a ) log ,  p ( a ) .  More- 
over, the bound is asymptotically tight, i.e., limp/ - % ( l / n )  log, 

Example: Let A be a finite subset of N-dimensional Eu- 
clidean space, and let w ( a )  = l l~11~ .  Then p ( . )  is "discrete N- 
dimensional Gaussian" with expected energy p. 

The reader will have recognized that p ( . )  is the maximum- 
entropy distribution on A subject to the constraint (4) [4, p. 266 
ff.]. (Such distributions are abundant in statistical physics [SI, 
where A is the "inverse temperature" and %(A) is the partition 
function, or "Zustandssume.") The existence and uniqueness of 
p ( . )  follow from the following proposition which, moreover, 
shows that A is easily computed numerically from either p or 
H ( p ) .  

Proposition: Let m be the number of elements of (AI of 
minimum weight, and assume that m < \Al. For any fixed A, let 
p ( . )  be the probability distribution of (3). Then both the ex- 
pected weight E [ w ]  & C,, ,p(a)w(a) and the entropy H ( p )  
decrease monotonically (from W to w,,, and from log, IAl to 
log, PIZ, respectively) as A increases from 0 to =. 

This is intuitively rather obvious and undoubtedly well known. 
For completeness, however, the proposition is proved in the 
Appendix. 

As a last remark before proving the theorem, we note that 
H ( p )  can be written as 

H ( p )  = - 

I&( p)l = H p ) .  

p ( a ) ( - A w ( u )  log, e - log, Z ( A ) )  
fi t A 

= A p  log, e + log, Z ( A ) .  
The bound ( 2 )  then becomes 

lB,z( p)l 5 (e")  . Z " ( A ) ) ' 7 ,  ( 5 )  
which may be advantageous for numerical evaluation. We will 
see later (cf. proof via Chernoff bound) that (5) actually holds 
for all nonnegative A, but the right side is minimized by choosing 
A as in the theorem. 

We now prove the theorem. In addition to an elementary first 
proof, we also sketch two interesting alternative proofs that were 
communicated to this author in response to an earlier version of 
this note. 

First Proof of the Theorem: We extend p( . )  to A" by defin- 
ing, for every Y = ( L > , ; . . ,  L ! ~ >  E A", the probability p ( u )  as p(v) 
= p(c,)p(~,) ... p(c,). Consider the "high probability set" 

(Remember that p ( . )  depends on p.1 Since 1 2 C, 
2 lBi,( p ) ( .  2 - n H ( p ) ,  we have lBL( p)l 5 2""(p1. 

are equivalent for A 2 0: 

BA( p )  {U E A" : p ( v >  2 2-"H'p ' ) .  

R L (  p(v) 

We next show that BL( p )  = Be( p) .  The following inequalities 

p ( v )  2 2 - 4 p 1 ;  

log, p ( v >  2 - n H ( p ) ;  
n 

- c (Aw(r;)log, e + log, Z ( A ) )  
I =  1 

2 -n  c p(a)(Aw(a)log,  e + log, Z t A ) ) ;  
a € A  

w(o)h log ,e  +n log ,%(A)  s n p A 1 o g 2 e + n l o g , 2 ( A ) ;  
W ( Y )  s n p .  

Thus, B,( p )  = BA( p), which proves (2).  

The asymptotic tightness follows from a standard argument. 
Without loss of generality, let a ,  be an element of A of 
minimum weight. Let T,,(p) be the set of n-tuples U in A" such 
that, for i > 1, the letter a, occurs precisely [p(a,>n] times in U .  

Since W(Y) I E,, A p ( a ) n w ( a )  = n p  for any such U ,  we have 
T,,(p) B J  p).  But the asymptotic growth rate l i m n + x  l /n  log, 
IT,(p)l of T'(p) is well known [4, p. 2821 to be H ( p ) ;  together 
with (21, this establishes l imn+x( l /n ) log ,  lBn( p)l = H ( p ) .  0 
An alternative method to prove the theorem is to show first 

that 

l / n  log, Illn( p)l 5 lim l / n  log, I&( p)l (6) 

and then to calculate the right-hand limit with a standard 
variational technique. A particularly elegant way to carry out 
both of these steps is the following proof due to  F. R. Kschis- 
chang (private communication). 

Proof cia Capacity of Noiseless Channel: Consider a noiseless 
channel with input/output alphabet A, per-symbol costs w(.), 
and a per-symbol cost constraint p. For any finite blocklength n ,  
the set B,( p )  is a code for this channel that satisfies the cost 
constraint, and the capacity C( p )  of this channel is l imn+= l / n  
log, lBn(p)l. Since the channel is noiseless, the rate of any 
finite-length code BE( p )  cannot exceed C( p) ,  which proves (6). 

It is clear that the capacity-achieving input distribution of this 
channel is the maximum-entropy distribution on A subject to 
the constraint C,, A p ( a ) w ( a )  5 p,  which is the distribution 
p ( . )  of the theorem. Thus, C( p )  = H ( p ) ,  which completes the 

Another interesting proof was suggested by J .  L. Massey 

Proof cia Chemoff Bound: Let X = ( X , ; . . ,  X , )  be a ran- 

n - t r  

proof. 0 

(private communication). 

dom variable that is uniform over A". Then 

P ( w ( X )  I n p )  = IB"( p)l. IAI-". ( 7 )  

Bounding the left side by the Chernoff bound [6, p. 97 ff.] gives 

P ( W ( X )  I n p )  _< ~ [ e - ~ ( ~ ( ~ ) - ' ~ p ) I ,  (8) 

which holds for all A 2 0. After some calculations, the right side 
of (8) reduces to lAI-'(eAp .Z'( A))". Together with (7), this 
proves our earlier claim that ( 5 )  holds for all A 2 0. It remains 
to determine the optimal value of A. To this end, consider 

d 
- [ e h p . Z ( A ) ]  = p e A P Z ( A )  - e A p  
d A  U E A  

w ( a > e - A w ( a )  

- - e A J J Z ( A ) (  p - w(a)e-Aw(u)/5T(A)] 
a t A  

where E[w] is defined as in the proposition. Since eApZ(A) is 
positive for A 2 0, it is clear from (9) and from the monotonic 
decrease of E[w] (for increasing A )  that the unique minimizing 

0 

The bound of this note also holds for infinite discrete al- 
phabets provided that the probability distribution p( .>  of the 
theorem exists, as it does for most cases of practical interest. 
However, the determination of satisfactory conditions that are 
sufficient to guarantee the existence of p ( . ) ,  as well as the study 
of asymptotic tightness, leads to questions outside the scope of 
this note. 

A is determined by condition (4) of the theorem. 
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The bound can also be adapted to  continuous alphabets by 
replacing the probability distribution p ( . )  by a density, the 
cardinality lB,( p)l by a volume, and the entropy H ( p )  by the 
corresponding differential entropy. With these substitutions- 
and provided that a density p( . )  of the form ( 3 )  and satisfying (4) 
exists-the nonasymptotic part of the first proof, and thus the 
bound (2), is still valid. We conclude with the following example 
due to G. D. Forney, Jr., (private communication). 

Example: Let A be the real line with weight w ( a )  = a2;  then 
B,J p )  is the n-dimensional sphere (ball) of radius 6 around 
the origin. The probability density p ( . )  is Gaussian with variance 
p,  whose differential entropy is log, fi. According to (the 
continuous version of) (21, the volume of B,( p )  is upper bounded 
by ( 2 ~ e p ) ” ’ ~ .  The comparison of this bound, for n = 2m, 
with the exact formula ( 2 m p ~ ) ~ / m !  for the volume yields the 
Stirling-type bound 

m !  2 (m/e)” ,  
derived purely from information theory and geometry. (The 
Stirling approximation is m! = f i z ( m / e ) m . )  

APPENDIX 
PROOF OF THE PROPOSITION 

To  simplify notation, we write w, and p ,  instead of w ( a l )  and 
p ( a l ) ,  respectively. All logarithms are to the base 2. 

We assume, without loss of essential generality, that w,;.’, w,,, 
are the elements of A that have minimal weight. For A = 0, p( . )  
is uniform over A ,  and thus E [ w ]  = W and H ( p )  = log IAl. The 
limits as A -+ K- of p ( . )  is the distribution p ,  = l / m  for 1 I i I 
m and p ,  = 0 otherwise, which makes it clear that 1imA+= E [ w ]  
= w,,, and l imA+x H ( p )  = log m. 

We next show that ( d / d A ) E [ w ]  < 0 for all A. Let f ( A )  A 
E l  w,e-”,. 

d d 
d h  d h  

= -Z”( A)  -f( A) - f( A) -Z( A) 

= - Ce--hrtCw:e-”j + CWle-Aw,CW,e-AwJ 
I 1 I 1 

= - Ce-Q+,+WJ’W](W] - wl) 

e - A ( u , + w J ’ ( W l  - WI 12, 

1 1  

= - ce-A(w’+wJ’[w,(w, - w,) + W l ( W I  ~ w,)] 
I / > I  

- _  - 

I / > I  

which is negative unless all weights are equal. Since -Z”(A) > 0, 
we have proved that ( d / d A ) E [ w ]  < 0 for all A. 

The monotonic decrease of H ( p )  follows from the relation 
( d / d A ) H ( p )  = A log e ( d / d A ) E [ w ] ,  which results from the fol- 
lowing calculation: 

d d dP, 
- H ( p )  = - H ( p ) -  
d A  dp; d A  

dP, (log p ,  + log e) -  = - 

I d h  
= c ( A w i l o g e  + l o g Z ( A )  

I 

dP1 log e) - 
d h  

= Alogecw,-  dP1 

I d A  

= A l o g e x  - ( p l w l ) -  d dP, 
, dP, d h  

d 
d h  

= A log e - E [ w ] .  
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Asymptotic Results on Codes for Symmetric, 
Unidirectional, and Asymmetric Error Control 

Jos H. Weber 

Abstract-The asymptotic behavior of the rates of optimal codes 
correcting and/or detecting combinations of symmetric, unidirectional, 
and/or asymmetric errors is studied. These rates are expressed in terms 
of the rate of optimal codes with a certain Hamming distance. As a 
consequence, well-known bounds on the latter rate can also be applied to 
bound the former rates. Furthermore, it turns out that, without losing 
rate asymptotically, any error control combination can be upgraded to 
simultaneous symmetric error correction/detection and all unidirec- 
tional error detection. 

Index Terms-Asymmetric errors, code rate, error correction, error 
detection, symmetric errors, unidirectional errors. 

I. INTRODUCTION 
We consider binary channels over which codewords from a 

block code E are sent. If a received word differs in e coordi- 
nates from the transmitted word, we say that e (symmetric) 
errors have occurred. If these transitions are all of the same type 
(either 1 + 0 or 0 - 1), the error pattern is said to be unidirec- 
tional, while if all transitions are of the 1 - 0 type, the error 
pattern is said to be asymmetric. So any asymmetric error 
pattern is also unidirectional, and any unidirectional error pat- 
tern is also symmetric. We call e the weight of the error pattern. 
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