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The Factor Graph Approach
to Model-Based Signal Processing

Hans-Andrea Loeliger, Justin Dauwels, Junli Hu, Sascha Korl, Li Ping, and Frank R. Kschischang

Abstract—The message passing approach to model-based siguse. Indeed, some of the material of this paper (in particular,

nal processing is developed with a focus on Gaussian messagen Sections IV, V, and Appendix lIl) is not easily expressed
passing in linear state space models, which includes recursiven other notation systems.

least squares, linear minimum-mean-squared-error estimation,
and Kalman filtering algorithms. Tabulated message computation While much interesting recent work on graphical models
rules for the building blocks of linear models allow to compose specifically addresses graphs with cycles (e.g., [12]-[21]), the

a variety of such algorithms without additional derivations or t . " d with lo-f h
computations. Beyond the Gaussian case, it is emphasized that theP"€S€Nt Paper 1S mostly concerned with cycle-free grapns, or

message passing approach encourages to mix and match differentWith cycle-free subgraphs of complex system models. We will
algorithmic techniques, which is exemplified by two different encounter some factor graphs with cycles, though.
approaches—steepest descent and expectation maximization—to . . .
message passing through a multiplier node. The message passing approach to signal processing was
suggested in [22], [2] and has been used, e.g., in [23]-[39] for
tasks like equalization, multi-user detection, MIMO detection,
channel estimation, etc. The literature on graphical models for
Graphical models such as factor graphs allow a unifiegbneral inference problems is vast. For example, factor graphs
approach to a number of topics in coding, signal processirigave also been used for link monitoring in wireless networks
machine learning, statistics, and statistical physics. In partj@0], for genome analysis [41], and for clustering [42].
ular, a large number of algorithms in these fields have beenT
shown to be special cases of the basic sum-product and max-
product algorithms that operate by message passing in a fa
graph [1]-[3]. In this paper, we elaborate on this topic with
emphasis on signal processing. We hope to convey that fact
graphs continue to grow more useful for the design of practic\%{ . : '
algorithms for model-based detection and estimation pro%qna}te'Gaus&an messages that are gxtensmns and rEf'nemems
lems involving many (discrete and/or continuous) variablegf S|_m|Iar tabl_es in [3] and [33]' W_'th these tables, 't. IS
In particular, the factor graph approach allows to compog _SS_'ble to wr|t_e down (essen_tlally W'Fh.OUt any computation)
nontrivial algorithms for such problems from tabulated rule$ icient Gaussian/LMMSE (linear minimum-mean-squared-
for “local” computations corresponding to the building blockgrrc_)r).estlmatmn algorithms for qwlde variety of applications,
of the system model; it also encourages to mix and mat&f 'S llustrated by several nontrivial examples.
a large variety of techniques ranging from classical GaussianBeyond the Gaussian case, we will address the represen-
and gradient techniques over expectation maximization (EMjtion of messages for continuous variables and of suitable
to sequential Monte Carlo methods (particle filters). message computation rules. A wide variety of algorithmic
Factor graphs are graphical models [4]-[7]. In many reechniques can be put into message passing form, which
spects, the different notation systems for graphical modeielps to mix and match these techniques in complex system
(Bayesian networks [7], [8], Markov random fields [7], [9]models. To illustrate this point, we demonstrate the application
junction graphs [10], [11]...) are essentially equivalent, buwff two different techniques, steepest descent and expectation
there are some real differences when it comes to practigahximization, to message passing through a multiplier node.

I. INTRODUCTION

his paper begins with an introduction to factor graphs
complements [2] and [3]. We then turn to an in-depth
Iscussion of Gaussian message passing for linear models, i.e.,
man filtering and some of its ramifications. In particular,
Fwill present tabulated message computation rules for multi-
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Fig. 1. A Forney-style factor graph.
Y: Y,
Il. FACTOR GRAPHS Fig. 2. Factor graph of (2) and (3).
We review some basic notions of factor graphs. For com-

plementary introductions to factor graphs and their history and fx
their relation to other graphical models, we refer to [2] and

[3]. Other than in [2], we will use Forney-style factor graphs X
(also known as “normal factor graphs”) as in [3]. (The original -
factor graphs [2] have both variable nodes and factor nodes. [

Forney-style factor graphs were introduced in [43], but we
deviate in some details from the notation of [43].)
Assume, for example, that some functigitu, w, z,y, z)

12y | | |
can be factored as i D—l’Bj i i EF]‘—QD i
flu,woz,y,2) = fi(u) folu, w, @) f3(2,y,2) fa(2). (1) e - | RERRRFEEEEE

This factorization is expressed by the factor graph shown in
. . Y Y1 Y2 Y
Fig. 1. In general, a (Forney-style) factor graph consists of
nodes, edges, and “half edges” (which are connected onlyMa. 3. More detailed version of Fig. 2.
one node), and there are the following rules:

« There is a (unique) node for every factor.

o There is a (unique) edge or half edge for every variabl

o The node representing some factpis connected with
the edge (or half edge) representing some variable
and only ifg is a function ofz.

Implicit in these rules is the assumption that no variab
appears in more than two factors. We will see below how this fzlyr,y2) < f(x,y1,y2) (6)

restriction is easily circumvented. o _
A main application of factor graphs are stochastic modei¥here ‘o<” denotes equality up to a scale factor. It follows that

For example, letX be a real-valued random variable and lef (#[¢1,92) is also represented by the factor graph of Fig. 2
Y; andY; be two independent real-valued noisy observatiofdP t0 @ scale factor). This clearly holds in general: passing
of X. The joint probability density of these variables is  T0M somea priori model to ana posteriori model (based
on fixing the value of some variable(s)) does not change the
f(@y1,y2) = f(@) f(1]z) f(y2l2), (2) factor graph.

) L ) We will usually denote unknown variables by capital letters
W.h'Ch we (_:Ialm is represented by the factor graph of F'_g_' and known (observed) variables by small letters. (Formally, a
Literally, Fllg. 2 rerflresents_an_ extended model with auxiliang , o1,ed known variable is an elementBfwhile a B-valued
variables X" and X" and with joint density unknown variable is a function from the configuration space

o - ! N (! into B [3].) For the factor graph of (z|y1, y2), we would thus
fo@,a g 1) = F@) f ) @ale) == @ )&3) modify Fig. 2 by replacing; by y» andY; by y, if these

,,,,,,,,,,,,

granching points that allow more than two factors to share
some variable.

Assume now thal; andY; are observed and that we are
interested in the posterioriprobability f(z|y1, y2). For fixed
lgél andy., we have

where the equality constraint “function” variables are known (observed). o
A more detailed version of Fig. 2 is shown in Fig. 3, where
fe(z, 2, 2") = 6(x — 2')0(z — 2") (4) we assume
(with 6(-) denoting the Dirac delta) enforcd3(X = X') = Yi=X+2; )
P(X = X") = 1. Clearly, (2) is a marginal of (3): Yy =X+ 7y @)

flz,y1,y2) = / flz, 2’2" Jy1,y2) da’ dx”’.  (5) with random variables/; and Z, that are independent of each

w’ St other and ofX. The nodes labeled” represent the factors

For most practical purposes, equality constraint nodes (sutflx+z; —y1) ando(z+ 22 —y2 ), respectively. As illustrated by
as the node labeled=" in Fig. 2) may be viewed simply as this example, the (Forney-style) factor graph notation naturally



supports modular and hierarchical system modeling. Fig. 3 99’]§tf‘"i‘if‘fs
also illustrates the use of arrows and of special symbols (such
as “=" and “+") to define factors and to make factor graphsf [=]
readable as block diagrams. L
As a nonstochastic example, consider the following system
identification problem. Let/;, and Y:, k € Z, be the real- |
valued input signal and the real-valued output signal, respec- [ulk—1
tively, of some unknown system that we wish to approximat‘g

by a linear FIR (finite impulse response) filter of ordefr

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

M
Yi=> helUks o - 71 k

pard i -
Vi, = Yi + 2. (10) [+

The slack variableZ;, absorbs the difference between the filter - - ~

outputY;, and the observed outpﬁm Assume that we know ; Y1 Yk

both the input signal/y, = uy, k= —M +1,—M +2,..., N bo---mmmmm oo oo -

and the output signal}, = g, k = 172,...7N We wish cost function

to determine the unknown filter coefficients, . ... has such Fig. 4. (Two sections of) a factor graph for the FIR filter identification

that the squared errozk | Z} is as small as p055|ble problem.

We first note that m|n|m|2|ngz,€ L Z¢ is equivalent to

maximizing If f(x1,...,2,) is & probability mass function of discrete
N random variablesXy,..., X,,, then (13) is the probability
H e~ #/20% — o= L3y #k/207 (11) mass function ofYj.
Pty In later sections, we will primarily be interested in contin-

uous variables. In this case, the summation in (13) is replaced

(for arbitrary positive 02) subject to the constraints (9)by integration

and (10).

For lat ite (9 If f(z1,...,2,) has a cycle-free factor graph, the function
or later use, we rewrite (9) as (13) can be computed by the sum-product algorithm, which
Yy = [u]nH, (12) splits the “big” marginalization (13) into a sequence of “small”
. A marginalizations. For example, assume tfi@t;, ..., z7) can
with the row vectorulr, = (ug,ur—1,...,ur—n) and the pa \written as
column vectorH = (hg, hy, ..., ha)T.
A factor graph of this example is shown in Fig. 4. The [y, x7) = fi(@) fa(a2) f3(21, 22, 23) fa(24)
lower part represents the unconstrained cost function (11) f5(x3, x4, x5) fo(xs, 26, 27) fr(27)  (14)

and the linear constraint (10); the upper part represents
linear constraint (12), i.e., the facto§y, — [u]pH) for
k=1,2,...,N. ~
Note that the original least-squares problem to determine f3(x3) = pe(z3)pup(x3) (15)
the filter coefficients is equivalent to maximizing the functiog i1,
represented by Fig. 4 over all assignments of values to all
unknown variables. We will see in Section V how efficient
recursive least squares algorithms (RLS) for this maximization

may be obtained from tabulated rules for Gaussian mess g
paséing algorithms. % po(xs) = Y falxa) fs(ws, xa, ws)pr(zs)  (17)

T4,T5

t(’Ekein the factor graph in Fig. 5. Assume that we wish to
computefs(xs). It is easily verified that

pelrs) = Y fi(m)fol@s) fa(xr,wa,23)  (16)

x1,T2

I1l. M ESSAGEPASSING ALGORITHMS with

We briefly review the basic sum-product and max-product
algorithms [44], [2]. In this section, the emphasis will be on
cycle-free factor graphs.

pr(rs) =Y folws, ws, x7) fr(27). (18)
Te,T7

The quantities.c, up, andu g in (15)—-(18) may be viewed as

summaries of the dashed boxes in Fig. 5, which are obtained

by eliminating the variables inside the box by summation.

A. The Sum-Product Algorithm Such summaries may be thought of as messages in the factor

For some given functionf(z1,...,z,), assume that we graph, as is shown in Fig. 5.
wish to compute With the trivial summaries/messages:(z1) = fi(x1),
= A 2 i
Felan) 2 Z F(@1y. e zn). (13) and up(xs2) f2(x2) we can write (16) as
Ti,. .., Tn pel(ws) 2 Y fa(@r, wo, x)pmalz) s (@s). (19)

exceptzy, Pt



i B. The Max-Product Algorithm

l f l | a | fr | | Assume we wish to maximize some functity, ..., z,),
| | l ! ' 1 i.e., we wish to compute
! mBY|X; ! Xy |§HE L X |y HG L
! X L X3 ! X5 i Xe i ! (Z1,...,2,) = argmax f(z1,...,2,) (22)
| [ =] = 1 L L] o Flrntn
o h A fs e MD: fs HF Lﬁf‘i”””j ' where we assume thgthas a maximum. Note that

777777777777777777777777777777777777777777 - £ (e 23
Fig. 5. “Summarized” factors as messages in a factor graph. Tk arg;knax fk(xk) ( )

with
r AN
Similarly, with the trivial summariesiz(zs) = fi(x4) and fulwr) = . maxw flxy,. @) (24)
. Tyevey n

pa(z7) = fr(x7), we can write (17) as exceptzy,

pp(zs) = Z f5(xs, x4, 25 ) pp(zs)pr(zs)  (20) I f(z1,...,2,) has a cycle-free factor graph, the function

Ta.s (24) can be computed by the max-product algorithm. For
example, assume thg{z,,...,27) can be written as in (14),
and (18) as which corresponds to the factor graph of Fig. 5. Assume that
we wish to computeﬁ;(xg). It is easily verified that
pr(s) =Y folws, we, v7)pc (7). (21) )
Tovr fa(z3) = pe(zs)pp(zs) (25)

All these messages/summaries (19)—(21) are formed #6th 114 ...uc defined as in (16)-(21) except that summation
cording to the following rule: is everywhere replaced by maximization. In other words, the

max-product algorithm is almost identical to the sum-product
Sum-Product RuleThe message out of some node/facfer algorithm except that the messages are computed as follows:
along some edg&;, is formed as the product of, and all
incoming messages along all edges excEpt summed over
all involved variables excepXy.

Max-Product RuleThe message out of some node/facfpr

along some edg&,, is formed as the product of, and all

- incoming messages along all edges exc&pt maximized
From this example, it is obvious that the margifalz;) over all involved variables except,.

may be obtained simultaneously for &llby computing two _

messages, one in each direction, for every edge in the factop_he remarks at the end of Section lll-A apply also to

graph. The functionf,, is the product of these two message e max-product algorithm. In particular, the “max-marginals”
as in (15). fr(zx) may be obtained simultaneously for &lby computing

two messages, one in each direction, for every edge in the
factor graph;fk(azk) is the product of these two messages as
1) The sum-product algorithm works for any cycle-fregn (25).
factor graph. The analogies between the sum-product algorithm and the
2) Open half edges such & in Fig. 5 do not carry an max-product algorithm are obvious. Indeed, the sum-product
incoming message. Equivalently, they may be thougfgorithm can be formulated to operate with abstract addition
as carrying as incoming message the constant functigid multiplication operatorsa” and “”, respectively, and
p(x) = 1. setting 4" = “max” then yields the max-product algorithm
3) Known variables such &g in Fig. 4 are simply plugged [22, Section 3.6], [10]. Translating the max-product algorithm
into the corresponding factors; they are not otherwisgto the logarithmic domain yields the max-sum (or min-sum)
involved in the algorithm. algorithm [2], [10], [22].
4) 1t is usually (but not always!) sufficient to know the
“marginal” (13) up to a scale factor. In such cases, it
suffices to know the messages only up to a scale fact6r. Arrows and Notation for Messages

The option to freely scale messages is often essential for-l-he use of ad-hoc names for the messages (suchaas

numerically reliable computations. .., kg In Fig. 5) is often unsatisfactory. We will therefore

Since the sum-product rule is a “local” computation, itise the following systematic notation. L& be a variable
can be applied also to factor graphs with cycles. The suthat is represented by a directed edge (i.e., an edge depicted
product algorithm then becomes an iterative algorithm whevéth an arrow). Theny'y denotes the message that flows in
messages are recomputed according to some schedule dinéldirection of the edge anflx denotes the message in the
some stopping criterion is satisfied or until the available timgpposite direction. We will sometimes draw the edges with
is over. The algorithm may be initialized by assigning to alirrows just for the sake of this notation (e.g., the edgén
messages the neutral constant functidn) = 1. Fig. 6 and all edges in Fig. 7).

We also observe:
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Fig. 8. Factor graph of general linear state space model (40), (41).

Xk

Fig. 6. Message passing in Fig. 3.

of such marginals as messages out of a half edgavithout
incoming message) connectedXo(= X') as shown in Fig. 7:
oo 3 both by the sum-product rule and by the max-product rule, we
have

X | variables (such aX) of interest. It is often convenient to think

Fig. 7. Adding an output half edg& to some edgeX.

g () / x//éa:—x 5(x —2'")

D. An Example ") T (z') da’ dz” (38)

_ qu a simple example, co_nS|der sum-product message pass- _ MX( Yoy (). (39)

ing in the factor graph of Fig. 3 to compute theposteriori

probability f(x|yi,y2) for known (observed)Y; =y; and It follows that the message computation rules for marginals
Y> = yo. The required messages are indicated in Fig. 6. Nateincide with the message computation rules out of equality
that constraint nodes (as, e.g., in Table II).

f(xlyry2) o< fz,y1,92) (26)
= Tx(2)Tx(@). 27) IV. LINEAR STATE SPACE MODELS

By the rules of the sum-product algorithm, we have Linear state space models are important in many applica-

tions; some examples will be given below. In the Section V, we

Tz (21) = fz,(21); (28)  will discuss Gaussian sum-product and max-product message
Tz, (22) = fz,(22); (29) passing in such models.
_ The general linear state space model may be described as
px (') 1= Y1) Hz, (21) dz follows. Fork = 1,2,3,..., N, the inputUy, the outputYy,

z1

and the stateX; are (real or complex) scalars or vectors

= Jz,(n —2); (31) coupled by the equations
Txo(z) 5( — ) d 32
Hx / @ ) i (20) dz (32) X = ApXi—1 + BrUg (40)
= fz,(y2 — 2"); (33) Yy = Cp Xk (41)
/ o (z —a")d(x —2") where Ay, By, and C), are (real or complex) matrices of
o — " " suitable dimensions. The factor graph corresponding to these
- ’uﬁ( @) e (a”) da’ da (34) equations is given in Fig. 8.
= nxe () px () (35) Note that the upper part of Fig. 4 is a special case of Fig. 8
= fz,(y1 — ) f2,(y2 — T); (36) without input (i.e., B, = 0), with X;, = H, with 4; an
Hx (@) = fx(z). (37) identity matrix, and withCy = [u]}.

As exemplified by Fig. 4, linear state space models are
In this example, the max-product algorithm computes €¥an combined with quadratic cost functions or (equivalently)
actly the same messages. with Gaussian noise models. The factor graph approach to
. this classical happy combination is the core of the present
E. Marginals and Output Edges paper. A key feature of this combination is that the sum-
Both in the sum-product algorithm and in the max-produgtroduct algorithm coincides with the max-product algorithm
algorithm, the final results are the margingis, 72x of the (up to a scale factor) and that all messages are Gaussians (or
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If, in addition, the dashed box in Fig. 9 does not introduce
cycles, then the sum-product messages aldpgatisfy

fffffffff {Ul___{UNJ v, (ur) Fr (ur) oc f (ur ), (48)

from which the symbol-wise MAP (maximura posterior)
estimate ofU;, may be obtained as

1), = argmax ﬁ)Uk (uk)ﬂUk (ug). (49)
uk

If the dashed box introduces cycles, we may use iterative
(“turbo”) message passing and still use (49) to obtain an
estimate ofU;. Efficient algorithms to compute the messages
‘rr,. will be discussed in Section V-B.

B. Separation of Superimposed Signals

Fig. 9. A factor graph for equalization. Let U = (Uy,...,Ux)" be a K-tuple of real-valued
random variables, lel/ be a realV x K matrix, letY = HU,
and let
degenerate Gaussians), as will be discussed in Section V and -
Appendix . Y=HU+2Z (50)
We will now give two more examples of this kind. =Y+Z (51)
o where Z = (Z1,...,Zy)T is an N-tuple of real zero-mean
A. Equalization i.i.d. Gaussian random variables with variancgé Based on
Consider the transmission of real symbdl§, & = the observatiory” = j, we wish to compute(uy|j) and/or
1,..., N, over a discrete-time linear intersymbol interferenca LMMSE estimate of/,, for k =1,2,..., K.
channel with additive white Gaussian noise. The received realTwo different factor graphs for this system model are shown
valuesYy, k= 1,..., N, are given by in Figures 10 and 11. In Fig. 1@, denotes thé:-th column
M of the matrix H; in Fig. 11, e; = (1,0,...,0)7, e; =
Yy = Zhekae + Zg, (42) (0, 1,0,...,0)T, etc. In Fig. 10, most of the factor graph just
—0 represents the decomposition
where Z, k = 1,...,N, are ii.d. zero-mean Gaussian K
random variables with variance? and whereho, ..., ha HU = thUk§ (52)
are known real coefficients. (The initial channel state k=1
Uo,U_1,...,U_p+1 may be known or unknown, dependingn Fig. 11, most of the factor graph just represents the
on the application.) decomposition
We bring (42) into the state space form (40), (41) by K
defining Y, = Y, — Z, (the noise-free output) X, = U=> eUs (53)
(U, ..., Ui_n)T, and the matrices k=1
Although these decompositions appear trivial, the resulting
A LA 0 O . . ) .
Ay =A= ( v 0 ) (43) message passing algorithms in these factor graphs (using
M . ..
tabulated rules for Gaussian messages) are not trivial, cf.
(WhereI,, denotes thel x M identity matrix) and Section V-C. The complexity of these algorithms depends
N T mainly on N and K; Fig. 10 may be preferable fak > N
By =B =(1,0,....0) (44) while Fig. 11 may be preferable fdd < N.
Cr £ C = (ho,hy,..., ha). (45)

The factor graph of the model (42) is shown in Fig. 9. The V. GAUSSIAN MESSAGEPASSING IN LINEAR MODELS

dashed box at the top of Fig. 9 represents a code constraintinéar models as in Section IV consist of equality con-
(e.g., the factor graph of a low-density parity check code) &fraints (branching points), adders, and multipliers with a
another model fol/y, if available. constant (scalar or vector or matrix) coefficient. The sum-
The factor graph in Fig. 9 (without the dashed boxyroduct and max-product message computation rules for such
represents the likelihood functiorf(g,y,z|u) for w = nodes preserve Gaussiar_lity: if _the incoming messages are
(ui,...,un), y = (y1,...,yn), €tc. If the dashed box in members of the exponential family, then so are the outgoing
Fig. 9 represents aa priori density f(u), then the total graph Messages.

in Fig. 9 represents In this section, the computation of such messages will be
considered in detail. For scalar variables, there is not much to

F)f(@,y,2lu) = f(u,9,y,2) (46)  say; for vector variables, however, the efficient computation

x f(u,y,z|9). (47) of messages and marginals is not trivial. The heart of this



LTI K TABLE |
SINGLE-EDGE RELATIONS INVOLVING V.

~ — —
Wx = WxVxWx (1.2)
— — —
=Wx — WxVxWx (1.2)
—  ~
Vx = VxWxVx (1.3)
— - o~ =
=Vx —VxWxVx (1.4)
mx = Vx Wxinix + Vx W fix (1.5)
:WZX —‘_/))(Wxn—’ix +waxmx. (|.6)
The direction of the arrows may be reversed in all these
relations.

scribed either by the mean vectarand the covariance matrix
V or by the weight matrixi¥’ = V-1 and the transformed
meanWm, cf. Appendix I. (It happens quite frequently that
either V' or W are singular for certain messages, but this is
seldom a serious problem.)

We will much use the notation for messages of Section IlI-
C, which we will extend to the parameters, V, and W.
If some directed edge represents the vari_a}dlethe forward
message has meanyx, covariance matrix}’ x, and weight

. 1.
section are Tables I1-VI with formulas for such messages af#trix Wx = Vi the backward message has meéa,
marginals. These tables allow to compose a variety of efficiesnvariance matrixl’ y, and weight matrixivy =

Fig. 11. Another factor graph of (50) and (51) (superimposed signals).

Vit The
algorithms—both classic and recent variations of Kalmaproduct of these two messages—the marginal of the global
filtering—without additional computations or derivations. ~ function if the factor graph has no cycles—is the Gaussian
However, before entering into the details of these tableswith meanmy and covariance matri¥y = Wy ' given by
should be pointed out that the algorithms considered here are _ —
many different things at the same time: Wx =Wx + Wx (54)
o For linear Gaussian factor graphs, the sum-product %\Ihd
gorithm and the max-product algorithm coincide (up
to a scale factor). (This follows from Theorem 4 in

Appendix 1.) . _ Equations (54) and (55) are equivalent to (11.1) and (I1.3) in
« The Gaussian assumption does not imply a stochasfignie || cf. Section III-E.)

setting. For example, the least-squares problem of Fig. 45, open half edge without an incoming message may

may also be viewed as a linear Gaussian problem. o \ewed as carrying as incoming message the constant
« In a stochastic setting, the max-product (= sum-produgf),ction 1, which is the limit of a Gaussian with’ = 0 and
algorithm may be used to compute both MAP (maximurgyean,,, — (. A half edge representing some known variable
a posterior) and ML (maximum likelihood) estimates. y _ . " may be viewed as carrying the incoming message
« MAP gst|mat|on in a linear Gaussian model 00|n9|de§(x — o), which is the limit of a Gaussian with’ = 0 and
both with MMSE (minimum-mean-squared-error) estimgsyaan, — 2.
tion and \_Nlth_LMMSE (Ilnear_ minimum-mean-squared- We will also use the auxiliary quantity
error) estimation, cf. Appendix I.
« MAP estimation .Withgssumedsaussians_coincides _with Wy = (V)X + VX)*{ (56)
true LMMSE estimation (cf. Theorem 3 in Appendix I). L
It follows that LMMSE estimation may be carried out bywhich is dual toVx = (Wx +Wx)~!. Some relations among
Gaussian message passing in an appropriate linear mottetse quantities and the corresponding message parameters are
« If the sum-product algorithm converges in a Gaussiagiven in Table I. (These relations are proved, and then used
factor graph with cycles, then the means of the marginals other proofs, in Appendix II.)
are correct (despite the cycles) [12], [13]. Corﬂ)putation rules for the parameters of messages (such as
It is thus obvious that Gaussian message passing in lineax, Vx, etc.) and marginals (such asy, Vx, etc.) are
models encompasses much of classical signal processing.listed in Tables Il, 1, IV, and VI. The equation numbers in
We now turn to the actual message computations. In thisese tables are prefixed with the table number; for example,
section, all messages will be (multivariate) Gaussian dist(H.3) denotes equation 3 in Table Il. The proofs are given in
butions, up to scale factors. Gaussian distributions will be dappendix II.

Wxmx = W/me + Wme. (55)



TABLE I
GAUSSIAN MESSAGES ELEMENTARY NODES.

kallm:Xk
— =
iy

Fig. 12. RLS as Gaussian message passing.

— — —

Wz =Wx + Wy

— — —

Wx =Wz + Wy
Wzmz = mex + Wymy
WX(mX = WZmZ + W/Ym)’

mx =my =myg

Vx =Vy =Vy

(I1.1)
(11.2)
(11.3)
(I1.4)

(I1.5)
(11.6)

In principle, Tables Il and Il suffice to compute all mes-
sages in a linear model. However, using only the rules of
Tables Il and III leads to frequent transformatlonsvb’fand
Wi into V = W1 and i, and vice versa; iV and W are
large matrices, such conversions are costly.

The inversion of large matrices can often be avoided by
using the message computation rules given in Table IV (which
follow from the Matrix Inversion Lemma [47], cf. Theorem 7
in Appendix I1). The point of these rules is that the dimension
of Y may be much smaller than the dimensionJ6fand Z;
in particular,Y may be a scalar.

Table Il shows the propagation o and m forward
through a matrlx multiplication node as well as the propaga-

X

[+ =
T

— — —
Vz=Vx+Vy

— — —
Vx=Vz+Vy

— — —
mZ:mX+my

— — —

mx = mz — my
mx +my —mz =0
Wx =Wy =Wz

(I1.7)
(11.8)
(11.9)
(11.10)
(11.11)
(11.12)

tion of W and Wi backward through such a node. In the
other direction, Table V may help: Table V (top) together
W|th Table IV (bottom) allows the propagation 6 and

Wi forward through a matrix multiplication node; Table V
(bottom) together with Table IV (top) allows the propagation

TABLE Il

GAUSSIAN MESSAGES MATRIX MULTIPLICATION NODE .

of V and n backward through a matrix multiplication node.
The new “internal” open input in Table V (top) may be viewed
as carrying as mcommg message a degenerate Gaussian wit
W = 0 and mearm = 0; the new “internal” output in Table V
(bottom) may be viewed as carrymgas incoming message a
degenerate Gaussian with =0 and V' = 0.

The point of the groupings in Table VI is to create invertible
matrices out of singular matrices.

We now demonstrate the use of these tables by three
examples, each of which is of interest on its own.

A. RLS Algorithms

Consider a factor graph as in Fig. 12, whe¥g = X; =
X5 = ... are (unknown) real column vectors and whergec,,

, are (known) real row vectors. The classic recursive least-
squares (RLS) algorithm [47] may be viewed as forward-only
(left-to-right) Gaussian message passing through this factor
graph, with an extra twist.

Note that Fig. 4 in Section Il is a special case of Fig. 12

(with X, = H and with¢, = [u]g). It follows that the RLS

Forward:
— — H
Vy =AVxA
— 4=
my = Anix
my = Amx

Vy = AVx AH

For Wy, see also Tables V and VI.

Backward:
— HE
Wx = A" Wy A
Wxinx = AHWy iny
Wxmx = AT Wymy
Wx = AHWy A

Wxmx = AT Wy 'y

by —
For Vx andmx, see also Tables V and VI.

(11.1)
(I11.2)

(111.3)
(l11.4)

(I11.5)
(111.6)

(.7)
(111.8)

(111.9)

algorithm may be used, in particular, to solve the FIR filter
identification problem stated at the end of Section Il.




TABLE IV k

GAUSSIAN MESSAGES COMPOSITE BLOCKS = argmm mm Z 2 (60)
(MOST USEFUL IFY IS SCALAR.) Pt T Fe=comtze
= iy, (61)
X ] 4 the mean of the (properly normalized) Gaussjgg, -
L] Now we consider the actual computation of the messages
shown in Fig. 12. The messagﬁezk is simply the factor
—Zk/2“ , i.e., a Gaussian with meam;, = 0 and variance
A Vzk = 2. The fact thatv}, = 7k 1S known may be expressed
by an incoming degenerate-Gaussian mesgagewith mean
v ‘n_zy = g, and varianceV = 0. It then follows from (11.10)
and (II 8) in Table I that the messa@Y is Gaussian with
. meaniny = §; and varranceVy =02,
my = mx + Vx AP G (my — Awix) (Iv.1) So much for the trivial (scalar-variable) messages in Fig. 12.
Vy=Vx - VxAEGAV (IV.2) As for the message$/x,, we note that the RLS algorithm
with ¢ 2 (Vy +A\_/XAH)_1 (V3) comes in two versions. In one version, these messages are
represented by the mean vectdk, and the covariance matrix
For Iy, consider using (111.3) and (1Il.4). ka, in the other versron these messages are represented by
the weight matrleXk = VX and the transformed mean
X z ka mx,. In the latter case, the message computation rules
4’!3—’ are immediate from Tables Il and Ill: we first obta,mX]; (the
message inside the dashed box) from (ll1l.5) and (l11.6), and
then7/x, from (11.1) and (11.3). Note that no matrix inversion
4 is required to compute these messages However, recovering
the estimatet;, = my, from ka mix, amounts to solving a
I system of linear equations. For the initial message,, we
Y s:etWX0 =0 (the all-zeros matrix).
The other version of the RLS algorithm is obtained by
Ty = Mx + Ay (IV.4) grouping the two nodes inside the dashed box in Fig. 12 and
Tix = iy — ATy (IV.5) u_s)ing (IV.1) and (IV.2) of Table IV to propagatéiy, and
Wy = Wy — Wy AHAT Wy (V.6) Vx,. Again, no matrix inversion |s_requrred to compute _thes_e
) P JRN 1 messages: the inversion in (IV.3) is only a scalar division in
with H £ (Wy + A" Wy ) (v.7) this case. In this version of the RLS algorithm, the estimate
Womz = Wxmx #, = my, is available at every step without extra compu-
Wy AH (Wymy _ AHWXFZX) (V.8) tations. As for the initial messagexo, an obvious practical
approach is to sefix, = 0 and on = pl, wherel is the
For W, changeWX to W, and W to Wx in (IV.6) and identity matrix of appropriate dimensions and whgiie some
(IV.7); for W i, change also the sign 6y in (IV.8). “large” real number. (In a stochastic setting, this initialization
For ‘ay, consider using (11-12), (I.8), (IIL.9). amounts to a prior o, which turnsi,, = iy, into a MAP
estimate.)

We have now fully described max-product (= sum-product)
Gaussian message passing through Fig. 12. However, as men-
We begin by noting that the max-product message, (as tioned, the classical RLS algorithm introduces an extra twist:
shown in Fig. 12) is in every step, the covariance matfixy, (as computed above)
Emultrplled by a scale factoy > 1, v = 1, or (equivalently)
N 22/(202) W, is multiplied by1/+. In this way, the algorithm is made
fix, () oc nax. He CLORTS slowly forget the past. In the adaptive-filter problem of
Fig. 4, this allows the algorithm to track slowly changing filter

= e_mmzl """ D o (58)  coefficients and it improves its numerical stability.

subject to the constrain{s = cez+z;, £ = 1,..., k. Itfollows g Gayssian Message Passing in the General Linear State
that the least-squares estimate (or, in a stochastlc settlggace Model

the maximum-likelihood estimate) ok (= X,) based on

i e is We now consider Gaussian message passing in the gen-
Tyeoe,

eral linear state space model of Fig. 8, which encompasses
Kalman filtering (= forward-only message passing), Kalman

A~ é —
Tk = Argmax fix, () (59)  smoothing, LMMSE turbo equalization, etc. The discussion



TABLE V
REVERSING A MATRIX MULTIPLICATION.

TABLE VI
If rank A = number of rows< number of columns: COMBINING RECTANGULAR MATRICES
TO FORM A NONSINGULAR SQUARE MATRIX
X Y
A >
X Z
. . = A ——
is equivalent to:
r--r-—---—=-=-=-=-=-=-=-=-=-=-- 1
X LY
*f{ + H A# B
l l
l l
l | Y
| B |
| | B
; ; If ( B) is a nonsingular square matrix:
: : 1 —
| | — AN\ g
- ; = (5) (52) )
where A# = AT (AAH)=1 and whereB is a matrix such - ANY YV, o g ooE\L
e _ _ x=(3 < (amB7) T w2
that < B > is a nonsingular square matrix antBH = 0. 0 Vy
. . — e N
This decomposition allows to compul®y and Wy my by
means of (IV.6)—(1V.8) and (l11.5)—(ll.6). X 7
=
If rank A = number of columns< number of rows:
X Y
A B
is equivalent to: v I
r--r-—---—=-=-=-=-=-=-=-=-=-=-- 1
X Y
i A# L: ! If (A, B) is a nonsingular square matrix:
| |
‘ ‘ = AHNTH W
| [ WZmZ = ( ) _)X X (V|.3)
: : BH Wy iy
[ BH \ 1/ =
I I — AH Wx 0 1
i l i Wz = (BH> < 0 W/y)(A’B) (V1.4)
l l
| |
. o (7o) = (e v15)
H\—1
where A# = (AH A)~1AH and whereB is a matrix such ( VVX V&(Y ) =(A,BY vy, < gH ) (V1.6)
that (A, B) is a nonsingular square matrix af’ A = 0. X Y
This decomposition allows to compu(IEX andmx by means
of (IV.1)—(IV.2) and (Ill.1)—(111.2).
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will be based on Fig. 13, which is a more detailed version @éflgorithm C: forward with ka and ka mx, if Ay
Fig. 8 with named variables assigned to every edge and withsingular. From the incoming messa@g, ., the message
an optional decomposition of the state transition mattjx(if %Xi’_l is obtained by (Ill.5) and (111.6). From this and from

Ay, is not square or not regular) into Hx,_,, the messaggix;  is obtained by (1l.1) and (1I.3).
. : " ,
Ay = AT AL (62) The messager, is obtained by the decomposition of),

as in Table V (top) and using first (IV.4) and (IV.6) and
with matricesA), and A} such that the rank ofl), equals the then (lIl.5) and (lll.6). The message x, is obtained by
number of rows of4}. and the rank of4} equals the number of groupingA;’ with By, as in Table VI (bottom) and using (VI.3)
columns ofA/. (In other words, the multiplication by, is a and (VI.4). (Z; is skipped.)
surjective mapping and the multiplication B is an injective
mapping.) Such a decomposition is always possible. In t

example of Section IV-A (equalization of an FIR channel), th
xamp I (equalizat 0 ) messagquA by (ll1.1) and (Il1.2). From this and from

decomposition (62) yields!, = (Ix,0) and A} = <IM  Ux,, the messag&z/ is obtained by (11.8) and (11.10). The
the pseudo-inverses of these matrices (which are used belgsSsagerz, is obtained by the decomposition afi as in
are (A45)# = (AT and (4})# = (AT, Table V (bottom) and using first (IV.1) and (IV.2) and then

The inputsU, and the outputs;, in Fig. 13 are usually (I1l.1) and (11.2). The messag@ x, _, is obtained by grouping
scalars (while the state variableX, are vectors). IfU, A} with Cj_; asin Table VI (top) and using (VI.1) and (VI.2).
is a vector, it may be advantageous to decompose it (aﬁ?ﬂ;ﬁﬂ is skipped.)
accordingly By) into parallel scalar inputs; similarly, it
is a vector, it may be advantageous to decompose it (and
into parallel scalar outputs.

If all inputs U, and all outputsy;, are scalars, then none
of the algorithms given below requires repeated matrix in-
versions. In fact, some of the remarks on complexity in the
algorithms below implicitly assume th&, andY;, are scalars. for all k. The estimatet;, = mx, may then be obtained by

Let us recall that the point of all the algorithms below isolving (63) formx., .
efficiency; if we do not mind inverting matrices all the time, The computation of’x, and/or of output messagésy,
then Tables Il and Il suffice. There are also, of course, issumsd/orﬁyk requires more effort. In fact, the computation of
with numerical stability, but they are outside the scope of thigy, may be reduced to the computationof, andVyx,, and
paper. the computation ofuy, may be reduced to the computation
of myy, andWXk Specifically, the output messagey, may
be extracted from the incoming messdge, and fromVy,

f%A\égonthm D: backward with imy, and ka if Ay is
gngular The messaggan is obtained from the incoming

By combining Algorithm B either with its own forward
version (if A is nonsingular for allk) or with Algorlthm C
(if Ay is singular), we can géi/x, (= ka + ka) as well

— —
Wx . mx, = Wx, mxk + kaﬁxk (63)

Algorithm A: forward recursion with  7ix, and I_/>Xk (This

algorithm Is known as "covariance matrix Kalman filter” [47].) andmy, , and the latter two quantities are easily obtained from
k?
From I x,_, and the incoming messagey,_,, the message |, Vx, andmy, by means of (I1.5), (I.6), and (I1.3), (lIl.4).

Hx;_, is obtained by (IV.1) and (IV.2).Xj_, is skipped). & output messaggr, may be extracted from the incoming
The messagqz; is obtained by (I1l.1) and (111.2). £, may messagezy, and from Wy, and my,, and the latter two
be sklpped) The messa@U is obtained from the incoming quantities are easily obtained frofry, andmy; (= mx, —
messaggfiv;, by (ll.1) and (il.2). The messag@, is then m by (I1.11)) by means of (11.12), (I11.8), and (IIl.7).
obtained by (11.7) and (I1.9). In the example of Section IV-A (FIR channel equalization),
AIgonthm B: backward recursion with Wy, and v, andVy, may actually be read off directly fromy,
W, fmix,. (This algorithm is known as “information matrix @1d Vx,, respectively, for any, k — M < £ < k. In this
Kalman filter” [47].) From the incoming messag@y,, the Case, computind’x, only everyM steps suffices to compute
messageuxu is obtained by (Ill.5) and (III.6). From this all outgoing messages. These few computatlonsf,@f are
and from the backward messagéy,, the messagédix, is perhaps best carried OUt directly aCCOfd'”m (Wx, +
obtained by (Il.1) and (I.3). The message Ay is then ka) or Vx, = (V +ka)

obtained by (IV.4) and (IV.6).1(;, is skipped.) The message However, it is DOSSIb|e to computey,, Wx,, andmx,

Tx, . is obtained by (IIl.5) and (IIL.6). %, may be skipped.) (and thus also all outgoing messages) in a general linear state

space model without any matrix inversions (assuming that
If the state transition matri¥l, is square and nonsmgular,andY are scalars):

then the above algorithms can, of course, be applied in

the reverse direction. However, even Af, is singular (as, Algorithm E: all marginals and output messages by
e.g., for FIR channel equallzatlon) it is possible to forwartprward-backward propagation. Forward pass: withiix,
propagateWXk and WXk myx, and to backward propagateand ka accordlng to Algorithm A. Backward pass: with
mx, and ka without matrix inversions. These algorlthmska and ka mx, according to Algorithm B, augmented
rely on the decomposition (62), which allows to grodfy by the simultaneous computation Bk, mx,, andWy, as
with Cy,_; as in Table VI (top) andi} with By, as in Table VI follows. Frommy, and Vy,, we trivially obtainmx, and
(bottom). Vx, by (11.5) and (II 6). We then obtanWXk (from Vx, and



12

"
Ak

Yi_1 Y

Fig. 13. Factor graph of general linear state space model (extended version of Fig. 8).

ka) by (1.2), and we also havﬁ/zf by (11.12). We further real scalarsh; are real column vectors, antlis a real matrix.
obtainVz, by (1.4) andmz; by (I. 6) From (111.8) we obtain (We will assume below that A is nonsingular, which means
Wx' L F|na||y, Vxi_, and mx,  are obtained by (l.4) and that the rank ofA equals the number of its columns) The

(. 6) column vectorsSy, and X, are defined as5, = b,U; and
The outgoing messagégy, and/or %y, may be obtained Xj = Si + Xi_1, respectively. Note also that, = 0 and
as described above. Xg="U.

From the observatio’ = j and the incoming messages at
(1 <k < K) (with scalar meaniy, and varlanceVUk)
e wish to compute the outgomg messaged/at i.e., the
scalar meanéﬁUk and the varlanceéf Up,-

The pivotal quantity of the algorithm 8/, which accord-
Algorithm F: all marginals and output messages by ing to (56) is defined as

forward backward propagation. Forward pass: withrix,
and ka accordlng to Algorithm A. Backward pass: with Wy = (VU +“7U)71. (64)
ka and kamxk according to Algorithm B, augmented

by the simultaneous computation 8fx,, m.,, and W, (The actual computation ¥ will be discussed below.) This

as follows. Fromm x, and Vx;, we trivially havemx, and L . .
V.. By groupmgA” with Bk as in Table VI (bottom), we quantity is useful hﬁre because, according to (11.12), it stays

I I h
obtain my, and Vz as well asmy, and VUk by (VI.5) constant around a+" node. In particular, we have
and (VI.6). We then ObtaIWZk (from Vz, andWZk) by (1.2).

The following algorithm is a variation of Algorithm E that
may be used for the example of Section IV-A (FIR channg’“
equalization). (The algorithm assumes thatis singular and WV
that A} may be grouped witlB,, as in Table VI (bottom).)

We then computéVy; = and W, my; by (lll.8) and Ws, =Wy (65)
(IN.7), respectively. Fmally,VX/ and myx: _ are obtained -
by (I.4) and (1.6). - bt for 0 < k < K. By means of (l11.8), we then obtaifl;, ,

The outgoing messagiEy, may be extracted froniy, , Tom which the variance of the outgoing messages is easily
mu,, and iy g "' extracted:

K k*

More such algorithms_ seem possible and Worth_ exploring. VUR _ lel _ ‘7>Uk (66)
For FIR channel equalization, the method described above H"; L =
Algorithm E may be the most attractive. = (by Wube)™" = Vu,. (67)

. Note thathI/T/Ub;C is a scalar. Note also that, . = e, as

C. Wang/Poor Algorithm in Fig. 11, theanWUbk is simply thek-th diagonal element
Factor graphs as in Fig. 10 and Fig. 11 give rise tgf yi/,.

yet another fundamental algorithm. The application of this g, (I11.9), the mean of the outgoing messages is

algorithm to Fig. 11 (combined with the conversion from

Gaussian to binary as described in Section V-D below) is VY (68)

essentially equivalent to the algorithm by Wang and Poor in Us = VU Ok s _

[48]. = (bEWyby) o Wyims, (69)
We describe the algorithm in terms of Fig. 14, which

subsumes Figures 10 and 11. Note thgt 1 < k < K, are which depends on botfi’;, and ms,. The latter is easily
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o lz112/20
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Xo =0 L] X, L] X, Xk L] Xi

Fig. 14. Unified version of Figures 10 and 11 with additional variables to explain the algorithm of Section V-C.

obtained from (11.9), (11.10), and (I11.2): Gaussian =~ {+1,-1}
K, e
g, =y — Y Tis, + s, (70) | Y X |
=1 o L
P SR A S
= %U — Z meUe + kaZUk. (71) \
/=1

Fig. 15. Conversion of (real scalar) Gaussian to bingryy, —1}) variables
Note that the first two terms on the right-hand side of (71) ckyd vice versa.
not depend ork.
— : : : -
The mean vectormy, which is used in (71), may be An alternative method to computé/y

oes as follows.
obtained as follows. Using (II.6), we have g

. = .
First, We(_compu'EEWU by (7§l and then we recursively

Wty = AM Wy iy (72) computeWx, _,, Wx,_,, ..., Wx, using (IV.6). Then we
— A y2g (73) are done:
and from (111.5), we have Wu = VE{“ - (83)
— HES = (VXO + VXO)_ (84)
WU =A WyA (74) -1
o =V (85)
=0 “A"A. (75) 0
) = Wx,. (86)
We thus obtain
ATy = Ay (76) D. Gaussian to Binary and Vice Versa
and Linear Gaussian models are often subsystems of larger mod-
Ty = (AHA)—lAHg, (77) elsinvolving discrete variables. In digital communications, for

] ] . . example, binary codes usually coexist with linear Gaussian
(In an actual implementation of the algorithm, solving (76) bynannel models, cf. Figures 9-11. In such cases, the conversion
means of, e.g., the Cholesky factorization 4FA is usually o messages from the Gaussian domain to the finite-alphabet
preferable to literally computing (77).) ~ domain and vice versa is an issue. Consider, for example, the
It remains to describe the computation Bfy (= Wx,, sjtuation in Fig. 15, whereX is a {+1, —1}-valued variable
0 < k < K). We will actually describe two methods. The firsgnqy s a real variable. The="-node in Fig. 15 denotes the
method goes as follows. From (111.8), we have factor 6(z — ), which is a Kronecker delta im and a Dirac
Wy = ATV A (78) delta iny. . . ' |
_AHT 4T )14 (79) The conversion of a Gaussian messagg into a binary
- (Vy + Vy ) (“soft bit") message/x is straightforward: according to the

But Vy = o2I is known and Vy is straightforward to Sum-product rule, we have

compute using (I11.1) and (11.7): N o
o &) fix () = ’ iy (y) 6(x —y) dy 87)
Y = U
Ko = ﬁy(l'); (88)
=4 (Z bk VUkka> A (B1) in the popular log-likelihood representation of soft-bit mes-
. k=1 sages, we thus have
-
= 3 (b Ve (Ab) " (82) Iy 2w Xy (89)
=1 _

N
Hx
=
nx
m

So, evaluating (79) is a viable method to complite . =2y /T (90)
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In the opposite direction, an obvious and standard approach Uk
is to match the mean and the variance:

my =mx (91)
x(+1) — px(—1)
= = — 92
x(+1) + mx(-1) (92)
and
oy =T7% (93)
=1-m%. (94)

It should be noted, however, that (92) and (94) need not be
optimal even for graphs without cycles. An alternative way
to compute a Gaussian message is proposed in [18] and
[49].

—J
V1. BEYOND GAUSSIANS

. . . . Fig. 16. Linear state space model with unk ici eCto
We have seen in the previous section that, for contin(¥ P ith unknown coefficient veGtor

ous variables, working out the sum-product or max-product

message computation rules for particular nodes/factors is R@éntification of suitable message types and message compu-
always trivial. In fact, literal implementation of these two basigtion rules for particular applications remains a large area of

algorithms is often infeasible when continuous variables afgsearch. Some illustrative examples will be given in the next
involved. Moreover, other algorithms may be of interest fo{,q sections.

several reasons, e.g., to yie_ld better marginals or to guarantegyitnh such “local” approximations, and with the “global”
convergence on graphs with cycles [14]-[21]. However, Hyproximation of allowing cycles in the factor graph, practical
appears that most useful algorithms for structured models WiBtection / estimation algorithms may be obtained for complex
many variables can be put into message passing form, agdiem models that cannot be handled by “optimal” methods.
the factor graph approach helps to mix and match different|n the next two sections, we will illustrate the use of
techniques. message computation rules beyond the sum-product and max-
A key issue with all message passing algorithms is the repggoduct rules by the following example. Assume that, in some
sentation of messages for continuous variables. In some ca§gggr state space model (as in Fig. 8), one of the matrices
a closed family of functions with a small number of paramete(s|, B, C;)is not known. In this case, this matrix becomes
works nicely, the prime example being linear Gaussian modelsariable itself. For example, @), is unknown, but constant
as in Section V. However, beyond the Gaussian case, this dgggr time (i.e.C), = C), we obtain the factor graph of Fig. 16,
not seem to happen often. (An interesting exception is [2{}hnich should be thought to be a part of some larger factor

which uses a family of Tikhonov distributions.) graph as, e.g., in Fig. 9.
In general, therefore, one has to resort to simplified mes-The key difficulty in such cases is the multiplier node. We
sages for continuous variables. will outline two approaches to deal with such cases: steepest
The following message types are widely applicable. descent and (a “local” version of) expectation maximization.

« Quantizationof continuous variables. This approach isHowever, more methods are known (e.g., particle methods),
essentially limited to one-dimensional real variables. and better methods may yet be found.

« Single point:the message:(z) is replaced by a single It should also be noted that the graph of Fig. 16 has cycles,
point #, which may be viewed as a temporary or finalvhich implies that messages passing algorithms on this graph
decision on the value of the variahlé. will be iterative. The convergence of such algorithms is not,

« Function value and derivative / gradiersit a point se- in general, guaranteed, but robust (almost-sure) convergence
lected by the receiving node [50], [51] (to be describei$ often observed in practice.

in Section VII).
o Gaussiangcf. Section V and Appendix ). VIl. STEEPESTDESCENT ASMESSAGEPASSING
« Gaussian mixtures. The use of steepest descent as a “local” method in factor

« List of samplesA probability density can be representegraphs is illustrated in Fig. 17, which represents the global
by a list of samples. This message type allows to descrifighction f(6) = f4(6)fz(6). The variable® is assumed to
particle filters [52], [53] as message passing algorithmgke values iR or in R™. Fig. 17 may be a part of some bigger

(see, e.g, [35], [36], [38], [39], [54]-[56]). factor graph, and the nodds, and fz may be summaries of
« Compound messagesnsisting of the “product” of other (i.e., messages out of) subsystems/subgraphs.
message types. Suppose we wish to find

All these message types, and many different message

VAN
computation rules, can coexist in large system models. The Ormax = arglenaxf(e) (95)
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i 19 4 ;
-~ [ — 0¢ ?
[ X Y
f f =
fa fB Fig. 18. Multiplier Node.

Fig. 17. Steepest descent as message passing.
where 716 (0) is the sum-product (or max-product) message

by solving ] / / ix (@) Ty (1)o(y — o) dedy  (102)
@(ln f(6)) =o. (96)
= | Hx(x)py(0z)do (103)
Note that r
d £(6) The gradient message (101) can be evaluated in closed form,
@(ln f(0) = 0 (97) even in the vector/matrix case, if the incoming messaggs
, , and uy are both Gaussians. For the sake of clarity, we now
= fa(0)f5(0) + fB(0)f4(0) (98) focus on the case wher®, X, andY are all real-valued
] fA(e)fB(? scalars. In this case, using
In f5(6) In f4(0) (99) =2
de( )+ dO( ) d%‘ﬁy(&x) = % (consy exp (W) (104)

The functionsf4 and fg may be infeasible to represent, or 022 wimy
to compute, in their entirety, but it may be easy to evaluate (0x) (—<_2 + <_2> (105)
< (In fa(0)) (and likewise forfz) at any given poing. % 9y

One method to find a solutiofhof (96) is steepest descentand (103), we can write (101) as
The message passing view of this method can be described as
follows. 2 e (0)

1) An initial estimated is broadcast to the node, and e (9) 0—d

f5. The nodef4 replies by sending _ L ix(@) (45 1y (0)) da (106)

d [ Hx (@) py (bx)do |

@(lan(e)) . - - s b2 N

60 [ Tox (@) Ty (0x) (—zgfg n w;g) dz
and the nodef replies accordingly. N [ Hx () my (0z) do (107)
2) A new estimate) is computed as 1 - .
énew = éold +s5- —(lnf(@)) (100) L . .
do 9=6us The expectation in (108) is with respect to the (local) proba-
. . . bility density

wheres € R is a positive step-size parameter.

3) The procedure is iterated as one pleases. <21y 2 ﬁX(I)ﬁy(éx) 109
As always with message passing algorithms, there is much plel0) = J ﬁx(x)‘ﬁy(éx) dx (109)
freedom in the scheduling of the individual operations. ’ 1 §2

The application of this method to cases as in Fig. 16 X exp (—x =5 + =5 >
amounts to understanding its application to a multiplier node 20 20y

as in Fig. 18. The coefficient (or coefficient vector/ matiix) My Omy

in Fig. 16 takes the role o® in Fig. 18. tol =5 + = (110)
Due to the single-point messaéethe messages along the X

X- andY-edges work as i were known. In particular, if \yhich is a Gaussian density with meain and variances>

the incoming messages on these edges are Gaussians, thed}\,gq;, by

are the outgoing messages. 1 42

1
As described above, the outgoing message along the edge — = =7 +t =3 (111)
O is the quantity 97 9% %
and
! (o) — o) (101) o _ Wx | Oy
—(Inpe = = =X _
b i He(®) |,_, 7=zt 5 (112)
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© One way to apply the general message computation rule
§¢ fMEM(Q) (1_15)—(116) to a multiplier node as in Fig. 16 is illustrated in
Fig. 20. We assume that and © are real (column) vectors

X Y and Y is a real scalar (as in Fig. 16). Instead of defining
— L < g(z,y,0) = 6(y — 6Tx) (which turns out not to work [61]),
9 we define
Fig. 19. Messages corresponding to expectation maximization. 7o
ow0) = [ o 0"Trdy  (18)
0y |4 1em(0) !

as indicated by the dashed box in Fig. 20. (It then follows
that the expection in (116) is oveX alone.) If the incoming

X i % Y 39(“779) messagesiy and 71y are Gaussian densities, the outgoing
| s — | messageuem(f) turns out to be a Gaussian density with
o F fﬁj inverse covariance matrix

V- T
Fig. 20. Gaussian message passing through a multiplier node using EM. ﬁ/@ = X_F(_#;(m)( (119)
Oy
and with meanmg given by

From (108), we finally obtain the outgoing gradient message o -
(101) as Weine = —agr (120)

d o

@(ln we(d)| (cf. [61]). The required sum-product margindls, and mx

- =0 R may be obtained from the standard Gaussian rules (54), (55),
_ g By X] - <—i2 B X7 (113) (11.5), and (1ll.6), which yield

ag g ~ A

<_Y ; Y Vil = Wy = Wy + 067 )52 (121)

my _ - -

Y Y Wxmx = mex +é<ﬂ_”by/<g32 (122)
VIIl. EXPECTATION MAXIMIZATION AS MESSAGE By replacing the unwieldy sum-product mess&gs by the
PASSING Gaussian message-y, we have thus achieved a completely

Another classical method to deal with the estimation dbaussian treatment of the multiplier node.
coefficients likeC' in Fig. 16 is expectation maximization
(EM) [57]-[59]. It turns out that EM can be put into message IX. CONCLUSION
passing form, where it essentially boils down to a messagerne factor graph approach to signal processing involves the
computation rule that differs from the sum-product and ma¥6llowing steps:
product rules [60].

For example, consider the factor graph of Fig. 19 with the 1) Choose a factor graph to represent the system model.

single node/factoy(z,y,6) (which should be considered as 2) Choose the message typ?s qnd suitable message compu-
tation rules. Use and maintain tables of such computa-

a part of some larger factor graph). Along the edgewe tion rules.

receive only the single-point messageThe messages along 3) Choose a message update schedule.
the X- and Y-edges are the standard sum-product messages’ . ) ]
(computed under the assumptién= 6). The outgoing mes- 1N this paper, we have elaborated on this approach with an

sage along is not the sum-product message, but emphasis on Gaussian message passing in cycle-free factor
’ graphs of linear models, i.e., Kalman filtering and some of

uem(9) = Mo (115) its ramifications. Tables of message computation rules for
the building blocks of such models allow to write down a

A variety of efficient algorithms without additional computations

h(0) = E; 416y [Ing(X,Y,0)] (118)  or derivations.

where the expectation is with respect to the (local) probability Beyond the Gaussian case, the factor graph approach en-

density co_urager:]; _and famh;_atﬁs to me ar_wlld matcf;I (:;fferent (?:c?orlth-
- A Ay — — mic techniques, which we have illustrated by two different
B y10) o< g(w,y, 6) pix (x) oy () (17 approaches to deal with multiplier nodes: steepest descent and

based on the incoming sum-product messagas and 7iy-. “local” expectation maximization.

For the justification of (115)-(116) and the corresponding The identification of suitable message types and message

perspective on the EM algorithm, the reader is referred émmputation rules for continuous variables remains a large area

[60] and [61]. The main point is that the message (115) of research. However, even the currently available tools allow

compatible with, and may be further processed by, the suto- derive practical algorithms for a wide range of nontrivial

product or max-product algorithms. problems.

with
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APPENDIX | function of the observatiory. We thus have the following
ON GAUSSIAN DISTRIBUTIONS, QUADRATIC FORMS, AND  theorem:

LMMSE ESTIMATION - . .
Theorem 2. For jointly Gaussian random variables or vectors
We briefly review some basic and well known facts about andY’, the MAP estimate ofX from the observatiol” = y
Gaussian distributions, quadratic forms, and LMMSE estimg an affine function of; and coincides both with the MMSE

tion. estimate and the LMMSE estimate. O
Let £/ = R or F' = C. A general Gaussian random (column}\I s . .
vector X = (X1,..., X.)T over F with mean vecton — ot? t”hgt, in this theorem as well as in the f?IIo_er,\,g the_zorem,
(m1,...,mn)T € F™ can be written as th_e L” in LMMSE must be understood as “affine” (= linear
with offset).
X=AU+m (123) Theorem 3 (LMMSE Via Gaussian MAP Estimation). Let

where A is a nonsingulan x n matrix overF and wherd/ = X and Y be random variables (or vectors) with arbitrary

(Uy,...,U,)T consists of independenf-valued Gaussian distributions but with finite means and with finite second-
random variabled/,, ..., U, with mean zero and varianceorder moments. Then the LMMSE estimate &f based on
one. The covariance matrix of is V = AA™. The prob- the observationt” =y may be obtained by pretending that
ability density of X is X andY are jointly Gaussian (with their actual means and
. second-order moments) and forming the corresponding MAP
fx (@) o emPlemm)mWiw=m) (124) estimate. O
H H
o ¢ Pl W 2Rea W m) (125)  The proof follows from noting that, according to the orthog-

for W = V-1 = (A")H A" and with 3 = 1/2 in the onality principle [47], the LMMSE estimate oK based on
real case ¥ = R) and 3 = 1 in the complex caseH — Y = y depends only on the means and second-order moments.

C). Conversely, any function of the form (124) with positive In a different direction, we also note the following fact.
definite W may be obtained in this way with some suitableheorem 4 (Gaussian Max/Int Theorem). Let q(x,y) be

matrix A. a quadratic form as in (127) with’x positive definite. Then
Now let Z be a Gaussian random (column) vector, which oo
we partition as / e~ 1@ dy o max e~9(®Y) (130)
X —oo ¢
7 = ( v ) R (126) — e~ ming q(m,y). (131)
O
whereX andY are themselves (column) vectors. The density
of Z is fz(z) o e~ P4(=v) with Note that the theorem still holds if(z,y) is replaced with
Bq(z,y) for any positive real3.
q(z,y) = ((:c —mx)" (y— my)H) Proof: We first note the following fact. I¥7 is a positive
definite matrix and
. WX WXY r—mx (127)
Wyx Wy y—my q(z) = (z —m)AW(z —m) + ¢ (132)
H H H
with positive definitelVy and Wy and with Wy x = W, . =2 Wa —2Re(z" Wm) +m"Wm +e¢,  (133)
For fixed y, considered as a function af alone, (127) then
becomes o o0 )
" / e~ 1@ dy = efc/ e~ (@@)=e) gy (134)
q(z,y) =" Wxa oo e
oo
_ 2RE(J’JHWX (mX _ ngVny(y _ my))) — e—c/ e—(w—m)HW(a;—m) dx (135)
+ const (128) oo
=e° / e~ We gy (136)
Comparing this with (125) yields the following theorem: oo
oo
Theorem 1 (Gaussian Conditioning Theorem). If X and — o ming &(w)/ et Wa g (137)
Y are jointly Gaussian with joint distributiosx e=% (%) as —0o0

above, thenconditioned onY = y (for any fixedy), X is Now consider (127) as a function af with parameter, as
Gaussian with mean in (128). This function is of the form (133) with’x taking

the role of W. It thus follows from (137) that
EX]Y =y] = mx — W' Wxy (y — my) (129) (137)

. . > (z,y) _ ,—ming gq(z,y) > —afWxa

and covariance matrik/y . O /_Ooe e = e e /_Ooe *dr. (138)
Note thatE[X|Y =y| is both the MAP (maximuma But the integral on the right-hand side does not depeng,on

posterior) estimate and the MMSE (minimum mean squareghich proves (131). ]

error) estimate ofX given the observatioy” = y. According The minimization in (131) is given by the following theo-
to (129), E[X|Y =y] is an affine (= linear with offset) rem.
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Theorem 5 (Quadratic-Form Minimization). Let ¢(x,y) be
defined as in (127). Then

Hiln q(x,y) = (y—mY)H(WY —WxyWx' Wxy)(y—my).
’ (139)

O
This may be proved by noting from (128) or (129) that

argmin ¢(z,y) = myx — Wy ' W. —my). 140
& a(@.y) X x Way(y=my) (140) Fig. 21. Proof of (I1.7) and (I1.9).

Plugging this into (127) yields (139).
Finally, we also have
Theorem 6 (Sum of Quadratic Forms). Let both A and B

be positive semi-definite matrices. Then Proof of (I1.1) and (I1.3): From the sum-product rule, we
immedately have

Inserting this into (1.5) yields (1.6).

(x—a)TA(x —a) + (x — b)) B(z —b)
= oW — R W)+ Wit Q4 Tig(e) = [ [ Tx@ v - 250 - 2)dedy (159

x

with = Tix(2) Hy (2). (156)
W=A+B (142) L
Plugging in
Wm = Aa+ Bb (143)
m = (A + B)#(Aa + Bb) (144) Tx(x) oc e~ Al=mx) " Wi (z=7ix) (157)
and with the scalar (and analogously fofzy) and then using Theorem 6 yields
c=(a—b"A(A+ B)¥*B(a ). (145) o
¥ Tiz(z) oc e”Plemmz) T Walzmmz) (158)

The verification of (142) and (143) is straightforward. A proofvith IT/Z and IT/ZWZZ as in (11.1) and (11.3), respectively.

of (144) and (145) may be found in [33]. Proof of (11.5) and (1.6): The proof follows from the fact

that the marginals at all three edges coincide:

APPENDIXII
PROOFS OFTABLES |-V Tix(s)Tx(s) = Hx () Ty (s)Tiz(s)  (159)
Proof of (1.1): From (56) and (54), we have = Ty (s) Ty (s) (160)
Wil =Vx+Vx (146) = Hz(s)z(s). (161)
= Vx(Wx + Wx)Vx (147)
= VxWxV (148)
XXX Proof of (I1.7) and (11.9): The computation ofi’; amounts
and thus to closing the box in the factor graph of Fig. 21. In this figure,
- — — N1 by elementary probability theory, the mean &fis the sum
x = (VxWx VX) (149)  of the means ofY andY’, and the variance of is the sum
— Wy Vy Wy, (150) of variances ofX andY.
Proof of (11.12): From (Il.7) we have
Proof of (1.2); From (150) and (54), we have \_/Z + VZ = (X_/X + V)y) + (172; (162)
~ — —
Wx =WxVx(Wx — Wx) (151)  from (11.8) we have
— — —
=Wx — WxVxWx. 152
X HTXTX ( ) ‘—/X + <‘7X = ‘_/)X + (‘_/}Y + <‘72) (163)
The proofs of (1.3) and (1.4) are analogous to the proofs ofand - - N N -
(1.1) and (1.2), respectively. Vy +Vy =Vy +(Vx + Vaz). (164)
The proof of (1.5) follows from multiplying both sides of \we thus have
Proof of (1.6): Using (1.4), we have Vx+Vx=Vy+Vy=Vz+Vyg, (165)

ViWytix = (Vx — VxWx V) Wiy (153) which by (56) implies (11.12).
= My — VxWxmx. (154) Proof of (1ll.1)—(Il.4): By elementary probability theory.



Proof of (111.5) and (lll.6):

have
0= [ o AT ) dy (166)
= v (Az) (167)
o ¢ PAz— iy ) Wy (Az—imy) (168)
~ 67,6(xHAHWyAx72Re(zHAHWyﬁy)) (169)

and comparison with (125) completes the proof.
Proof of (ll1.8): Using (1.2), (lll.5), and (lll.4), we have

Wx = Wx — WxVx Wy (170)
= A"y A — AHWy AV AP A (171)
— Al (Wy -~ WYVYWY) A (172)
= AWy A. (173)
Proof of (11l.7): Using (111.8) and (lll.3), we have
mex = AHWyA mx (174)
= AT Wymy. (175)

Proof of (111.9): Using (1.2), (1I1.6), (11l.5), and (Ill.4), we

have
W iy = (WX - WXVXWX) fix (176)
= ATy fmy — AP Wy AV AR Wy iy (177)
— AH (WY — WYVYWY) Ty (178)
= AWy iy (179)

We will now need the following well known fact.

Theorem 7 (Matrix Inversion Lemma [47]). Assume that

the (real or complex) matrices, B, C, D satisfy
A=B'4+cD c? (180)

and assume that botB and D are positive definite. Thed
is positive definite and

A'=B-BC(D+CHBC)'CHB. (181)
O
Proof of (IV.2): By (ll.1) and (111.5), we have
— — —
Wy =Wx + A5 Wy A. (182)

Using the Matrix Inversion Lemma (Theorem 7 above) yieldsroof of Table V (bottom):

— — = H(S = -1 -
Vz=Vx—-VxA (Vy+AVXA> AVx. (183)

Proof of (IV.1): By (11.3), (1l.1), and (lll.5), we have

7 = Wz_l (V_[}X mx + AHi/I_/yfrﬁy> (184)
—V, V5! (mx + T/’XAHWY%Y) . (185)
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By the sum-product rule, we Inserting (183) yields

Ty = (I ~ VA" (Vy + AVXAH)‘lA)
. (F’L)X + ‘—/})(AHW)/%Y)

+ VxA Wymy — VxAH
(Vy + AV AH) ' 4 (mX n VXAHWY‘mY) (187)

(186)

Té

—~

= mx + VxAH(Vy + AVXAH)_l
((Vy + AV ™)y iy
~ (ATiix + AVx A" Wy Ty ) ) (188)
= FZX + ‘—/zxAH (Vy + AV)XAH)_l
(i — Amix). (189)
Proof of (IV.6): By (I1.7) and (lll.1), we have
- — —
Vy=Vx+AVy AL (190)

Using the Matrix Inversion Lemma (Theorem 7 above) yields

— — — — — -1 —
Wy =Wy — WxA (Wy n AHWXA) AWy, (191)

Proof of (IV.4):
Proof of (IV.8):

by (11.9) and (111.2).
From (IV.4) and (IV.6), we have

= — = = —
Womyg = Wz(mx + Amy) (192)
— (Wx — Wx AHA"Wy) (ix + Ay)  (193)

- —
= Wme + WxAH

'(H_le - AHW/XWZX - AHW/XAR)/) (194)
= mex + V—[}XAH(Wymy - AHTT/XFZX). (195)

Proof of Table V (top): Let U~ be the kernel of the surjective
mappingy : z — Az and letU be its orthogonal complement
(in the space of). Let x = xzyy + 2y be the decomposition
of  into xy € U andxy . € UL. The conditiony = Ax is
equivalent to the condition

v = A%y. (196)

We next note that/ is spanned by the columns of” and
that U+ is spanned by the columns @?*. It follows that
(196) is equivalent to

x = A%y + B (arbitrary). (197)

Let U be the image of the
injective mappingy : z — Az and letU~ be its orthogonal
complement (in the space af). Let y = yy + yy. be

the decomposition of; into y; € U andyy,. € U+L. The

conditiony = Ax is equivalent to the two conditions

=A%y (198)

and

Yoo = 0. (199)
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We next note that/ is the kernel of the mapping — Afy 3) For each full edge, introduce a minus sign into one of
andU is the kernel of the mapping — B y. If follows that the adjacent factors.
(199) is equivalent tB*"y = 0. The resulting factor graph will be called a dual factor graph of

The proofs of (VI.1) and (VI.2) are immediate from (11.2) the original factor graph. (The dual factor graph is not unique
and (111.1), respectively. due to the sign issue in step 3.)

The proofs of (VI.3) and (VI.4) are immediate from (I1.6) Theorem 8 (Fourier Transform on Factor Graph). Let
and (111.5), respectively. f'(w1,...,w,) be the global function of a dual factor graph.

The proofs of (VI.5) and (VI1.6) are immediate from (l11.2) Then the Fourier transform of
and (Ill.1), respectively. / f(xr, ) oy .. de,.  (206)
Tr41
APPENDIXIII is
THE FOURIER TRANSFORM ONFACTOR GRAPHS

!
We review some key results of Forney [43] and adapt (and /wk+1 /w fllwr, o wn) dwgtr - dwy,
simplify) them to the setting of the present paper. '
The Fourier transform of a functiofi : R" — C is the
function f : R™ — C given by Note that the factor graph is allowed to have cycles. Note also
. / / i that /' is not the Fourier transform of; only the half-edge
T, y L
T

(207)

(up to a scale factor). |

flor,..w marginals (206) and (207) are a Fourier pair (up to a scale

,zwlml B —iWnTn dxy ...dx,. (200) faCtOf).

With @ = (21,...,2,)T andw = (w1, ..., wn)T, this may be EX@mple 1. Let

written as 3 f(z1,m2,23) = g1(w1, v3)g2(2, 73), (208)

= / f@)e " dy, (201)

The function f may be recovered from its Fourier transform
f by means of the inverse Fourier transform:

the factor graph of which is shown in Fig. 22. Then

f’(wth, ws)
= g1(w1,w3) g2 (w2, —ws) (209)

— (QW)—n,Af(w>ein:z dw. (202) :/ g1 (w1, w3) g2 (wa, w0 (w3 + wy) dwy (210)

We will use both7(f) and f (as above) to denote the Fourietys shown in Figures 23 and 24. Theorem 8 now claims that
transform of f. the Fourier transform of

It is immediate from (200) that
~ f(:v1,x2) é / f($1,$2,$3) dl‘3 (211)
F (/ f(x1,172,9€3)dl’3) = f(wi, w2, ws) o (203) 3
xrs3 w3=
In words: marginalization in one domain corresponds to zero- 3 / Fr d 212
ing in the other domain. flwn,ws f(wn,wp,wg) des, (212)
The Fourier transform of a one-dimensional real zero- megn, «
Gaussian density is
A An outline of the proof of Theorem 8 goes as follows. We
j:( 1 —z2/20 > —w?0?/2

closed-box” global function in Figures 23 and 24. O

5 (204) first note that the Fourier transform of
o

A
The Fourier transform of a generatdimensional real Gaus- f(@1,@2,25) = g1(21, 5)g2(22, T5) (213)

. ) i ) a1t
sian density with covariance matrix = W~ is is the convolution

F(qe dmm Weemm) _ gwtmg Ve (08) !

f(wi,wa,ws) = %/ / g1(w1,w3)g2 (w2, ws)
(where~ is the required scale factor to normalize the density). w3 S
The Fourier transform may be carried out directly in a factor 0(ws +wa — ws) dwy dws (214)
graph as follows. Consider a factor graph for (some factorizgsee Figures 25 and 26), which may be verified by direct
tion of) f(xy,...,2,) such thatz,,...,x, are represented calculation of the inverse Fourier transform of (214). Inserting
by half edges andy 1, ..., z, are represented by full edges.,; = 0 changes Fig. 26 into Fig. 24 and Fig. 25 into Fig. 22
Create a new factor graph (with the same topology) by thghe latter by (203)). We have thus established that the Fourier

following procedure: transform of Fig. 22 is indeed Fig. 24. But the proof of this
1) Replace each variable, by its dual (“frequency”) simple example is easily generalized to general factor graphs
variablewy. by treating all full edges simultaneously like the edggin

2) Replace each node/factor by its Fourier transform. Fig. 22 and using the corresponding generalization of (214).
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d

Proof: The main idea is to writeyyy as a limit of a
Gaussian distribution. Let be the dimension of/. Let Ay
be ann x k matrix whose columns form an orthonormal basis
of V, and let4; be ann x (n — k) matrix whose columns
form an orthonormal basis df ~. Note that||AZz| is the
Fig. 22.  Factor graph of (208). norm of the projection of: into V and || AT z| is the norm
of the projection ofr into V+. Let A = (A, A;), which is a
nonsingularn x n matrix. Then

Sy () o Jim e~ 5hATzl? (217)
— lim e zslAczl*~51AT 2| (218)
B—o0
— hm e*ﬁZTAoAgmfgl’TAlATI (219)
B—o0
= Jim e~3e ADATs (220)
with
VAN .
D:dlag(l/ﬁ,...,l/ﬁ,ﬁ,...,ﬁ). (221)
k times n — k times
Analoguously,
5 ( li 7%wTAD71ATw 222
v () o Jim_e (222)
= Jim e~3% (ADAT) e (223)

where the last step follows from noting thdf’ A = I and
[TTTTTTTTTTTTTTTTTTTTTT Ty thus A=! = AT. The theorem then follows from noting that
T3 /1 %4 9 | (220) and (223) are a Fourier pair (up to a scale factor), as is

obious from (205). [ ]

,,,,,,,,,,,,,,,,,,,,,,,,,,

Example 2 (Equality Constraint). Let

gl Z5 T2 T 3
V ={(z1,22,23)" € R’ : 21 =79 = 73} (224)

Fig. 25. Factor graph of (213).
Then

VE = {(w1,2,23)7 €R® iy + @5 + 23 =0} (225)

If follows that the Fourier transform of

Sy () = d(x1 — 22)0(z2 — x3) (226)

is the sum constraint
Fig. 26. Fourier transform of Fig. 25 (up to a scale factor). dyi(w) =d0(wr +wa + ws3) (227)
(up to a scale factor). O

We will use the following generalization of the Dirac deltawjith the Fourier transform of this example, applying Theo-
If V' is a subspace oR", we definedy by dv(z) = 0 for rem 8 to Fig. 25 yields Fig. 26.
x ¢V and

7 Example 3 (Matrix Multiplication). Let A be a real matrix

/f(m)év(x) de 2 / f(z) de (215) (without any conditions on rank or aspect ratio). Let
. v V ={(,23)" : 21 = Azs} (228)

for any integrable functionf. For dim(V) = 0, we define , i i
Sy (z) = §(z), the Dirac delta. wherez; andz, are column vectors of suitable dimensions.

Then
Theorem 9 (Fourier Transform of Constraints). Let V be VE={(@T o)  ag = —AT2y ). (229)
a subspace oR” and letV+ be its orthogonal complement.

Then It follows that the Fourier transform of

F (O (x)) o Oy o (w). (216) oy (z) = d(x1 — Axs) (230)



(20]

Syi(w) =6(wa + ATwy) (231)

O

[21]
(up to a scale factor).

It follows from Examples 2 and 3 that the two factor graphi?]
in each of the Tables Il, 1V, V, and VI are Fourier pairs (up
to a scale factor). [23]
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