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Piece 1 (the solid piece):

A Single Trick and Algorithm
for Many Problems in Signal Analysis

Combining
e linear state space models,
e normal priors with unknown variances (NUV) for sparsity,
e and expectation maximization (EM) for learning all parameters

can be used for sparse estimation, dictionary learning, unsupervised
signal labeling, blind signal separation, and more,

by variations of a single algorithm essentially consisting of repeated
multivariate-Gaussian forward-backward message passing (i.e., re-
cursions as in Kalman smoothing).

[ITA 2016], [EUSIPCO 2017], [PhD thesis Zalmai 2017]
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Sparsity by NUV Priors (Normal with Unknown Variance)
e Originating from Bayesian inference [MacKay 1992, Neal 1996, ...]

e Basis of “automatic relevance determination” and sparse Bayesian
learning [Neal, Tipping 2001, Wipf et al., ...]

Example: real U ~ A(0, s*) with unknown variance s,

single observation Y = U + Z = p € R with noise Z ~ N(0, 0%):

****************

) N(0,0%)
1 ' likelihood
N(0,1) | | )
Ui N

,,,,,,,,,,,,,,,,

Maximum-likelihood estimate 53, = max{0, u* — 0%}
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Sparsity by NUV Priors (Normal with Unknown Variance)
e Originating from Bayesian inference [MacKay 1992, Neal 1996, ...]

e Basis of “automatic relevance determination” and sparse Bayesian
learning [Neal, Tipping 2001, Wipf et al., ...]

Example: real U ~ A(0, s*) with unknown variance s,

single observation Y = U + Z = p € R with noise Z ~ N(0, 0%):

****************
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| " likelihood
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Maximum-likelihood estimate 53, = max{0, u* — 0%}

For fixed s* = &3, , U is Gaussian with posterior mean (I\/IAP/MMSE/LMI\/ISE
estimate)
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0, otherwise.
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Sparsity by NUV Priors (Normal with Unknown Variance)
e Originating from Bayesian inference [MacKay 1992, Neal 1996, ...]

e Basis of “automatic relevance determination” and sparse Bayesian
learning [Neal, Tipping 2001, Wipf et al., ...]

Example: real U ~ A(0, s*) with unknown variance s,

single observation Y = U + Z = p € R with noise Z ~ N(0, 0%):

****************

; i N(0,0%)
| " likelihood
NG rL fL : ?
Ui N

,,,,,,,,,,,,,,,,

Maximum-likelihood estimate 53, = max{0, u* — 0%}

For fixed s* = &3, , U is Gaussian with posterior mean (I\/IAP/MMSE/LMI\/ISE
estimate) ,

2
.,u—a if 2 2
D I Er T >.0

0, otherwise.

: N wirh lilal: —(u—p(y))*/20
Still holds for Y € R™ with likelihood p(y|u) o e : 3 /9



Sparsity by NUV Priors cont'd

General method:

e Model variables (or parameters) U, ..., Uy of interest as in-
dependent zero-mean Gaussians, each with its own individual

unknown variance o7, ..., 0%

e Determine 0%, ..., 0% by ML (or some approximation thereof);
e.g., by expectation maximization (EM).

A local maximum of the likelihood suffices for sparsity.

Specifically (for linear Gaussian models):

1. Begin with an initial guess 6%, ..., 0%.

2. Compute™ the means my;, and the variances O'(ij of the
(Gaussian) posterior distributions p(uy |y, 0%, ..., 0% ) for k =
1,..., K with o7, ..., 0% fixed.

3. Standard EM: update 0,% — mQUk + 0'(2]k for all k.
4. Repeat 2 and 3 until convergence.

*by Gaussian message passing in the appropriate factor graph
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Linear State Space Models

State X}, € R” and observation Y;, € R” evolving according to

X, = AX,_1+ BU,
Y. =CX. + Z;
with A € R™" B € R™™ C € R and where U;, (with values in R™)

and Z;. (with values in RY) are independent zero-mean white Gaussian noise

processes.

Factor graph:
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Linear state space models with sparse input: [ITA 2016]

Sparse Scalar Input

v
O N
Uy instead of Uy
) B
1 1.
T:tj .. L tfj .

E.g.:
e Sparse input-signal estimation (e.g., heart beat [ISIT 2015]):

noise

e I U WWM"VwwmmWMMWM

e Piecewise constant
least-squares fit:

200 300 400 500 600 700
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Linear state space models with sparse input:

[ITA 2016]
White Noise Input + Sparse Scalar Input

N
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Linear state space models with sparse input:

Multiple Sparse Scalar Inputs

instead of

e
|| MLARER | A
1'p'ﬂ‘I"Y‘L|‘ 11 'l ‘ '
1l

| |
200 400

Obvious generalizations:

e polynomial segments

e enforcing continuity, or continuity of derivative(s)

[ITA 2016]
N
U,
‘B
Xy
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Linear state space models with sparse input:

Dealing with Outliers

Simply replace Y = C'Xy + Zj, i
by Y = CX} + Z. + Z), with sparse Z, i.e.,

instead of

[ITA 2016]
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Linear state space models with sparse input: [ICASSP 2016]
Sparse Input Pulses with Individual Direction

N N
Uk instead of U
‘B

+H—w
=

+]
>

e Unknown scalar o}, replaced by unknown vector b, € R"

e Still sparsifying, still learnable (e.g.) by EM

Applications:
e Occasional arbitrary jumps in the state space

e System identification from multiple unknown excitations
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Linear state space models with sparse input: [EUSIPCO 2017]
Recurring Unknown Sparse Input Pulses

instead of

\
!
s

e Unknown input vectors by, ..., by € R", each with independent
sparse input.

® Still learnable by EM. The state transition matrix A can also be learned.

Applications: unsupervised signal labeling, dictionary learning, blind
signal separation, ... 11 /[i9



Unsupervised Feature Extraction, Signal
Labeling, and Blind Signal Separation

Artificial example: irregular occurances of localized signal shapes

on top of a wandering baseline with jumps.
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Everything (matrices A, B, input signals) is learned, unsupervised.
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Unsupervised Feature Extraction, Signal
Labeling, and Blind Signal Separation

ECG recording of a pregnant woman:
decomposition into maternal and fetal heart beats.

Lol

Totel model order 24: 8 and 3 damped sinusoids, respectively, for the heart beats;

local line model (/= cubic spline) for the baseline.
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Multichannel Sparse Impulsive Signals
as Data Type for Signal Analysis

The method just described yields sparse multichannel feature “signals”:

[ [1] [ ] =
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Multichannel Sparse Impulsive Signals
as Data Type for Signal Analysis

The method just described yields sparse multichannel feature “signals”:

L 10 [ ] =

The same method can be applied again to such signals!

(Gaussian estimation = least squares ~ orthogonal projection.)

(Mentioned in [Zalmai thesis 2017], but no experience as yet.)
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Multichannel Sparse Impulsive Signals
as Data Type for Signal Analysis

The method just described yields sparse multichannel feature “signals”:

L 10 [ ] =

The same method can be applied again to such signals!
(Gaussian estimation = least squares ~ orthogonal projection.)
And again, and again ..., to any depth (all unsupervised).

(Mentioned in [Zalmai thesis 2017], but no experience as yet.)
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[ISIT 2015]
Layered Networks of Feature Detection Filters

Piece 2 (more speculative):

Such multichannel sparse feature signals have already been used in
parallel work:

pulse domain

|
|
|
I
U (t) feature | feature feature
— detectiorr detection detection
filter I filter filter
I
I
I
|
|
yL(t) feature | feature feature
detectio detection detection
filter I filter filter

Feature detection filters (“neurons”) work here as follows:

e A multi-input, single-output linear time-invariant filter (IIR)
produces a score signal (= correlation with a smooth template).

e An isolated unit pulse is generated if the score signal exceeds
some threshold. (Sparsity is essential: thresholding does not work.) 16 / [[9



Piece 2: Layered Networks of Feature Detection Filters

Toy Example of Three-Channel Template

e Time scale: at most one pulse in window
e Realizable with biological plausible neurons

e Realizable with simple analog circuits
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Piece 2:
Layered Networks of Feature Detection Filters

pulse domain
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Feature detection filters (“neurons”):
® Score signal (= correlation with smooth template) is computed by IIR filter.
® An isolated unit pulse is generated if the score signal exceeds some threshold.
e Allows biologically plausible neuron models.

e Supervised learning of deep network based on gradient back-
propagation demonstrated (for toy example), apparently avoid-
ing gradient degeneration [Neff thesis 2016].

e Promising for (non-digital) neuromorphic computation.
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Conclusion

The solid piece:

e Linear state space models with NUV priors can be used for
sparse estimation, dictionary learning, unsupervised signal la-
beling, blind signal separation, ...

e ... by variations of a single algorithm consisting essentially of
repeated multivariate-Gaussian forward-backward message pass-
ing (i.e., recursions as in Kalman smoothing).

The view:

Sparse multichannel feature signals are an interesting data type for
signal analysis. Features-of-features networks with such signals can
be built as in Piece 1 or as in Piece 2.

(Did not discuss relations to convolutional neural networks, wavelets, .. .)
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