The convoluted history of minimal encoders

Hans-Andrea Loeliger Endora Tech AG, Gartenstrasse 120 CH-4052 Basel, Switzerland email: haloeliger@access.ch

Abstract: Kalman's classic formula "minimal \Leftrightarrow controllable and observable" fundamentally solves the minimality problem of linear systems theory. However, it took 35 years until Kalman's formula was found to apply also to convolutional encoders.

1 Introduction

A convolutional encoder is a linear sequential circuit as shown in Fig. 1. In mathematical terms, an encoder is described by a set of equations

$$\begin{aligned} \mathbf{x}(j+1) &= A\mathbf{x}(j) + B\mathbf{u}(j), \\ \mathbf{y}(j) &= C\mathbf{x}(j) + D\mathbf{u}(j), \end{aligned} \tag{1}$$

where $j \in Z$ is the discrete time index, where $\mathbf{u}(j) = [u_1(j), \ldots, u_k(j)]$ are the time-j input variables, $\mathbf{y}(j) = [y_1(j), \ldots, y_n(j)]$ are the output variables, $\mathbf{x}(j) = [x_1(j), \ldots, x_m(j)]$ are the state variables, and where A, B, C, and D are matrices of the appropriate dimensions; the equation is over the binary field GF(2) (or over any field).

An encoder as in Fig. 1 or, equivalently, as in (1) is *minimal* if no smaller encoder, (i.e., with a smaller number m of delay cells) produces the same set of possible output sequences. (For an in-depth discussion of minimality, see [1].)

How can we test whether a given encoder is minimal? Kalman's formula [2] [3]

$$minimal \Leftrightarrow controllable and observable \tag{2}$$

has long been known to give the answer for the *different* notion of minimality in traditional linear systems theory: there, a system (1) (over the real numbers or over any field) is minimal if no such system with a smaller state space dimension m gives the same *transfer function*, i.e., the same set of input/output sequence pairs. In that theory, a system (1) is *controllable* if the block matrix $\mathcal{C} \triangleq [B, AB, \ldots, A^{m-1}B]$ has full rank m; it is *observable* if the block matrix $\mathcal{O} \triangleq [C^T, A^T C^T, \ldots, (A^T)^{m-1} C^T]$ has full rank m. Clearly, the rank test of \mathcal{C} and \mathcal{O} is *not* a minimality test for a convolutional encoder.

2 Detours

The mentioned facts were well understood when the system-theoretic study of convolutional encoders began [4]. However, the subsequent work (most notably [5]) shifted away from (1) and focussed on the sequence equation

$$\mathbf{y}(D) = G(D)\mathbf{u}(D) \tag{3}$$

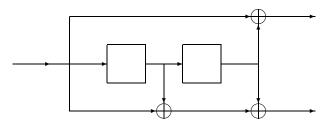


Figure 1: A binary convolutional encoder (with k = 1, n = 2, and m = 2).

where $\mathbf{y}(D)$ and $\mathbf{u}(D)$ are formal Laurent series and where the generator matrix (or encoding matrix) G(D) is a polynomial or rational matrix in D. Various notions of minimality were defined for such matrices [5] [7], the relation of which to the minimality of (1) is subtle (see [1, Section V.A]). Moreover, the unfortunate custom of referring also to G(D) as "encoder" has confused many students of the subject to the extent that few engineers know how to test whether a general encoder (1) is minimal.

We shall not further use G(D) in this paper.

3 Observability Revisited

A trellis section is a four-tuple X = (G, S, S', B), where G is the label alphabet, S and S' are the left state space and the right state space, respectively, and the branches B are a subset of $S \times G \times S'$. In this paper, we will assume S = S'. A trellis is a sequence $\mathcal{X} = \{X_j\}_{j \in Z}$ of trellis sections $X_j = (G_j, S_j, S'_j, B_j)$ such that $S_j = S'_{j-1}$ for all $j \in Z$.

Any system of the form (1) gives rise to a trellis with time-*j* branches

$$B_{j} = \{ (\mathbf{s}(j), [\mathbf{u}(j), \mathbf{y}(j)], \mathbf{s}(j+1)) \},$$
(4)

where the branches are labelled with input-output pairs $[\mathbf{u}(j), \mathbf{y}(j)]$; this trellis will be referred to as the *input-output trellis* of the system. Alternatively, we can label the branches with the output symbols $\mathbf{y}(j)$ only, in which case we will refer to the *output trellis* of the system.

The natural definition of observability for a trellis is the following.

Definition [8]: A trellis is ℓ -observable if any length- ℓ path segment (sequence of branches) is uniquely determined by the corresponding sequence of branch labels.

This definition is consistent with the traditional system theory notion of observability: the input-output trellis (4) of an ABCD-system (1) is ℓ -observable if and only if the block matrix $[C^T, A^T C^T, \ldots, (A^T)^{\ell-1} C^T]$ has rank m, and it is ℓ -observable for any $\ell \ge m$ if and only if it is *m*-observable. (The first claim follows from noting that the path segment is uniquely determined by the initial state and the subsequent inputs; the second claim follows from the descending-chain results of [8] or from the Cayley-Hamilton theorem.)

The corresponding matrix condition for the *output* trellis (where the branches are labelled with output symbols $\mathbf{y}(j)$ only) is the following: that trellis is ℓ -observable if and only if the block matrix

$$\begin{bmatrix} C & D & 0 & \dots & 0 \\ CA & CB & D & 0 & \dots & 0 \\ & & \dots & & & \\ CA^{\ell-1} & CA^{\ell-2}B & \dots & CAB & CB & D \end{bmatrix}$$
(5)

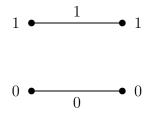


Figure 2: A (section of a) minimal(?) uncontrollable trellis.

has rank $m + \ell k$ (the number of columns); it is ℓ -observable for any $\ell \ge m$ if and only if it is *m*-observable [1].

4 Controllability Optional

There is also a natural trellis definition of controllability: any state can be reached from any other state in ℓ steps. Other than with observability, its application to ABCDsystems (1) does not distinguish between the input-output trellis and the output-only trellis: either trellis is ℓ -controllable if and only if the block matrix $[B, AB, \ldots, A^{\ell-1}B]$ has rank m, and it is ℓ -controllable for any $\ell \geq m$ if and only if it is m-controllable.

On the other hand, the behavioral approach to system theory [9] [10] has revealed that controllability is, in a sense, optional. This is illustrated in Fig. 2: the trellis is minimal for the code that consists of the all-zeros sequence and the all-ones sequence. Rather than ruling out such codes a priori, you may freely choose whether or not to consider bi-infinite sequences through unreachable states as part of the valid behavior. In any case, it is at least required that the trellis is *state-trim*, which means that every state has both a successor and a predecessor (i.e., a bi-infinite path exists through every state); for ABCD-systems (1), the former is automatic and the latter holds if and only if the block matrix [A, B] has rank m.

5 Minimality Simplified

A main result of [8] is a general version of Kalman's theorem (2) for group trellises. Its specialization to linear trellises reads as follows:

Theorem: ([8, Theorem 9], [1, Theorem 5.2]) A time-invariant linear trellis with an m-dimensional state space is minimal if and only if it is state-trim and m-observable.

The theorem applies both to traditional linear systems theory and to convolutional encoders: in the former case, the relevant trellis is the input-output trellis and observability is tested by the rank test of the observability matrix \mathcal{O} ; in the latter case, the relevant trellis is the output-only trellis and observability is tested by the rank test of the matrix (5).

As discussed in Section 4, you may wish to replace state-trimness by the stronger condition of m-controllability.

6 Conclusion

By a suitable definition of observability, Kalman's formula "minimal \Leftrightarrow controllable and observable" is now seen to apply also to convolutional encoders. The 35 years long separation between minimality in linear systems and minimality of convolutional encoders is finally overcome.

References

- H.-A. Loeliger and T. Mittelholzer, "Convolutional codes over groups," *IEEE Trans. Inform. Theory*, vol. 42, pp. 1660–1686, Nov. 1996.
- [2] T. Kailath, *Linear Systems*, Prentice-Hall, 1980.
- [3] R. E. Kalman, "On the general theory of control systems," in Proc. First Int. Congress on Automatic Control, Butterworth's, London, 1960, pp. 481–493.
- [4] J. L. Massey and M. K. Sain, "Inverses of linear sequential circuits," *IEEE Trans. Comput.*, vol. 17, pp. 330–337, April 1968.
- [5] G. D. Forney, Jr., "Convolutional codes I: algebraic structure," *IEEE Trans. Inform. Theory*, vol. 16, pp. 720–738, Nov. 1970, and vol. 17, p. 360, May 1971.
- [6] G. D. Forney, Jr., "Correction to 'Convolutional Codes I: Algebraic Structure'," IEEE Trans. Inform. Theory, vol. 17, pp. 360, May 1971.
- [7] G. D. Forney, Jr., R. Johannesson, and Z.-x. Wan, "Minimal and canonical rational generator matrices for convolutional codes," *IEEE Trans. Inform. Theory*, vol. 42, pp. 1865–1880, Nov. 1996.
- [8] H.-A. Loeliger, G. D. Forney, Jr., T. Mittelholzer, and M. D. Trott, "Minimality and observability of group systems," *Linear Algebra & Appl.*, vol. 205–206, pp. 937–963, July 1994.
- [9] J. C. Willems, "Models for dynamics," in *Dynamics Reported*, vol. 2, U. Kirchgraber and H. O. Walther, Eds., Wiley and Teubner, 1989.
- [10] J. C. Willems, "Paradigms and puzzles in the theory of dynamical systems," *IEEE Trans. Aut. Contr.*, vol. 36, pp. 259–294, March 1991.