
1

The Factor Graph Approach
to Model-Based Signal Processing

March 13, 2007. To appear inProceedings of the IEEE.

Hans-Andrea Loeliger, Justin Dauwels, Junli Hu, Sascha Korl, Li Ping, and Frank R. Kschischang

Abstract— The message passing approach to model-based sig-
nal processing is developed with a focus on Gaussian message
passing in linear state space models, which includes recursive
least squares, linear minimum-mean-squared-error estimation,
and Kalman filtering algorithms. Tabulated message computation
rules for the building blocks of linear models allow to compose
a variety of such algorithms without additional derivations or
computations. Beyond the Gaussian case, it is emphasized that the
message passing approach encourages to mix and match different
algorithmic techniques, which is exemplified by two different
approaches—steepest descent and expectation maximization—to
message passing through a multiplier node.

I. I NTRODUCTION

Graphical models such as factor graphs allow a unified
approach to a number of topics in coding, signal processing,
machine learning, statistics, and statistical physics. In partic-
ular, a large number of algorithms in these fields have been
shown to be special cases of the basic sum-product and max-
product algorithms that operate by message passing in a factor
graph [1]–[3]. In this paper, we elaborate on this topic with an
emphasis on signal processing. We hope to convey that factor
graphs continue to grow more useful for the design of practical
algorithms for model-based detection and estimation prob-
lems involving many (discrete and / or continuous) variables.
In particular, the factor graph approach allows to compose
nontrivial algorithms for such problems from tabulated rules
for “local” computations corresponding to the building blocks
of the system model; it also encourages to mix and match
a large variety of techniques ranging from classical Gaussian
and gradient techniques over expectation maximization (EM)
to sequential Monte Carlo methods (particle filters).

Factor graphs are graphical models [4]–[7]. In many re-
spects, the different notation systems for graphical models
(Bayesian networks [7], [8], Markov random fields [7], [9],
junction graphs [10], [11]. . .) are essentially equivalent, but
there are some real differences when it comes to practical

Hans-Andrea Loeliger and Junli Hu are with the Dept. of Informa-
tion Technology and Electrical Engineering, ETH Zurich, CH-8092 Zurich,
Switzerland.

J. Dauwels was with the Dept. of Information Technology and Electrical
Engineering, ETH Zurich, CH-8092 Zurich, Switzerland. He is now with
RIKEN Brain Science Institute, Hirosawa, 2-1, Wako-shi, Saitama, Japan.
His work was supported in part by Swiss NF grant 200021-101955.

Sascha Korl was with the Dept. of Information Technology and Electrical
Engineering, ETH Zurich, CH-8092 Zurich, Switzerland. He is now with
Phonak AG, Laubisr̈utistr. 28, CH-8712 Stäfa, Switzerland. His work was
supported in part by Phonak AG.

Li Ping is with the Dept. of Electronic Engineering, City University of
Hong Kong, Kowloon, Hong Kong.

Frank Kschischang is with the Department of Electrical and Computer
Engineering, University of Toronto, Toronto, Ontario M5S 3G4.

use. Indeed, some of the material of this paper (in particular,
in Sections IV, V, and Appendix III) is not easily expressed
in other notation systems.

While much interesting recent work on graphical models
specifically addresses graphs with cycles (e.g., [12]–[21]), the
present paper is mostly concerned with cycle-free graphs, or
with cycle-free subgraphs of complex system models. We will
encounter some factor graphs with cycles, though.

The message passing approach to signal processing was
suggested in [22], [2] and has been used, e.g., in [23]–[39] for
tasks like equalization, multi-user detection, MIMO detection,
channel estimation, etc. The literature on graphical models for
general inference problems is vast. For example, factor graphs
have also been used for link monitoring in wireless networks
[40], for genome analysis [41], and for clustering [42].

This paper begins with an introduction to factor graphs
that complements [2] and [3]. We then turn to an in-depth
discussion of Gaussian message passing for linear models, i.e.,
Kalman filtering and some of its ramifications. In particular,
we will present tabulated message computation rules for multi-
variate Gaussian messages that are extensions and refinements
of similar tables in [3] and [33]. With these tables, it is
possible to write down (essentially without any computation)
efficient Gaussian / LMMSE (linear minimum-mean-squared-
error) estimation algorithms for a wide variety of applications,
as is illustrated by several nontrivial examples.

Beyond the Gaussian case, we will address the represen-
tation of messages for continuous variables and of suitable
message computation rules. A wide variety of algorithmic
techniques can be put into message passing form, which
helps to mix and match these techniques in complex system
models. To illustrate this point, we demonstrate the application
of two different techniques, steepest descent and expectation
maximization, to message passing through a multiplier node.

Some background material on multivariate Gaussian distri-
butions and LMMSE estimation in summarized in Appendix I.
Appendix II contains the proofs for Section V. Appendix III
reviews some results by Forney on the Fourier transform on
factor graphs [43] and adapts them to the setting of the present
paper.

The following notation will be used. The transpose of a
matrix (or vector) A is denoted byAT ; AH denotes the
complex conjugate ofAT ; A# denotes the Moore-Penrose
pseudo-inverse ofA; and “∝” denotes equality of functions
up to a scale factor.

2

f1
u

f2

w

x
f3

f4

z

y

Fig. 1. A Forney-style factor graph.

II. FACTOR GRAPHS

We review some basic notions of factor graphs. For com-
plementary introductions to factor graphs and their history and
their relation to other graphical models, we refer to [2] and
[3]. Other than in [2], we will use Forney-style factor graphs
(also known as “normal factor graphs”) as in [3]. (The original
factor graphs [2] have both variable nodes and factor nodes.
Forney-style factor graphs were introduced in [43], but we
deviate in some details from the notation of [43].)

Assume, for example, that some functionf(u, w, x, y, z)
can be factored as

f(u, w, x, y, z) = f1(u)f2(u, w, x)f3(x, y, z)f4(z). (1)

This factorization is expressed by the factor graph shown in
Fig. 1. In general, a (Forney-style) factor graph consists of
nodes, edges, and “half edges” (which are connected only to
one node), and there are the following rules:

• There is a (unique) node for every factor.
• There is a (unique) edge or half edge for every variable.
• The node representing some factorg is connected with

the edge (or half edge) representing some variablex if
and only if g is a function ofx.

Implicit in these rules is the assumption that no variable
appears in more than two factors. We will see below how this
restriction is easily circumvented.

A main application of factor graphs are stochastic models.
For example, letX be a real-valued random variable and let
Y1 andY2 be two independent real-valued noisy observations
of X. The joint probability density of these variables is

f(x, y1, y2) = f(x)f(y1|x)f(y2|x), (2)

which we claim is represented by the factor graph of Fig. 2.
Literally, Fig. 2 represents an extended model with auxiliary
variablesX ′ andX ′′ and with joint density

f(x, x′, x′′, y1, y2) = f(x)f(y1|x′)f(y2|x′′)f=(x, x′, x′′),
(3)

where the equality constraint “function”

f=(x, x′, x′′) 4= δ(x− x′)δ(x− x′′) (4)

(with δ(·) denoting the Dirac delta) enforcesP (X = X ′) =
P (X = X ′′) = 1. Clearly, (2) is a marginal of (3):

f(x, y1, y2) =
∫

x′

∫
x′′

f(x, x′, x′′, y1, y2) dx′ dx′′. (5)

For most practical purposes, equality constraint nodes (such
as the node labeled “=” in Fig. 2) may be viewed simply as

fX

X

=

f=

X ′

fY1|X

Y1

X ′′

fY2|X

Y2

Fig. 2. Factor graph of (2) and (3).

fX

X

=

?
fZ1

-
Z1

+

fY1|X

?Y1

?
fZ2

�
Z2

+

fY2|X

?Y2

Fig. 3. More detailed version of Fig. 2.

branching points that allow more than two factors to share
some variable.

Assume now thatY1 andY2 are observed and that we are
interested in thea posterioriprobabilityf(x|y1, y2). For fixed
y1 andy2, we have

f(x|y1, y2) ∝ f(x, y1, y2) (6)

where “∝” denotes equality up to a scale factor. It follows that
f(x|y1, y2) is also represented by the factor graph of Fig. 2
(up to a scale factor). This clearly holds in general: passing
from somea priori model to ana posteriori model (based
on fixing the value of some variable(s)) does not change the
factor graph.

We will usually denote unknown variables by capital letters
and known (observed) variables by small letters. (Formally, a
B-valued known variable is an element ofB while aB-valued
unknown variable is a function from the configuration space
into B [3].) For the factor graph off(x|y1, y2), we would thus
modify Fig. 2 by replacingY1 by y2 and Y2 by y2 if these
variables are known (observed).

A more detailed version of Fig. 2 is shown in Fig. 3, where
we assume

Y1 = X + Z1 (7)

Y2 = X + Z2 (8)

with random variablesZ1 andZ2 that are independent of each
other and ofX. The nodes labeled “+” represent the factors
δ(x+z1−y1) andδ(x+z2−y2), respectively. As illustrated by
this example, the (Forney-style) factor graph notation naturally

3

supports modular and hierarchical system modeling. Fig. 3
also illustrates the use of arrows and of special symbols (such
as “=” and “+”) to define factors and to make factor graphs
readable as block diagrams.

As a nonstochastic example, consider the following system
identification problem. LetUk and Ỹk, k ∈ Z, be the real-
valued input signal and the real-valued output signal, respec-
tively, of some unknown system that we wish to approximate
by a linear FIR (finite impulse response) filter of orderM :

Yk =
M∑

`=0

h`Uk−` (9)

Ỹk = Yk + Zk. (10)

The slack variableZk absorbs the difference between the filter
outputYk and the observed output̃Yk. Assume that we know
both the input signalUk = uk, k = −M +1,−M +2, . . . , N
and the output signal̃Yk = ỹk, k = 1, 2, . . . , N . We wish
to determine the unknown filter coefficientsh0, . . . , hM such
that the squared error

∑N
k=1 Z2

k is as small as possible.
We first note that minimizing

∑N
k=1 Z2

k is equivalent to
maximizing

N∏
k=1

e−z2
k/2σ2

= e−
∑N

k=1 z2
k/2σ2

(11)

(for arbitrary positive σ2) subject to the constraints (9)
and (10).

For later use, we rewrite (9) as

Yk = [u]kH, (12)

with the row vector[u]k
4= (uk, uk−1, . . . , uk−M) and the

column vectorH
4= (h0, h1, . . . , hM)T .

A factor graph of this example is shown in Fig. 4. The
lower part represents the unconstrained cost function (11)
and the linear constraint (10); the upper part represents the
linear constraint (12), i.e., the factorsδ(yk − [u]kH) for
k = 1, 2, . . . , N .

Note that the original least-squares problem to determine
the filter coefficients is equivalent to maximizing the function
represented by Fig. 4 over all assignments of values to all
unknown variables. We will see in Section V how efficient
recursive least squares algorithms (RLS) for this maximization
may be obtained from tabulated rules for Gaussian message
passing algorithms.

III. M ESSAGEPASSING ALGORITHMS

We briefly review the basic sum-product and max-product
algorithms [44], [2]. In this section, the emphasis will be on
cycle-free factor graphs.

A. The Sum-Product Algorithm

For some given functionf(x1, . . . , xn), assume that we
wish to compute

f̄k(xk) 4=
∑

x1, . . . , xn

exceptxk

f(x1, . . . , xn). (13)

constraints

. . .

=

?

[u]k−1

?

Yk−1

H
=

?

[u]k

?

Yk

. . .

cost function

. . .

-
Zk−1

+

?̃yk−1

e−z2
k/2σ2

-
Zk

+

?̃yk

. . .

Fig. 4. (Two sections of) a factor graph for the FIR filter identification
problem.

If f(x1, . . . , xn) is a probability mass function of discrete
random variablesX1, . . . , Xn, then (13) is the probability
mass function ofXk.

In later sections, we will primarily be interested in contin-
uous variables. In this case, the summation in (13) is replaced
by integration.

If f(x1, . . . , xn) has a cycle-free factor graph, the function
(13) can be computed by the sum-product algorithm, which
splits the “big” marginalization (13) into a sequence of “small”
marginalizations. For example, assume thatf(x1, . . . , x7) can
be written as

f(x1, . . . , x7) = f1(x1)f2(x2)f3(x1, x2, x3)f4(x4)
·f5(x3, x4, x5)f6(x5, x6, x7)f7(x7) (14)

as in the factor graph in Fig. 5. Assume that we wish to
computef̄3(x3). It is easily verified that

f̄3(x3) = µC(x3)µD(x3) (15)

with
µC(x3)

4=
∑

x1,x2

f1(x1)f2(x2)f3(x1, x2, x3) (16)

and
µD(x3)

4=
∑

x4,x5

f4(x4)f5(x3, x4, x5)µF (x5) (17)

with
µF (x5)

4=
∑

x6,x7

f6(x5, x6, x7)f7(x7). (18)

The quantitiesµC , µD, andµF in (15)–(18) may be viewed as
summaries of the dashed boxes in Fig. 5, which are obtained
by eliminating the variables inside the box by summation.
Such summaries may be thought of as messages in the factor
graph, as is shown in Fig. 5.

With the trivial summaries / messagesµA(x1)
4= f1(x1),

andµB(x2)
4= f2(x2), we can write (16) as

µC(x3)
4=
∑

x1,x2

f3(x1, x2, x3)µA(x1)µB(x2). (19)

4

f1

X1
-

µA

f2

X2?
µB

f3

X3
-
µC

�
µD

f4

X4 ?
µE

f5

X5
�
µF

f7

X7 ?
µG

f6

X6

Fig. 5. “Summarized” factors as messages in a factor graph.

Similarly, with the trivial summariesµE(x4)
4= f4(x4) and

µG(x7)
4= f7(x7), we can write (17) as

µD(x3)
4=
∑

x4,x5

f5(x3, x4, x5)µE(x4)µF (x5) (20)

and (18) as

µF (x5)
4=
∑

x6,x7

f6(x5, x6, x7)µG(x7). (21)

All these messages / summaries (19)–(21) are formed ac-
cording to the following rule:

Sum-Product Rule:The message out of some node / factorf`

along some edgeXk is formed as the product off` and all
incoming messages along all edges exceptXk, summed over
all involved variables exceptXk.

From this example, it is obvious that the marginalf̄k(xk)
may be obtained simultaneously for allk by computing two
messages, one in each direction, for every edge in the factor
graph. The functionf̄k is the product of these two messages
as in (15).

We also observe:

1) The sum-product algorithm works for any cycle-free
factor graph.

2) Open half edges such asX6 in Fig. 5 do not carry an
incoming message. Equivalently, they may be thought
as carrying as incoming message the constant function
µ(x) = 1.

3) Known variables such as̃yk in Fig. 4 are simply plugged
into the corresponding factors; they are not otherwise
involved in the algorithm.

4) It is usually (but not always!) sufficient to know the
“marginal” (13) up to a scale factor. In such cases, it
suffices to know the messages only up to a scale factor.
The option to freely scale messages is often essential for
numerically reliable computations.

Since the sum-product rule is a “local” computation, it
can be applied also to factor graphs with cycles. The sum-
product algorithm then becomes an iterative algorithm where
messages are recomputed according to some schedule until
some stopping criterion is satisfied or until the available time
is over. The algorithm may be initialized by assigning to all
messages the neutral constant functionµ(x) = 1.

B. The Max-Product Algorithm

Assume we wish to maximize some functionf(x1, . . . , xn),
i.e., we wish to compute

(x̂1, . . . , x̂n) = argmax
x1,...,xn

f(x1, . . . , xn) (22)

where we assume thatf has a maximum. Note that

x̂k = argmax
xk

f̂k(xk) (23)

with

f̂k(xk) 4= max
x1, . . . , xn

exceptxk

f(x1, . . . , xn). (24)

If f(x1, . . . , xn) has a cycle-free factor graph, the function
(24) can be computed by the max-product algorithm. For
example, assume thatf(x1, . . . , x7) can be written as in (14),
which corresponds to the factor graph of Fig. 5. Assume that
we wish to computêf3(x3). It is easily verified that

f̂3(x3) = µC(x3)µD(x3) (25)

with µA . . .µG defined as in (16)–(21) except that summation
is everywhere replaced by maximization. In other words, the
max-product algorithm is almost identical to the sum-product
algorithm except that the messages are computed as follows:

Max-Product Rule:The message out of some node / factorf`

along some edgeXk is formed as the product off` and all
incoming messages along all edges exceptXk, maximized
over all involved variables exceptXk.

The remarks at the end of Section III-A apply also to
the max-product algorithm. In particular, the “max-marginals”
f̂k(xk) may be obtained simultaneously for allk by computing
two messages, one in each direction, for every edge in the
factor graph;f̂k(xk) is the product of these two messages as
in (25).

The analogies between the sum-product algorithm and the
max-product algorithm are obvious. Indeed, the sum-product
algorithm can be formulated to operate with abstract addition
and multiplication operators “⊕” and “⊗”, respectively, and
setting “⊕” = “max” then yields the max-product algorithm
[22, Section 3.6], [10]. Translating the max-product algorithm
into the logarithmic domain yields the max-sum (or min-sum)
algorithm [2], [10], [22].

C. Arrows and Notation for Messages

The use of ad-hoc names for the messages (such asµA,
. . . , µG in Fig. 5) is often unsatisfactory. We will therefore
use the following systematic notation. LetX be a variable
that is represented by a directed edge (i.e., an edge depicted
with an arrow). Then−→µX denotes the message that flows in
the direction of the edge and←−µX denotes the message in the
opposite direction. We will sometimes draw the edges with
arrows just for the sake of this notation (e.g., the edgeX in
Fig. 6 and all edges in Fig. 7).

5

fX

?

X

?6

=

?

X ′6
fZ1

-
Z1

- +

?y1

?

X ′′ 6
fZ2

�
Z2

�+

?y2

Fig. 6. Message passing in Fig. 3.

-
X

= -X ′

6
X̄

Fig. 7. Adding an output half edgēX to some edgeX.

D. An Example

For a simple example, consider sum-product message pass-
ing in the factor graph of Fig. 3 to compute thea posteriori
probability f(x|y1, y2) for known (observed)Y1 = y1 and
Y2 = y2. The required messages are indicated in Fig. 6. Note
that

f(x|y1, y2) ∝ f(x, y1, y2) (26)

= −→µX(x)←−µX(x). (27)

By the rules of the sum-product algorithm, we have
−→µZ1(z1) = fZ1(z1); (28)
−→µZ2(z2) = fZ2(z2); (29)

←−µX′(x′) =
∫

z1

δ(x′ + z1 − y1)−→µZ1(z1) dz1 (30)

= fZ1(y1 − x′); (31)

←−µX′′(x′′) =
∫

z2

δ(x′′ + z2 − y2)−→µZ2(z2) dz2 (32)

= fZ2(y2 − x′′); (33)

←−µX(x) =
∫

x′

∫
x′′

δ(x− x′)δ(x− x′′)

←−µX′(x′)←−µX′′(x′′) dx′ dx′′ (34)

=←−µX′(x)←−µX′′(x) (35)

= fZ1(y1 − x)fZ2(y2 − x); (36)
−→µX(x) = fX(x). (37)

In this example, the max-product algorithm computes ex-
actly the same messages.

E. Marginals and Output Edges

Both in the sum-product algorithm and in the max-product
algorithm, the final results are the marginals−→µX

←−µX of the

-
Xk−1

. . .
Ak

- +

?

Uk

Bk

?
- =

?

Ck

?Yk

-
Xk

. . .

Fig. 8. Factor graph of general linear state space model (40), (41).

variables (such asX) of interest. It is often convenient to think
of such marginals as messages out of a half edgeX̄ (without
incoming message) connected toX (= X ′) as shown in Fig. 7:
both by the sum-product rule and by the max-product rule, we
have

−→µX̄(x) =
∫

x′

∫
x′′

δ(x− x′) δ(x− x′′)

·−→µX(x′′)←−µX′(x′) dx′ dx′′ (38)

= −→µX(x)←−µX′(x). (39)

It follows that the message computation rules for marginals
coincide with the message computation rules out of equality
constraint nodes (as, e.g., in Table II).

IV. L INEAR STATE SPACE MODELS

Linear state space models are important in many applica-
tions; some examples will be given below. In the Section V, we
will discuss Gaussian sum-product and max-product message
passing in such models.

The general linear state space model may be described as
follows. For k = 1, 2, 3, . . . , N , the inputUk, the outputYk,
and the stateXk are (real or complex) scalars or vectors
coupled by the equations

Xk = AkXk−1 + BkUk (40)

Yk = CkXk (41)

where Ak, Bk, and Ck are (real or complex) matrices of
suitable dimensions. The factor graph corresponding to these
equations is given in Fig. 8.

Note that the upper part of Fig. 4 is a special case of Fig. 8
without input (i.e.,Bk = 0), with Xk = H, with Ak an
identity matrix, and withCk = [u]k.

As exemplified by Fig. 4, linear state space models are
often combined with quadratic cost functions or (equivalently)
with Gaussian noise models. The factor graph approach to
this classical happy combination is the core of the present
paper. A key feature of this combination is that the sum-
product algorithm coincides with the max-product algorithm
(up to a scale factor) and that all messages are Gaussians (or

6

code or other model forU1, . . . , UN

?
U1

. . .
?
UN

linear state space model (Fig. 8)

?
Y1

1√
2πσ

e−z2
1/2σ2

-Z1 +

?̃y1

. . .

. . .

?
YN

-ZN +

?̃yN

Fig. 9. A factor graph for equalization.

degenerate Gaussians), as will be discussed in Section V and
Appendix I.

We will now give two more examples of this kind.

A. Equalization

Consider the transmission of real symbolsUk, k =
1, . . . , N , over a discrete-time linear intersymbol interference
channel with additive white Gaussian noise. The received real
valuesỸk, k = 1, . . . , N , are given by

Ỹk =
M∑

`=0

h`Uk−` + Zk, (42)

where Zk, k = 1, . . . , N , are i.i.d. zero-mean Gaussian
random variables with varianceσ2 and whereh0, . . . , hM

are known real coefficients. (The initial channel state
U0, U−1, . . . , U−M+1 may be known or unknown, depending
on the application.)

We bring (42) into the state space form (40), (41) by
defining Yk

4= Ỹk − Zk (the noise-free output),Xk
4=

(Uk, . . . , Uk−M)T , and the matrices

Ak
4= A

4=
(

0 0
IM 0

)
(43)

(whereIM denotes theM ×M identity matrix) and

Bk
4= B

4= (1, 0, . . . , 0)T (44)

Ck
4= C

4= (h0, h1, . . . , hM). (45)

The factor graph of the model (42) is shown in Fig. 9. The
dashed box at the top of Fig. 9 represents a code constraint
(e.g., the factor graph of a low-density parity check code) or
another model forUk, if available.

The factor graph in Fig. 9 (without the dashed box)
represents the likelihood functionf(ỹ, y, z|u) for u

4=
(u1, . . . , uN), y = (y1, . . . , yN), etc. If the dashed box in
Fig. 9 represents ana priori densityf(u), then the total graph
in Fig. 9 represents

f(u)f(ỹ, y, z|u) = f(u, ỹ, y, z) (46)

∝ f(u, y, z|ỹ). (47)

If, in addition, the dashed box in Fig. 9 does not introduce
cycles, then the sum-product messages alongUk satisfy

−→µUk
(uk)←−µUk

(uk) ∝ f(uk|ỹ), (48)

from which the symbol-wise MAP (maximuma posteriori)
estimate ofUk may be obtained as

ûk = argmax
uk

−→µUk
(uk)←−µUk

(uk). (49)

If the dashed box introduces cycles, we may use iterative
(“turbo”) message passing and still use (49) to obtain an
estimate ofUk. Efficient algorithms to compute the messages
←−µUk

will be discussed in Section V-B.

B. Separation of Superimposed Signals

Let U = (U1, . . . , UK)T be a K-tuple of real-valued
random variables, letH be a realN×K matrix, letY = HU ,
and let

Ỹ = HU + Z (50)

= Y + Z (51)

whereZ = (Z1, . . . , ZN)T is an N -tuple of real zero-mean
i.i.d. Gaussian random variables with varianceσ2. Based on
the observatioñY = ỹ, we wish to computep(uk|ỹ) and / or
a LMMSE estimate ofUk for k = 1, 2, . . . ,K.

Two different factor graphs for this system model are shown
in Figures 10 and 11. In Fig. 10,hk denotes thek-th column
of the matrix H; in Fig. 11, e1

4= (1, 0, . . . , 0)T , e2
4=

(0, 1, 0, . . . , 0)T , etc. In Fig. 10, most of the factor graph just
represents the decomposition

HU =
K∑

k=1

hkUk; (52)

in Fig. 11, most of the factor graph just represents the
decomposition

U =
K∑

k=1

ekUk. (53)

Although these decompositions appear trivial, the resulting
message passing algorithms in these factor graphs (using
tabulated rules for Gaussian messages) are not trivial, cf.
Section V-C. The complexity of these algorithms depends
mainly onN andK; Fig. 10 may be preferable forK > N
while Fig. 11 may be preferable forK < N .

V. GAUSSIAN MESSAGEPASSING IN L INEAR MODELS

Linear models as in Section IV consist of equality con-
straints (branching points), adders, and multipliers with a
constant (scalar or vector or matrix) coefficient. The sum-
product and max-product message computation rules for such
nodes preserve Gaussianity: if the incoming messages are
members of the exponential family, then so are the outgoing
messages.

In this section, the computation of such messages will be
considered in detail. For scalar variables, there is not much to
say; for vector variables, however, the efficient computation
of messages and marginals is not trivial. The heart of this

7

code or other model forU1, . . . , UK

?
U1

h1

-

?
U2

h2

?
+ -

. . .

?
UK

hK

?
- + -Y

e−‖z‖
2/2σ2

?
Z

+ -̃y

Fig. 10. A factor graph of (50) and (51) (superimposed signals).

code or other model forU1, . . . , UK

?
U1

e1

-

?
U2

e2

?
+ -

. . .

?
UK

eK

?
- + -U

H -Y

e−‖z‖
2/2σ2

?
Z

+ -̃y

Fig. 11. Another factor graph of (50) and (51) (superimposed signals).

section are Tables II–VI with formulas for such messages and
marginals. These tables allow to compose a variety of efficient
algorithms—both classic and recent variations of Kalman
filtering—without additional computations or derivations.

However, before entering into the details of these tables, it
should be pointed out that the algorithms considered here are
many different things at the same time:
• For linear Gaussian factor graphs, the sum-product al-

gorithm and the max-product algorithm coincide (up
to a scale factor). (This follows from Theorem 4 in
Appendix I.)

• The Gaussian assumption does not imply a stochastic
setting. For example, the least-squares problem of Fig. 4
may also be viewed as a linear Gaussian problem.

• In a stochastic setting, the max-product (= sum-product)
algorithm may be used to compute both MAP (maximum
a posteriori) and ML (maximum likelihood) estimates.

• MAP estimation in a linear Gaussian model coincides
both with MMSE (minimum-mean-squared-error) estima-
tion and with LMMSE (linear minimum-mean-squared-
error) estimation, cf. Appendix I.

• MAP estimation withassumedGaussians coincides with
true LMMSE estimation (cf. Theorem 3 in Appendix I).
It follows that LMMSE estimation may be carried out by
Gaussian message passing in an appropriate linear model.

• If the sum-product algorithm converges in a Gaussian
factor graph with cycles, then the means of the marginals
are correct (despite the cycles) [12], [13].

It is thus obvious that Gaussian message passing in linear
models encompasses much of classical signal processing.

We now turn to the actual message computations. In this
section, all messages will be (multivariate) Gaussian distri-
butions, up to scale factors. Gaussian distributions will be de-

TABLE I

SINGLE-EDGE RELATIONS INVOLVING W̃ .

W̃X =
−→
WXVX

←−
WX (I.1)

=
−→
WX −

−→
WXVX

−→
WX (I.2)

VX =
−→
V XW̃X

←−
V X (I.3)

=
−→
V X −

−→
V XW̃X

−→
V X (I.4)

mX = VX
−→
WX
−→mX + VX

←−
WX
←−mX (I.5)

= −→mX −
−→
V XW̃X

−→mX + VX
←−
WX
←−mX . (I.6)

The direction of the arrows may be reversed in all these
relations.

scribed either by the mean vectorm and the covariance matrix
V or by the weight matrixW

4= V −1 and the transformed
meanWm, cf. Appendix I. (It happens quite frequently that
either V or W are singular for certain messages, but this is
seldom a serious problem.)

We will much use the notation for messages of Section III-
C, which we will extend to the parametersm, V , and W .
If some directed edge represents the variableX, the forward
message has mean−→mX , covariance matrix

−→
V X , and weight

matrix
−→
WX =

−→
V −1

X ; the backward message has mean←−mX ,
covariance matrix

←−
V X , and weight matrix

←−
WX =

←−
V −1

X . The
product of these two messages—the marginal of the global
function if the factor graph has no cycles—is the Gaussian
with meanmX and covariance matrixVX = W−1

X given by

WX =
−→
WX +

←−
WX (54)

and

WXmX =
−→
WX
−→mX +

←−
WX
←−mX . (55)

(Equations (54) and (55) are equivalent to (II.1) and (II.3) in
Table II, cf. Section III-E.)

An open half edge without an incoming message may
be viewed as carrying as incoming message the constant
function 1, which is the limit of a Gaussian withW = 0 and
meanm = 0. A half edge representing some known variable
X = x0 may be viewed as carrying the incoming message
δ(x − x0), which is the limit of a Gaussian withV = 0 and
meanm = x0.

We will also use the auxiliary quantity

W̃X
4= (
−→
V X +

←−
V X)−1, (56)

which is dual toVX = (
−→
WX +

←−
WX)−1. Some relations among

these quantities and the corresponding message parameters are
given in Table I. (These relations are proved, and then used
in other proofs, in Appendix II.)

Computation rules for the parameters of messages (such as
−→mX ,

−→
V X , etc.) and marginals (such asmX , VX , etc.) are

listed in Tables II, III, IV, and VI. The equation numbers in
these tables are prefixed with the table number; for example,
(II.3) denotes equation 3 in Table II. The proofs are given in
Appendix II.

8

. . .

Xk−1

- =
Xk

-

. . .
?

X ′k 6

ck

?
Y 6

e−z2
k/2σ2

-
Z
- +

?Ỹ = ỹk

6

Fig. 12. RLS as Gaussian message passing.

In principle, Tables II and III suffice to compute all mes-
sages in a linear model. However, using only the rules of
Tables II and III leads to frequent transformations of

−→
W and−→

W−→m into
−→
V =

←−
W−1 and−→m, and vice versa; if

−→
V and

−→
W are

large matrices, such conversions are costly.
The inversion of large matrices can often be avoided by

using the message computation rules given in Table IV (which
follow from the Matrix Inversion Lemma [47], cf. Theorem 7
in Appendix II). The point of these rules is that the dimension
of Y may be much smaller than the dimension ofX andZ;
in particular,Y may be a scalar.

Table III shows the propagation of
−→
V and −→m forward

through a matrix multiplication node as well as the propaga-
tion of

←−
W and

←−
W←−m backward through such a node. In the

other direction, Table V may help: Table V (top) together
with Table IV (bottom) allows the propagation of

−→
W and−→

W−→m forward through a matrix multiplication node; Table V
(bottom) together with Table IV (top) allows the propagation
of
←−
V and←−m backward through a matrix multiplication node.

The new “internal” open input in Table V (top) may be viewed
as carrying as incoming message a degenerate Gaussian with−→
W = 0 and mean−→m = 0; the new “internal” output in Table V
(bottom) may be viewed as carrying as incoming message a
degenerate Gaussian with←−m = 0 and

←−
V = 0.

The point of the groupings in Table VI is to create invertible
matrices out of singular matrices.

We now demonstrate the use of these tables by three
examples, each of which is of interest on its own.

A. RLS Algorithms

Consider a factor graph as in Fig. 12, whereX0 = X1 =
X2 = . . . are (unknown) real column vectors and wherec1, c2,
. . . , are (known) real row vectors. The classic recursive least-
squares (RLS) algorithm [47] may be viewed as forward-only
(left-to-right) Gaussian message passing through this factor
graph, with an extra twist.

Note that Fig. 4 in Section II is a special case of Fig. 12
(with Xk = H and with ck = [u]k). It follows that the RLS
algorithm may be used, in particular, to solve the FIR filter
identification problem stated at the end of Section II.

TABLE II

GAUSSIAN MESSAGES: ELEMENTARY NODES.

=-
X

-
Z

6
Y

−→
WZ =

−→
WX +

−→
WY (II.1)

←−
WX =

←−
WZ +

−→
WY (II.2)

−→
WZ
−→mZ =

−→
WX
−→mX +

−→
WY
−→mY (II.3)

←−
WX
←−mX =

←−
WZ
←−mZ +

−→
WY
−→mY (II.4)

mX = mY = mZ (II.5)

VX = VY = VZ (II.6)

+-
X

-
Z

6
Y

−→
V Z =

−→
V X +

−→
V Y (II.7)

←−
V X =

←−
V Z +

−→
V Y (II.8)

−→mZ = −→mX +−→mY (II.9)
←−mX =←−mZ −−→mY (II.10)

mX + mY −mZ = 0 (II.11)

W̃X = W̃Y = W̃Z (II.12)

TABLE III

GAUSSIAN MESSAGES: MATRIX MULTIPLICATION NODE .

A-
X

-
Y

Forward: −→
V Y = A

−→
V XAH (III.1)

−→mY = A−→mX (III.2)

mY = AmX (III.3)

VY = AVXAH (III.4)

For
−→
WY , see also Tables V and VI.

Backward:
←−
WX = AH←−WY A (III.5)

←−
WX
←−mX = AH←−WY

←−mY (III.6)

W̃XmX = AHW̃Y mY (III.7)

W̃X = AHW̃Y A (III.8)

W̃X
←−mX = AHW̃Y

←−mY (III.9)

For
←−
V X and←−mX , see also Tables V and VI.

9

TABLE IV

GAUSSIAN MESSAGES: COMPOSITE BLOCKS.

(MOST USEFUL IFY IS SCALAR.)

=
X Z

?

A

?
Y

−→mZ = −→mX +
−→
V XAHG

(←−mY −A−→mX

)
(IV.1)

−→
V Z =

−→
V X −

−→
V XAHGA

−→
V X (IV.2)

with G
4
=
(←−

V Y + A
−→
V XAH

)−1
(IV.3)

For−→µY , consider using (III.3) and (III.4).

+-
X

-
Z

6

A

6
Y

−→mZ = −→mX + A−→mY (IV.4)
←−mX =←−mZ −A−→mY (IV.5)
−→
WZ =

−→
WX −

−→
WXAHAH−→WX (IV.6)

with H
4
=
(−→
WY + AH−→WXA

)−1
(IV.7)

−→
WZ
−→mZ =

−→
WX
−→mX

+
−→
WXAH

(−→
WY
−→mY −AH−→WX

−→mX

)
(IV.8)

For
←−
WX , change

−→
WX to

←−
WZ and

−→
WZ to

←−
WX in (IV.6) and

(IV.7); for
←−
WX
←−mX , change also the sign of−→mY in (IV.8).

For←−µY , consider using (II.12), (III.8), (III.9).

We begin by noting that the max-product message−→µXk
(as

shown in Fig. 12) is

−→µXk
(x) ∝ max

z1,...,zk

k∏
`=1

e−z2
` /(2σ2) (57)

= e−minz1,...,zk

∑k
`=1 z2

` (58)

subject to the constraints̃y` = c`x+z`, ` = 1, . . . , k. It follows
that the least-squares estimate (or, in a stochastic setting,
the maximum-likelihood estimate) ofXk (= X0) based on
ỹ1, . . . , ỹk is

x̂k
4= argmax

x

−→µXk
(x) (59)

= argmin
x

min
z1,...,zk

k∑
`=1

z2
`

∣∣∣∣∣
ỹ`=c`x+z`

(60)

= −→mk, (61)

the mean of the (properly normalized) Gaussian−→µXk
.

Now we consider the actual computation of the messages
shown in Fig. 12. The message−→µZk

is simply the factor
e−z2

k/2σ2
, i.e., a Gaussian with mean−→mZk

= 0 and variance−→
V Zk

= σ2. The fact thatỸk = ỹk is known may be expressed
by an incoming degenerate-Gaussian message←−µỸ with mean
←−mỸ = ỹk and variance

←−
V Ỹ = 0. It then follows from (II.10)

and (II.8) in Table II that the message←−µYk
is Gaussian with

mean←−mY = ỹk and variance
←−
V Y = σ2.

So much for the trivial (scalar-variable) messages in Fig. 12.
As for the messages−→µXk

, we note that the RLS algorithm
comes in two versions. In one version, these messages are
represented by the mean vector−→mXk

and the covariance matrix−→
V Xk

; in the other version, these messages are represented by
the weight matrix

−→
WXk

=
−→
V −1

Xk
and the transformed mean

−→
WXk

−→mXk
. In the latter case, the message computation rules

are immediate from Tables II and III: we first obtain←−µX′
k

(the
message inside the dashed box) from (III.5) and (III.6), and
then−→µXk

from (II.1) and (II.3). Note that no matrix inversion
is required to compute these messages. However, recovering
the estimatêxk = −→mXk

from
−→
WXk

−→mXk
amounts to solving a

system of linear equations. For the initial message−→µX0 , we
set
−→
WX0 = 0 (the all-zeros matrix).

The other version of the RLS algorithm is obtained by
grouping the two nodes inside the dashed box in Fig. 12 and
using (IV.1) and (IV.2) of Table IV to propagate−→mXk

and−→
V Xk

. Again, no matrix inversion is required to compute these
messages: the inversion in (IV.3) is only a scalar division in
this case. In this version of the RLS algorithm, the estimate
x̂k = −→mXk

is available at every step without extra compu-
tations. As for the initial message−→µX0 , an obvious practical
approach is to set−→mX0 = 0 and

−→
V X0 = ρI, whereI is the

identity matrix of appropriate dimensions and whereρ is some
“large” real number. (In a stochastic setting, this initialization
amounts to a prior onX0, which turnsx̂k = −→mXk

into a MAP
estimate.)

We have now fully described max-product (= sum-product)
Gaussian message passing through Fig. 12. However, as men-
tioned, the classical RLS algorithm introduces an extra twist:
in every step, the covariance matrix

−→
V Xk

(as computed above)
is multiplied by a scale factorγ > 1, γ ≈ 1, or (equivalently)−→
WXk

is multiplied by1/γ. In this way, the algorithm is made
to slowly forget the past. In the adaptive-filter problem of
Fig. 4, this allows the algorithm to track slowly changing filter
coefficients and it improves its numerical stability.

B. Gaussian Message Passing in the General Linear State
Space Model

We now consider Gaussian message passing in the gen-
eral linear state space model of Fig. 8, which encompasses
Kalman filtering (= forward-only message passing), Kalman
smoothing, LMMSE turbo equalization, etc. The discussion

10

TABLE V

REVERSING A MATRIX MULTIPLICATION .

If rank A = number of rows< number of columns:

A-
X

-
Y

is equivalent to:

X
� + � A# �

Y

6

BH

6

whereA# = AH(AAH)−1 and whereB is a matrix such

that

(
A
B

)
is a nonsingular square matrix andABH = 0.

This decomposition allows to compute
−→
WY and

−→
WY
−→mY by

means of (IV.6)–(IV.8) and (III.5)–(III.6).

If rank A = number of columns< number of rows:

A-
X

-
Y

is equivalent to:

X
� A# � = �

Y

?

BH

?
0

whereA# = (AHA)−1AH and whereB is a matrix such
that (A, B) is a nonsingular square matrix andBHA = 0.

This decomposition allows to compute
←−
V X and←−mX by means

of (IV.1)–(IV.2) and (III.1)–(III.2).

TABLE VI

COMBINING RECTANGULAR MATRICES

TO FORM A NONSINGULAR SQUARE MATRIX.

-
X

= - A -
Z

?

B

?
Y

If

(
A
B

)
is a nonsingular square matrix:

←−mX =

(
A
B

)−1(←−mZ←−mY

)
(VI.1)

←−
V X =

(
A
B

)−1
(←−

V Z 0

0
←−
V Y

)(
AH , BH

)−1
(VI.2)

-
X

A - + -
Z

6

B

6
Y

If (A, B) is a nonsingular square matrix:

−→
WZ
−→mZ =

(
AH

BH

)−1
(−→

WX
−→mX−→

WY
−→mY

)
(VI.3)

−→
WZ =

(
AH

BH

)−1
(−→

WX 0

0
−→
WY

)
(A, B)−1 (VI.4)

(
mX

mY

)
= (A, B)−1 mZ (VI.5)(

VX VXY

VY X VY

)
= (A, B)−1 VZ

(
AH

BH

)−1

(VI.6)

11

will be based on Fig. 13, which is a more detailed version of
Fig. 8 with named variables assigned to every edge and with
an optional decomposition of the state transition matrixAk (if
Ak is not square or not regular) into

Ak = A′′kA′k (62)

with matricesA′k andA′′k such that the rank ofA′k equals the
number of rows ofA′k and the rank ofA′′k equals the number of
columns ofA′′k . (In other words, the multiplication byA′k is a
surjective mapping and the multiplication byA′′k is an injective
mapping.) Such a decomposition is always possible. In the
example of Section IV-A (equalization of an FIR channel), the

decomposition (62) yieldsA′k = (IM , 0) and A′′k =
(

0
IM

)
;

the pseudo-inverses of these matrices (which are used below)
are (A′k)# = (A′k)T and (A′′k)# = (A′′k)T .

The inputsUk and the outputsYk in Fig. 13 are usually
scalars (while the state variablesXk are vectors). IfUk

is a vector, it may be advantageous to decompose it (and
accordinglyBk) into parallel scalar inputs; similarly, ifYk

is a vector, it may be advantageous to decompose it (andCk)
into parallel scalar outputs.

If all inputs Uk and all outputsYk are scalars, then none
of the algorithms given below requires repeated matrix in-
versions. In fact, some of the remarks on complexity in the
algorithms below implicitly assume thatUk andYk are scalars.

Let us recall that the point of all the algorithms below is
efficiency; if we do not mind inverting matrices all the time,
then Tables II and III suffice. There are also, of course, issues
with numerical stability, but they are outside the scope of this
paper.

Algorithm A: forward recursion with −→mXk
and
−→
V Xk

. (This
algorithm is known as “covariance matrix Kalman filter” [47].)
From−→µXk−1 and the incoming message←−µYk−1 , the message
−→µX′

k−1
is obtained by (IV.1) and (IV.2). (X ′′k−1 is skipped).

The message−→µZ′k
is obtained by (III.1) and (III.2). (Zk may

be skipped). The message−→µU ′k
is obtained from the incoming

message−→µUk
by (III.1) and (III.2). The message−→µXk

is then
obtained by (II.7) and (II.9).

Algorithm B: backward recursion with
←−
WXk

and←−
WXk

←−mXk
. (This algorithm is known as “information matrix

Kalman filter” [47].) From the incoming message←−µYk
, the

message←−µX′′
k

is obtained by (III.5) and (III.6). From this
and from the backward message←−µX′

k
, the message←−µXk

is
obtained by (II.1) and (II.3). The message at←−µZ′k

is then
obtained by (IV.4) and (IV.6). (U ′k is skipped.) The message
←−µX′

k−1
is obtained by (III.5) and (III.6). (Zk may be skipped.)

If the state transition matrixAk is square and nonsingular,
then the above algorithms can, of course, be applied in
the reverse direction. However, even ifAk is singular (as,
e.g., for FIR channel equalization), it is possible to forward
propagate

−→
WXk

and
−→
WXk

−→mXk
and to backward propagate

←−mXk
and
←−
V Xk

without matrix inversions. These algorithms
rely on the decomposition (62), which allows to groupA′k
with Ck−1 as in Table VI (top) andA′′k with Bk as in Table VI
(bottom).

Algorithm C: forward with
−→
WXk

and
−→
WXk

−→mXk
if Ak

is singular. From the incoming message←−µYk−1 , the message
←−µX′′

k−1
is obtained by (III.5) and (III.6). From this and from

−→µXk−1 , the message−→µX′
k−1

is obtained by (II.1) and (II.3).
The message−→µZk

is obtained by the decomposition ofA′k
as in Table V (top) and using first (IV.4) and (IV.6) and
then (III.5) and (III.6). The message−→µXk

is obtained by
groupingA′′k with Bk as in Table VI (bottom) and using (VI.3)
and (VI.4). (Z ′k is skipped.)

Algorithm D: backward with ←−mXk
and

←−
V Xk

if Ak is
singular. The message−→µU ′k

is obtained from the incoming
message−→µUk

by (III.1) and (III.2). From this and from
←−µXk

, the message←−µZ′k
is obtained by (II.8) and (II.10). The

message←−µZk
is obtained by the decomposition ofA′′k as in

Table V (bottom) and using first (IV.1) and (IV.2) and then
(III.1) and (III.2). The message←−µXk−1 is obtained by grouping
A′k with Ck−1 as in Table VI (top) and using (VI.1) and (VI.2).
(X ′k−1 is skipped.)

By combining Algorithm B either with its own forward
version (if Ak is nonsingular for allk) or with Algorithm C
(if Ak is singular), we can getWXk

(=
−→
WXk

+
←−
WXk

) as well
as

WXk
mXk

=
−→
WXk

−→mXk
+
←−
WXk

←−mXk
(63)

for all k. The estimatêxk = mXk
may then be obtained by

solving (63) formXk
.

The computation ofVXk
and / or of output messages←−µUk

and / or−→µYk
requires more effort. In fact, the computation of

−→µYk
may be reduced to the computation ofmXk

andVXk
, and

the computation of←−µUk
may be reduced to the computation

of mU ′k
andW̃Xk

. Specifically, the output message−→µYk
may

be extracted from the incoming message←−µYk
and fromVYk

andmYk
, and the latter two quantities are easily obtained from

VXk
and mXk

by means of (II.5), (II.6), and (III.3), (III.4).
The output message←−µUk

may be extracted from the incoming
message−→µUk

and from W̃Uk
and mUk

, and the latter two
quantities are easily obtained from̃WXk

andmU ′k
(= mXk

−
mZ′k

by (II.11)) by means of (II.12), (III.8), and (III.7).
In the example of Section IV-A (FIR channel equalization),

mUk
and VUk

may actually be read off directly frommX`

and VX`
, respectively, for anỳ , k − M ≤ ` ≤ k. In this

case, computingVXk
only everyM steps suffices to compute

all outgoing messages. These few computations ofVXk
are

perhaps best carried out directly according toVXk
= (
−→
WXk

+←−
WXk

)−1 or VXk
= (
−→
V −1

Xk
+
←−
WXk

)−1.
However, it is possible to computeVXk

, WXk
, and mXk

(and thus also all outgoing messages) in a general linear state
space model without any matrix inversions (assuming thatUk

andYk are scalars):

Algorithm E: all marginals and output messages by
forward-backward propagation. Forward pass: with−→mXk

and
−→
V Xk

according to Algorithm A. Backward pass: with←−
WXk

and
←−
WXk

←−mXk
according to Algorithm B, augmented

by the simultaneous computation ofVXk
, mXk

, andW̃Xk
as

follows. From mX′
k

and VX′
k
, we trivially obtain mXk

and
VXk

by (II.5) and (II.6). We then obtaiñWXk
(from VXk

and

12

. . .
-

Xk−1 =

?

X ′′k−1

Ck−1

?Yk−1

-
X ′k−1

A′k

surjective

-
Zk

A′′k

injective

-
Z ′k

Ak

?

Uk

Bk

?

U ′k

+ -
Xk =

?

X ′′k

Ck

?Yk

-
X ′k

. . .

Fig. 13. Factor graph of general linear state space model (extended version of Fig. 8).

←−
WXk

) by (I.2), and we also havẽWZ′k
by (II.12). We further

obtainVZ′k
by (I.4) andmZ′k

by (I.6). From (III.8) we obtain
W̃X′

k−1
. Finally, VX′

k−1
andmX′

k−1
are obtained by (I.4) and

(I.6).
The outgoing messages−→µYk

and / or←−µUk
may be obtained

as described above.

The following algorithm is a variation of Algorithm E that
may be used for the example of Section IV-A (FIR channel
equalization). (The algorithm assumes thatAk is singular and
that A′′k may be grouped withBk as in Table VI (bottom).)

Algorithm F: all marginals and output messages by
forward-backward propagation. Forward pass: with−→mXk

and
−→
V Xk

according to Algorithm A. Backward pass: with←−
WXk

and
←−
WXk

←−mXk
according to Algorithm B, augmented

by the simultaneous computation ofVXk
, mXk

, and W̃Xk

as follows. FrommX′
k

and VX′
k
, we trivially havemXk

and
VXk

. By groupingA′′k with Bk as in Table VI (bottom), we
obtain mZk

and VZk
as well asmUk

and VUk
by (VI.5)

and (VI.6). We then obtaiñWZk
(from VZk

and
←−
WZk

) by (I.2).
We then computeW̃X′

k−1
and W̃X′

k−1
mX′

k−1
by (III.8) and

(III.7), respectively. Finally,VX′
k−1

and mX′
k−1

are obtained
by (I.4) and (I.6).

The outgoing message←−µUk
may be extracted fromVUk

,
mUk

, and−→µUk
.

More such algorithms seem possible and worth exploring.
For FIR channel equalization, the method described above
Algorithm E may be the most attractive.

C. Wang / Poor Algorithm

Factor graphs as in Fig. 10 and Fig. 11 give rise to
yet another fundamental algorithm. The application of this
algorithm to Fig. 11 (combined with the conversion from
Gaussian to binary as described in Section V-D below) is
essentially equivalent to the algorithm by Wang and Poor in
[48].

We describe the algorithm in terms of Fig. 14, which
subsumes Figures 10 and 11. Note thatUk, 1 ≤ k ≤ K, are

real scalars,bk are real column vectors, andA is a real matrix.
(We will assume below thatAHA is nonsingular, which means
that the rank ofA equals the number of its columns.) The
column vectorsSk and Xk are defined asSk

4= bkUk and
Xk

4= Sk + Xk−1, respectively. Note also thatX0 = 0 and
XK = U .

From the observatioñY = ỹ and the incoming messages at
Uk (1 ≤ k ≤ K) (with scalar mean−→mUk

and variance
−→
V Uk

),
we wish to compute the outgoing messages atUk, i.e., the
scalar means←−mUk

and the variances
←−
V Uk

.
The pivotal quantity of the algorithm is̃WU , which accord-

ing to (56) is defined as

W̃U = (
−→
V U +

←−
V U)−1. (64)

(The actual computation of̃WU will be discussed below.) This
quantity is useful here because, according to (II.12), it stays
constant around a “+” node. In particular, we have

W̃Sk
= W̃U (65)

for 0 ≤ k ≤ K. By means of (III.8), we then obtaiñWUk
,

from which the variance of the outgoing messages is easily
extracted:

←−
V Uk

= W̃−1
Uk
−
−→
V Uk

(66)

= (bH
k W̃Ubk)−1 −

−→
V Uk

. (67)

Note thatbH
k W̃Ubk is a scalar. Note also that, ifbk = ek as

in Fig. 11, thenbH
k W̃Ubk is simply thek-th diagonal element

of W̃U .
From (III.9), the mean of the outgoing messages is

←−mUk
= W̃−1

Uk
bH
k W̃U

←−mSk
(68)

= (bH
k W̃Ubk)−1bH

k W̃U
←−mSk

, (69)

which depends on both̃WU and←−mSk
. The latter is easily

13

-

X0 = 0
+

?

U1

b1

?

S1

-

X1

?

U2

b2

?

S2

+ -

X2

. . .

?

UK

bK

?

SK

-
XK−1

+ -

XK

U
A -

Y

e−‖z‖
2/2σ2

?

Z

+ -
Ỹ = ỹ

Fig. 14. Unified version of Figures 10 and 11 with additional variables to explain the algorithm of Section V-C.

obtained from (II.9), (II.10), and (III.2):

←−mSk
=←−mU −

K∑
`=1

−→mS`
+−→mSk

(70)

=←−mU −
K∑

`=1

b`
−→mU`

+ bk
−→mUk

. (71)

Note that the first two terms on the right-hand side of (71) do
not depend onk.

The mean vector←−mU , which is used in (71), may be
obtained as follows. Using (III.6), we have

←−
WU
←−mU = AH←−WY

←−mY (72)

= AHσ−2ỹ (73)

and from (III.5), we have
←−
WU = AH←−WY A (74)

= σ−2AHA. (75)

We thus obtain
AHA←−mU = AH ỹ (76)

and
←−mU = (AHA)−1AH ỹ. (77)

(In an actual implementation of the algorithm, solving (76) by
means of, e.g., the Cholesky factorization ofAHA is usually
preferable to literally computing (77).)

It remains to describe the computation of̃WU (= W̃Xk
,

0 ≤ k ≤ K). We will actually describe two methods. The first
method goes as follows. From (III.8), we have

W̃U = AHW̃Y A (78)

= AH(
−→
V Y +

←−
V Y)−1A. (79)

But
←−
V Y = σ2I is known and

−→
V Y is straightforward to

compute using (III.1) and (II.7):
−→
V Y = A

−→
V UAH (80)

= A

(
K∑

k=1

bk
−→
V Uk

bH
k

)
AH (81)

=
K∑

k=1

(Abk)
−→
V Uk

(Abk)H . (82)

So, evaluating (79) is a viable method to computeW̃U .

-
Y

Gaussian {+1,−1}

= -
X

Fig. 15. Conversion of (real scalar) Gaussian to binary ({+1,−1}) variables
and vice versa.

An alternative method to computẽWU goes as follows.
First, we compute

←−
WU by (75) and then we recursively

compute
←−
WXK−1 ,

←−
WXK−2 , . . . ,

←−
WX0 using (IV.6). Then we

are done:

W̃U = W̃X0 (83)

= (
−→
V X0 +

←−
V X0)

−1 (84)

=
←−
V −1

X0
(85)

=
←−
WX0 . (86)

D. Gaussian to Binary and Vice Versa

Linear Gaussian models are often subsystems of larger mod-
els involving discrete variables. In digital communications, for
example, binary codes usually coexist with linear Gaussian
channel models, cf. Figures 9–11. In such cases, the conversion
of messages from the Gaussian domain to the finite-alphabet
domain and vice versa is an issue. Consider, for example, the
situation in Fig. 15, whereX is a {+1,−1}-valued variable
andY is a real variable. The “=”-node in Fig. 15 denotes the
factor δ(x− y), which is a Kronecker delta inx and a Dirac
delta iny.

The conversion of a Gaussian message−→µY into a binary
(“soft bit”) message−→µX is straightforward: according to the
sum-product rule, we have

−→µX(x) =
∫

y

−→µY (y) δ(x− y) dy (87)

= −→µY (x); (88)

in the popular log-likelihood representation of soft-bit mes-
sages, we thus have

−→
LX

4= ln
−→µX(+1)
−→µX(−1)

(89)

= 2−→mY /−→σ 2
Y . (90)

14

In the opposite direction, an obvious and standard approach
is to match the mean and the variance:

←−mY =←−mX (91)

=
←−µX(+1)−←−µX(−1)
←−µX(+1) +←−µX(−1)

(92)

and

←−σ 2
Y =←−σ 2

X (93)

= 1−←−m2
X . (94)

It should be noted, however, that (92) and (94) need not be
optimal even for graphs without cycles. An alternative way
to compute a Gaussian message←−µY is proposed in [18] and
[49].

VI. B EYOND GAUSSIANS

We have seen in the previous section that, for continu-
ous variables, working out the sum-product or max-product
message computation rules for particular nodes / factors is not
always trivial. In fact, literal implementation of these two basic
algorithms is often infeasible when continuous variables are
involved. Moreover, other algorithms may be of interest for
several reasons, e.g., to yield better marginals or to guarantee
convergence on graphs with cycles [14]–[21]. However, it
appears that most useful algorithms for structured models with
many variables can be put into message passing form, and
the factor graph approach helps to mix and match different
techniques.

A key issue with all message passing algorithms is the repre-
sentation of messages for continuous variables. In some cases,
a closed family of functions with a small number of parameters
works nicely, the prime example being linear Gaussian models
as in Section V. However, beyond the Gaussian case, this does
not seem to happen often. (An interesting exception is [27],
which uses a family of Tikhonov distributions.)

In general, therefore, one has to resort to simplified mes-
sages for continuous variables.

The following message types are widely applicable.

• Quantizationof continuous variables. This approach is
essentially limited to one-dimensional real variables.

• Single point: the messageµ(x) is replaced by a single
point x̂, which may be viewed as a temporary or final
decision on the value of the variableX.

• Function value and derivative / gradientat a point se-
lected by the receiving node [50], [51] (to be described
in Section VII).

• Gaussians(cf. Section V and Appendix I).
• Gaussian mixtures.
• List of samples:A probability density can be represented

by a list of samples. This message type allows to describe
particle filters [52], [53] as message passing algorithms
(see, e.g, [35], [36], [38], [39], [54]–[56]).

• Compound messagesconsisting of the “product” of other
message types.

All these message types, and many different message
computation rules, can coexist in large system models. The

. . .

-
Xk−1

=

?

- Ak
-

?

Uk

Bk

?
+ - =

?

-
Xk

. . .

- ×

?Yk−1

=
C

- ×

?Yk

=

Fig. 16. Linear state space model with unknown coefficient vectorC.

identification of suitable message types and message compu-
tation rules for particular applications remains a large area of
research. Some illustrative examples will be given in the next
two sections.

With such “local” approximations, and with the “global”
approximation of allowing cycles in the factor graph, practical
detection / estimation algorithms may be obtained for complex
system models that cannot be handled by “optimal” methods.

In the next two sections, we will illustrate the use of
message computation rules beyond the sum-product and max-
product rules by the following example. Assume that, in some
linear state space model (as in Fig. 8), one of the matrices
(Ak, Bk, Ck) is not known. In this case, this matrix becomes
a variable itself. For example, ifCk is unknown, but constant
over time (i.e.,Ck = C), we obtain the factor graph of Fig. 16,
which should be thought to be a part of some larger factor
graph as, e.g., in Fig. 9.

The key difficulty in such cases is the multiplier node. We
will outline two approaches to deal with such cases: steepest
descent and (a “local” version of) expectation maximization.
However, more methods are known (e.g., particle methods),
and better methods may yet be found.

It should also be noted that the graph of Fig. 16 has cycles,
which implies that messages passing algorithms on this graph
will be iterative. The convergence of such algorithms is not,
in general, guaranteed, but robust (almost-sure) convergence
is often observed in practice.

VII. STEEPESTDESCENT ASMESSAGEPASSING

The use of steepest descent as a “local” method in factor
graphs is illustrated in Fig. 17, which represents the global
function f(θ) 4= fA(θ)fB(θ). The variableΘ is assumed to
take values inR or in Rn. Fig. 17 may be a part of some bigger
factor graph, and the nodesfA andfB may be summaries of
(i.e., messages out of) subsystems / subgraphs.

Suppose we wish to find

θmax
4= argmax

θ
f(θ) (95)

15

�
θ̂

=

Θ
-
θ̂

6

fA

6

fB

Fig. 17. Steepest descent as message passing.

by solving
d

dθ

(
ln f(θ)

)
= 0. (96)

Note that

d

dθ

(
ln f(θ)

)
=

f ′(θ)
f(θ)

(97)

=
fA(θ)f ′B(θ) + fB(θ)f ′A(θ)

fA(θ)fB(θ)
(98)

=
d

dθ

(
ln fB(θ)

)
+

d

dθ

(
ln fA(θ)

)
. (99)

The functionsfA andfB may be infeasible to represent, or
to compute, in their entirety, but it may be easy to evaluate
d
dθ

(
ln fA(θ)

)
(and likewise forfB) at any given pointθ.

One method to find a solution̂θ of (96) is steepest descent.
The message passing view of this method can be described as
follows.

1) An initial estimateθ̂ is broadcast to the nodesfA and
fB . The nodefA replies by sending

d

dθ

(
ln fA(θ)

)∣∣∣∣
θ=θ̂

and the nodefB replies accordingly.
2) A new estimatêθ is computed as

θ̂new = θ̂old + s · d

dθ

(
ln f(θ)

)∣∣∣∣
θ=θ̂old

(100)

wheres ∈ R is a positive step-size parameter.
3) The procedure is iterated as one pleases.

As always with message passing algorithms, there is much
freedom in the scheduling of the individual operations.

The application of this method to cases as in Fig. 16
amounts to understanding its application to a multiplier node
as in Fig. 18. The coefficient (or coefficient vector / matrix)C
in Fig. 16 takes the role ofΘ in Fig. 18.

Due to the single-point messagêθ, the messages along the
X- and Y -edges work as ifΘ were known. In particular, if
the incoming messages on these edges are Gaussians, then so
are the outgoing messages.

As described above, the outgoing message along the edge
Θ is the quantity

d

dθ

(
ln←−µΘ(θ)

)∣∣∣∣
θ=θ̂

=
d
dθ
←−µΘ(θ)
←−µΘ(θ)

∣∣∣∣∣
θ=θ̂

(101)

-
X

- × -
Y

�

?

Θ

?θ̂ 6

Fig. 18. Multiplier Node.

where←−µΘ(θ) is the sum-product (or max-product) message

←−µΘ(θ) =
∫

x

∫
y

−→µX(x)←−µY (y)δ(y − θx) dx dy (102)

=
∫

x

−→µX(x)←−µY (θx) dx. (103)

The gradient message (101) can be evaluated in closed form,
even in the vector / matrix case, if the incoming messages−→µX

and←−µY are both Gaussians. For the sake of clarity, we now
focus on the case whereΘ, X, and Y are all real-valued
scalars. In this case, using

d

dθ
←−µY (θx) =

d

dθ
(const) exp

(
− (θx−←−mY)2

2←−σ 2
Y

)
(104)

=←−µY (θx)
(
−θx2

←−σ 2
Y

+
x←−mY
←−σ 2

Y

)
(105)

and (103), we can write (101) as

d
dθ
←−µΘ(θ)
←−µΘ(θ)

∣∣∣∣∣
θ=θ̂

=

∫
x
−→µX(x)

(
d
dθ
←−µY (θx)

)
dx∫

x
−→µX(x)←−µY (θx) dx

∣∣∣∣∣
θ=θ̂

(106)

=

∫
x
−→µX(x)←−µY (θ̂x)

(
− θ̂x2

←−σ 2
Y

+ x←−mY←−σ 2
Y

)
dx∫

x
−→µX(x)←−µY (θ̂x) dx

(107)

=
1
←−σ 2

Y

Ep̃(x|θ̂)

[
X(←−mY − θ̂X)

]
. (108)

The expectation in (108) is with respect to the (local) proba-
bility density

p̃(x|θ̂) 4=
−→µX(x)←−µY (θ̂x)∫

x
−→µX(x)←−µY (θ̂x) dx

(109)

∝ exp

(
−x2

(
1

2−→σ 2
X

+
θ̂2

2←−σ 2
Y

)

+ x

(−→mX
−→σ 2

X

+
θ̂←−mY
←−σ 2

Y

))
(110)

which is a Gaussian density with meañm and variancẽσ2

given by

1
σ̃2

=
1
−→σ 2

X

+
θ̂2

←−σ 2
Y

(111)

and
m̃

σ̃2
=
−→mX
−→σ 2

X

+
θ̂←−mY
←−σ 2

Y

. (112)

16

X
-

g

Y
�

Θ

?θ̂ 6µEM(θ)

Fig. 19. Messages corresponding to expectation maximization.

g(x, θ)-
X

×
?

?θ̂ 6µEM(θ)

-
Y

←−µY

Fig. 20. Gaussian message passing through a multiplier node using EM.

From (108), we finally obtain the outgoing gradient message
(101) as

d

dθ

(
ln←−µΘ(θ)

)∣∣∣∣
θ=θ̂

=
←−mY
←−σ 2

Y

Ep̃(x|θ̂)[X]− θ̂
←−σ 2

Y

Ep̃(x|θ̂)

[
X2
]

(113)

=
←−mY
←−σ 2

Y

m̃− θ̂
←−σ 2

Y

(
σ̃2 + m̃2

)
. (114)

VIII. E XPECTATION MAXIMIZATION AS MESSAGE

PASSING

Another classical method to deal with the estimation of
coefficients likeC in Fig. 16 is expectation maximization
(EM) [57]–[59]. It turns out that EM can be put into message
passing form, where it essentially boils down to a message
computation rule that differs from the sum-product and max-
product rules [60].

For example, consider the factor graph of Fig. 19 with the
single node / factorg(x, y, θ) (which should be considered as
a part of some larger factor graph). Along the edgeΘ, we
receive only the single-point messageθ̂. The messages along
the X- and Y -edges are the standard sum-product messages
(computed under the assumptionΘ = θ̂). The outgoing mes-
sage alongΘ is not the sum-product message, but

µEM(θ) = eh(θ) (115)

with
h(θ) 4= Ep̃(x,y|θ̂)

[
ln g(X, Y, θ)

]
(116)

where the expectation is with respect to the (local) probability
density

p̃(x, y|θ̂) ∝ g(x, y, θ̂)−→µX(x)←−µY (y) (117)

based on the incoming sum-product messages−→µX and←−µY .
For the justification of (115)–(116) and the corresponding
perspective on the EM algorithm, the reader is referred to
[60] and [61]. The main point is that the message (115) is
compatible with, and may be further processed by, the sum-
product or max-product algorithms.

One way to apply the general message computation rule
(115)–(116) to a multiplier node as in Fig. 16 is illustrated in
Fig. 20. We assume thatX and Θ are real (column) vectors
and Y is a real scalar (as in Fig. 16). Instead of defining
g(x, y, θ) = δ(y − θT x) (which turns out not to work [61]),
we define

g(x, θ) =
∫

y

δ(y − θT x)←−µY (y) dy (118)

as indicated by the dashed box in Fig. 20. (It then follows
that the expection in (116) is overX alone.) If the incoming
messages−→µX and←−µY are Gaussian densities, the outgoing
messageµEM(θ) turns out to be a Gaussian density with
inverse covariance matrix

←−
WΘ =

VX + mXmT
X←−σ 2

Y

(119)

and with mean←−mΘ given by

←−
WΘ
←−mΘ =

mX
←−mY
←−σ 2

Y

(120)

(cf. [61]). The required sum-product marginalsVX and mX

may be obtained from the standard Gaussian rules (54), (55),
(III.5), and (III.6), which yield

V −1
X = WX =

−→
WX + θ̂ θ̂T /←−σ 2

Y (121)

and
WXmX =

−→
WX
−→mX + θ̂←−mY /←−σ 2

Y . (122)

By replacing the unwieldy sum-product message←−µΘ by the
Gaussian messageµEM, we have thus achieved a completely
Gaussian treatment of the multiplier node.

IX. CONCLUSION

The factor graph approach to signal processing involves the
following steps:

1) Choose a factor graph to represent the system model.
2) Choose the message types and suitable message compu-

tation rules. Use and maintain tables of such computa-
tion rules.

3) Choose a message update schedule.

In this paper, we have elaborated on this approach with an
emphasis on Gaussian message passing in cycle-free factor
graphs of linear models, i.e., Kalman filtering and some of
its ramifications. Tables of message computation rules for
the building blocks of such models allow to write down a
variety of efficient algorithms without additional computations
or derivations.

Beyond the Gaussian case, the factor graph approach en-
courages and facilitates to mix and match different algorith-
mic techniques, which we have illustrated by two different
approaches to deal with multiplier nodes: steepest descent and
“local” expectation maximization.

The identification of suitable message types and message
computation rules for continuous variables remains a large area
of research. However, even the currently available tools allow
to derive practical algorithms for a wide range of nontrivial
problems.

17

APPENDIX I
ON GAUSSIAN DISTRIBUTIONS, QUADRATIC FORMS, AND

LMMSE ESTIMATION

We briefly review some basic and well known facts about
Gaussian distributions, quadratic forms, and LMMSE estima-
tion.

Let F = R or F = C. A general Gaussian random (column)
vector X = (X1, . . . , Xn)T over F with mean vectorm =
(m1, . . . ,mn)T ∈ Fn can be written as

X = AU + m (123)

whereA is a nonsingularn×n matrix overF and whereU =
(U1, . . . , Un)T consists of independentF -valued Gaussian
random variablesU1, . . . , Un with mean zero and variance
one. The covariance matrix ofX is V = AAH . The prob-
ability density ofX is

fX(x) ∝ e−β(x−m)HW (x−m) (124)

∝ e−β(xHWx−2Re(xHWm)) (125)

for W = V −1 = (A−1)HA−1 and with β = 1/2 in the
real case (F = R) and β = 1 in the complex case (F =
C). Conversely, any function of the form (124) with positive
definite W may be obtained in this way with some suitable
matrix A.

Now let Z be a Gaussian random (column) vector, which
we partition as

Z =
(

X
Y

)
, (126)

whereX andY are themselves (column) vectors. The density
of Z is fZ(z) ∝ e−βq(x,y) with

q(x, y) =
(
(x−mX)H, (y −mY)H

)
·
(

WX WXY

WY X WY

)(
x−mX

y −mY

)
(127)

with positive definiteWX andWY and withWY X = WH
XY .

For fixed y, considered as a function ofx alone, (127)
becomes

q(x, y) = xHWXx

− 2Re
(
xHWX

(
mX −W−1

X WXY (y −mY)
))

+ const. (128)

Comparing this with (125) yields the following theorem:

Theorem 1 (Gaussian Conditioning Theorem). If X and
Y are jointly Gaussian with joint distribution∝ e−β q(x,y) as
above, thenconditioned onY = y (for any fixed y), X is
Gaussian with mean

E [X|Y = y] = mX −W−1
X WXY (y −mY) (129)

and covariance matrixW−1
X . 2

Note that E [X|Y = y] is both the MAP (maximuma
posteriori) estimate and the MMSE (minimum mean squared
error) estimate ofX given the observationY = y. According
to (129), E [X|Y = y] is an affine (= linear with offset)

function of the observationy. We thus have the following
theorem:

Theorem 2. For jointly Gaussian random variables or vectors
X andY , the MAP estimate ofX from the observationY = y
is an affine function ofy and coincides both with the MMSE
estimate and the LMMSE estimate. 2

Note that, in this theorem as well as in the following theorem,
the “L” in LMMSE must be understood as “affine” (= linear
with offset).

Theorem 3 (LMMSE Via Gaussian MAP Estimation). Let
X and Y be random variables (or vectors) with arbitrary
distributions but with finite means and with finite second-
order moments. Then the LMMSE estimate ofX based on
the observationY = y may be obtained by pretending that
X and Y are jointly Gaussian (with their actual means and
second-order moments) and forming the corresponding MAP
estimate. 2

The proof follows from noting that, according to the orthog-
onality principle [47], the LMMSE estimate ofX based on
Y = y depends only on the means and second-order moments.

In a different direction, we also note the following fact.

Theorem 4 (Gaussian Max / Int Theorem). Let q(x, y) be
a quadratic form as in (127) withWX positive definite. Then∫ ∞

−∞
e−q(x,y) dx ∝ max

x
e−q(x,y) (130)

= e−minx q(x,y). (131)
2

Note that the theorem still holds ifq(x, y) is replaced with
βq(x, y) for any positive realβ.

Proof: We first note the following fact. IfW is a positive
definite matrix and

q̃(x) 4= (x−m)HW (x−m) + c (132)

= xHWx− 2Re(xHWm) + mHWm + c, (133)

then∫ ∞
−∞

e−q̃(x) dx = e−c

∫ ∞
−∞

e−(q̃(x)−c) dx (134)

= e−c

∫ ∞
−∞

e−(x−m)HW (x−m) dx (135)

= e−c

∫ ∞
−∞

e−xHWx dx (136)

= e−minx q̃(x)

∫ ∞
−∞

e−xHWx dx. (137)

Now consider (127) as a function ofx with parametery, as
in (128). This function is of the form (133) withWX taking
the role ofW . It thus follows from (137) that∫ ∞
−∞

e−q(x,y) dx = e−minx q(x,y)

∫ ∞
−∞

e−xHWXx dx. (138)

But the integral on the right-hand side does not depend ony,
which proves (131).

The minimization in (131) is given by the following theo-
rem.

18

Theorem 5 (Quadratic-Form Minimization). Let q(x, y) be
defined as in (127). Then

min
x

q(x, y) = (y−mY)H
(
WY −WXY W−1

X WXY

)
(y−mY).

(139)
2

This may be proved by noting from (128) or (129) that

argmin
x

q(x, y) = mX −W−1
X WXY (y −mY). (140)

Plugging this into (127) yields (139).
Finally, we also have

Theorem 6 (Sum of Quadratic Forms). Let bothA andB
be positive semi-definite matrices. Then

(x− a)HA(x− a) + (x− b)HB(x− b)
= xHWx− 2Re(xHWm) + mHWm + c (141)

with

W = A + B (142)

Wm = Aa + Bb (143)

m = (A + B)#(Aa + Bb) (144)

and with the scalar

c = (a− b)HA(A + B)#B(a− b). (145)
2

The verification of (142) and (143) is straightforward. A proof
of (144) and (145) may be found in [33].

APPENDIX II
PROOFS OFTABLES I–VI

Proof of (I.1): From (56) and (54), we have

W̃−1
X =

−→
V X +

←−
V X (146)

=
←−
V X(
−→
WX +

←−
WX)

−→
V X (147)

=
←−
V XWX

−→
V X , (148)

and thus

W̃X =
(←−

V XWX
−→
V X

)−1

(149)

=
−→
WXVX

←−
WX . (150)

Proof of (I.2): From (150) and (54), we have

W̃X =
−→
WXVX(WX −

−→
WX) (151)

=
−→
WX −

−→
WXVX

−→
WX . (152)

The proofs of (I.3) and (I.4) are analogous to the proofs of
(I.1) and (I.2), respectively.

The proof of (I.5) follows from multiplying both sides of
(55) by VX .

Proof of (I.6): Using (I.4), we have

VX
−→
WX
−→mX = (

−→
V X −

−→
V XW̃X

−→
V X)
−→
WX
−→mX (153)

= −→mX −
−→
V XW̃X

−→mX . (154)

−→µZ
−→µX

-X
+
6

Y

−→µY

-Z

Fig. 21. Proof of (II.7) and (II.9).

Inserting this into (I.5) yields (I.6).

Proof of (II.1) and (II.3): From the sum-product rule, we
immedately have

−→µZ(z) =
∫

x

∫
y

−→µX(x)−→µY (y)δ(x− z)δ(y − z) dx dy (155)

= −→µX(z)−→µY (z). (156)

Plugging in

−→µX(x) ∝ e−β(x−−→mX)H−→WX(x−−→mX) (157)

(and analogously for−→µY) and then using Theorem 6 yields

−→µZ(z) ∝ e−β(z−−→mZ)H−→WZ(z−−→mZ) (158)

with
−→
WZ and

−→
WZ
−→mZ as in (II.1) and (II.3), respectively.

Proof of (II.5) and (II.6): The proof follows from the fact
that the marginals at all three edges coincide:

−→µX(s)←−µX(s) = −→µX(s)−→µY (s)←−µZ(s) (159)

= −→µY (s)←−µY (s) (160)

= −→µZ(s)←−µZ(s). (161)

Proof of (II.7) and (II.9): The computation of−→µZ amounts
to closing the box in the factor graph of Fig. 21. In this figure,
by elementary probability theory, the mean ofZ is the sum
of the means ofX andY , and the variance ofZ is the sum
of variances ofX andY .

Proof of (II.12): From (II.7) we have

−→
V Z +

←−
V Z = (

−→
V X +

−→
V Y) +

←−
V Z ; (162)

from (II.8) we have

−→
V X +

←−
V X =

−→
V X + (

−→
V Y +

←−
V Z) (163)

and
−→
V Y +

←−
V Y =

−→
V Y + (

−→
V X +

←−
V Z). (164)

We thus have

−→
V X +

←−
V X =

−→
V Y +

←−
V Y =

−→
V Z +

←−
V Z , (165)

which by (56) implies (II.12).

Proof of (III.1)–(III.4): By elementary probability theory.

19

Proof of (III.5) and (III.6): By the sum-product rule, we
have

←−µX(x) =
∫

y

δ(y −Ax)←−µY (y) dy (166)

=←−µY (Ax) (167)

∝ e−β(Ax−←−mY)H←−WY (Ax−←−mY) (168)

∝ e
−β

(
xHAH←−WY Ax−2Re(xHAH←−WY

←−mY)
)

(169)

and comparison with (125) completes the proof.

Proof of (III.8): Using (I.2), (III.5), and (III.4), we have

W̃X =
←−
WX −

←−
WXVX

←−
WX (170)

= AH←−WY A−AH←−WY A VXAH←−WY A (171)

= AH
(←−
WY −

←−
WY VY

←−
WY

)
A (172)

= AHW̃Y A. (173)

Proof of (III.7): Using (III.8) and (III.3), we have

W̃XmX = AHW̃Y A mX (174)

= AHW̃Y mY . (175)

Proof of (III.9): Using (I.2), (III.6), (III.5), and (III.4), we
have

W̃X
←−mX =

(←−
WX −

←−
WXVX

←−
WX

)←−mX (176)

= AH←−WY
←−mY −AH←−WY A VXAH←−WY

←−mY (177)

= AH
(←−
WY −

←−
WY VY

←−
WY

)←−mY (178)

= AHW̃Y
←−mY . (179)

We will now need the following well known fact.

Theorem 7 (Matrix Inversion Lemma [47]). Assume that
the (real or complex) matricesA, B, C, D satisfy

A = B−1 + CD−1CH (180)

and assume that bothB andD are positive definite. ThenA
is positive definite and

A−1 = B −BC(D + CHBC)−1CHB. (181)
2

Proof of (IV.2): By (II.1) and (III.5), we have
−→
WZ =

−→
WX + AH←−WY A. (182)

Using the Matrix Inversion Lemma (Theorem 7 above) yields

−→
V Z =

−→
V X −

−→
V XAH

(←−
V Y + A

−→
V XAH

)−1

A
−→
V X . (183)

Proof of (IV.1): By (II.3), (II.1), and (III.5), we have

−→mZ =
−→
W−1

Z

(−→
WX
−→mX + AH←−WY

←−mY

)
(184)

=
−→
V Z
−→
V −1

X

(−→mX +
−→
V XAH←−WY

←−mY

)
. (185)

Inserting (183) yields

−→mZ =
(
I −
−→
V XAH

(←−
V Y + A

−→
V XAH

)−1
A
)

·
(−→mX +

−→
V XAH←−WY

←−mY

)
(186)

= −→mX +
−→
V XAH←−WY

←−mY −
−→
V XAH

·
(←−
V Y + A

−→
V XAH

)−1
A
(−→mX +

−→
V XAH←−WY

←−mY

)
(187)

= −→mX +
−→
V XAH

(←−
V Y + A

−→
V XAH

)−1

·
((←−

V Y + A
−→
V XAH

)←−
WY
←−mY

−
(
A−→mX + A

−→
V XAH←−WY

←−mY

))
(188)

= −→mX +
−→
V XAH

(←−
V Y + A

−→
V XAH

)−1

·
(←−mY −A−→mX

)
. (189)

Proof of (IV.6): By (II.7) and (III.1), we have
−→
V Z =

−→
V X + A

−→
V Y AH . (190)

Using the Matrix Inversion Lemma (Theorem 7 above) yields

−→
WZ =

−→
WX −

−→
WXA

(−→
WY + AH−→WXA

)−1

AH−→WX . (191)

Proof of (IV.4): by (II.9) and (III.2).

Proof of (IV.8): From (IV.4) and (IV.6), we have
−→
WZ
−→mZ =

−→
WZ

(−→mX + A−→mY

)
(192)

=
(−→
WX −

−→
WXAHAH−→WX

)(−→mX + A−→mY

)
(193)

=
−→
WX
−→mX +

−→
WXAH

·
(
H−1−→mY −AH−→WX

−→mX −AH−→WXA−→mY

)
(194)

=
−→
WX
−→mX +

−→
WXAH

(−→
WY
−→mY −AH−→WX

−→mX

)
. (195)

Proof of Table V (top): Let U⊥ be the kernel of the surjective
mappingϕ : x 7→ Ax and letU be its orthogonal complement
(in the space ofx). Let x = xU + xU⊥ be the decomposition
of x into xU ∈ U andxU⊥ ∈ U⊥. The conditiony = Ax is
equivalent to the condition

xU = A#y. (196)

We next note thatU is spanned by the columns ofAH and
that U⊥ is spanned by the columns ofBH . It follows that
(196) is equivalent to

x = A#y + BH(arbitrary). (197)

Proof of Table V (bottom): Let U be the image of the
injective mappingϕ : x 7→ Ax and letU⊥ be its orthogonal
complement (in the space ofy). Let y = yU + yU⊥ be
the decomposition ofy into yU ∈ U and yU⊥ ∈ U⊥. The
conditiony = Ax is equivalent to the two conditions

x = A#y (198)

and
yU⊥ = 0. (199)

20

We next note thatU⊥ is the kernel of the mappingy 7→ AHy
andU is the kernel of the mappingy 7→ BHy. If follows that
(199) is equivalent toBHy = 0.

The proofs of (VI.1) and (VI.2) are immediate from (III.2)
and (III.1), respectively.

The proofs of (VI.3) and (VI.4) are immediate from (III.6)
and (III.5), respectively.

The proofs of (VI.5) and (VI.6) are immediate from (III.2)
and (III.1), respectively.

APPENDIX III
THE FOURIER TRANSFORM ONFACTOR GRAPHS

We review some key results of Forney [43] and adapt (and
simplify) them to the setting of the present paper.

The Fourier transform of a functionf : Rn → C is the
function f̃ : Rn → C given by

f̃(ω1, . . . , ωn) =
∫

x1

. . .

∫
xn

f(x1, . . . , xn)

e−iω1x1 . . . e−iωnxn dx1 . . . dxn. (200)

With x = (x1, . . . , xn)T andω = (ω1, . . . , ωn)T , this may be
written as

f̃(ω) =
∫

x

f(x)e−iωT x dx. (201)

The functionf may be recovered from its Fourier transform
f̃ by means of the inverse Fourier transform:

f(x) = (2π)−n

∫
x

f̃(ω)eiωT x dω. (202)

We will use bothF(f) andf̃ (as above) to denote the Fourier
transform off .

It is immediate from (200) that

F
(∫

x3

f(x1, x2, x3) dx3

)
= f̃(ω1, ω2, ω3)

∣∣∣
ω3=0

(203)

In words: marginalization in one domain corresponds to zero-
ing in the other domain.

The Fourier transform of a one-dimensional real zero-mean
Gaussian density is

F
(

1√
2πσ

e−x2/2σ2
)

= e−ω2σ2/2. (204)

The Fourier transform of a generaln-dimensional real Gaus-
sian density with covariance matrixV = W−1 is

F
(
γe−

1
2 (x−m)T W (x−m)

)
= e−iωT me−

1
2 ωT V ω (205)

(whereγ is the required scale factor to normalize the density).
The Fourier transform may be carried out directly in a factor

graph as follows. Consider a factor graph for (some factoriza-
tion of) f(x1, . . . , xn) such thatx1, . . . , xk are represented
by half edges andxk+1, . . . , xn are represented by full edges.
Create a new factor graph (with the same topology) by the
following procedure:

1) Replace each variablex` by its dual (“frequency”)
variableω`.

2) Replace each node / factor by its Fourier transform.

3) For each full edge, introduce a minus sign into one of
the adjacent factors.

The resulting factor graph will be called a dual factor graph of
the original factor graph. (The dual factor graph is not unique
due to the sign issue in step 3.)

Theorem 8 (Fourier Transform on Factor Graph). Let
f̃ ′(ω1, . . . , ωn) be the global function of a dual factor graph.
Then the Fourier transform of∫

xk+1

. . .

∫
xn

f(x1, . . . , xn) dxk+1 . . . dxn. (206)

is ∫
ωk+1

. . .

∫
ωn

f̃ ′(ω1, . . . , ωn) dωk+1 . . . dωn (207)

(up to a scale factor). 2

Note that the factor graph is allowed to have cycles. Note also
that f̃ ′ is not the Fourier transform off ; only the half-edge
marginals (206) and (207) are a Fourier pair (up to a scale
factor).

Example 1. Let

f(x1, x2, x3) = g1(x1, x3)g2(x2, x3), (208)

the factor graph of which is shown in Fig. 22. Then

f̃ ′(ω1, ω2, ω3)
= g̃1(ω1, ω3)g̃2(ω2,−ω3) (209)

=
∫

ω4

g̃1(ω1, ω3)g̃2(ω2, ω4)δ(ω3 + ω4) dω4 (210)

as shown in Figures 23 and 24. Theorem 8 now claims that
the Fourier transform of

f(x1, x2)
4=
∫

x3

f(x1, x2, x3) dx3 (211)

is

f̃(ω1, ω2) ∝
∫

ω3

f̃ ′(ω1, ω2, ω3) dω3, (212)

the “closed-box” global function in Figures 23 and 24. 2

An outline of the proof of Theorem 8 goes as follows. We
first note that the Fourier transform of

f(x1, x2, x5)
4= g1(x1, x5)g2(x2, x5) (213)

is the convolution

f̃(ω1, ω2, ω5) =
1
2π

∫
ω3

∫
ω4

g̃1(ω1, ω3)g̃2(ω2, ω4)

δ(ω3 + ω4 − ω5) dω4 dω5 (214)

(see Figures 25 and 26), which may be verified by direct
calculation of the inverse Fourier transform of (214). Inserting
ω5 = 0 changes Fig. 26 into Fig. 24 and Fig. 25 into Fig. 22
(the latter by (203)). We have thus established that the Fourier
transform of Fig. 22 is indeed Fig. 24. But the proof of this
simple example is easily generalized to general factor graphs
by treating all full edges simultaneously like the edgex3 in
Fig. 22 and using the corresponding generalization of (214).

21

g1

x1

x3
g2

x2

Fig. 22. Factor graph of (208).

g̃1

ω1

ω3
g̃2

−

ω2

Fig. 23. The factor graph of (209), a dual factor graph of Fig. 22.

g̃1

ω1

-
ω3

+ �
ω4

g̃2

ω2

Fig. 24. The factor graph of (210), which is equivalent to Fig. 23.

g1

x1

x3 =

x5

x4
g2

x2

Fig. 25. Factor graph of (213).

g̃1

ω1

-
ω3

+

?ω5

�
ω4

g̃2

ω2

Fig. 26. Fourier transform of Fig. 25 (up to a scale factor).

We will use the following generalization of the Dirac delta.
If V is a subspace ofRn, we defineδV by δV (x) = 0 for
x 6∈ V and ∫

x

f(x)δV (x) dx
4=
∫

V

f(x) dx (215)

for any integrable functionf . For dim(V) = 0, we define
δV (x) = δ(x), the Dirac delta.

Theorem 9 (Fourier Transform of Constraints). Let V be
a subspace ofRn and letV ⊥ be its orthogonal complement.
Then

F (δV (x)) ∝ δV ⊥(ω). (216)

2

Proof: The main idea is to writeδV as a limit of a
Gaussian distribution. Letk be the dimension ofV . Let A0

be ann×k matrix whose columns form an orthonormal basis
of V , and letA1 be ann × (n − k) matrix whose columns
form an orthonormal basis ofV ⊥. Note that‖AT

0 x‖ is the
norm of the projection ofx into V and ‖AT

1 x‖ is the norm
of the projection ofx into V ⊥. Let A = (A0, A1), which is a
nonsingularn× n matrix. Then

δV (x) ∝ lim
β→∞

e−
β
2 ‖A

T
1 x‖2 (217)

= lim
β→∞

e−
1
2β ‖A

T
0 x‖2− β

2 ‖A
T
1 x‖2 (218)

= lim
β→∞

e−
1
2β xTA0AT

0 x− β
2 xTA1AT

1 x (219)

= lim
β→∞

e−
1
2 xTADAT x (220)

with
D

4= diag
(
1/β, . . . , 1/β︸ ︷︷ ︸

k times

, β, . . . , β︸ ︷︷ ︸
n− k times

)
. (221)

Analoguously,

δV ⊥(x) ∝ lim
β→∞

e−
1
2 xTAD−1AT x (222)

= lim
β→∞

e−
1
2 xT (ADAT)−1x (223)

where the last step follows from noting thatAT A = I and
thus A−1 = AT . The theorem then follows from noting that
(220) and (223) are a Fourier pair (up to a scale factor), as is
obious from (205).

Example 2 (Equality Constraint). Let

V = {(x1, x2, x3)T ∈ R3 : x1 = x2 = x3}. (224)

Then

V ⊥ = {(x1, x2, x3)T ∈ R3 : x1 + x2 + x3 = 0}. (225)

If follows that the Fourier transform of

δV (x) = δ(x1 − x2)δ(x2 − x3) (226)

is the sum constraint

δV ⊥(ω) = δ(ω1 + ω2 + ω3) (227)

(up to a scale factor). 2

With the Fourier transform of this example, applying Theo-
rem 8 to Fig. 25 yields Fig. 26.

Example 3 (Matrix Multiplication). Let A be a real matrix
(without any conditions on rank or aspect ratio). Let

V = {(xT
1 , xT

2)T : x1 = Ax2} (228)

wherex1 and x2 are column vectors of suitable dimensions.
Then

V ⊥ = {(xT
1 , xT

2)T : x2 = −AT x1}. (229)

It follows that the Fourier transform of

δV (x) = δ(x1 −Ax2) (230)

22

is
δV ⊥(ω) = δ(ω2 + AT ω1) (231)

(up to a scale factor). 2

It follows from Examples 2 and 3 that the two factor graphs
in each of the Tables II, IV, V, and VI are Fourier pairs (up
to a scale factor).

ACKNOWLEDGEMENT

The material of this paper has grown over many years
into its present shape. The first author wishes to particularly
acknowledge the enjoyable collaborations with Niclas Wiberg
[22], [44] and with Pascal O. Vontobel [62], [63]. Both the
first and the last author are immensely grateful to G. David
Forney, Jr., for his continued encouragement and feedback.
Sascha Korl and Andi Loeliger are indebted to Allen Lindgren
for many helpful discussions. Li Ping wishes to acknowledge
helpful discussions with Qinghua Guo.

REFERENCES

[1] B. J. Frey, F. R. Kschischang, H.-A. Loeliger, and N. Wiberg, “Factor
graphs and algorithms,”Proc. 35th Allerton Conf. on Communications,
Control, and Computing,Monticello, Illinois, Sept. 29 – Oct. 1, 1997,
pp. 666–680.

[2] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and
the sum-product algorithm,”IEEE Trans. Information Theory,vol. 47,
pp. 498–519, Feb. 2001.

[3] H.-A. Loeliger, “An introduction to factor graphs,”IEEE Signal Proc.
Mag., Jan. 2004, pp. 28–41.

[4] M. I. Jordan, “Graphical models,”Statistical Science,vol. 19, no. 1,
pp. 140–155, 2004.

[5] M. Jordan, ed.,Learning in Graphical Models.Kluwer, 1998.
[6] R. G. Cowell, A. P. Dawid, S. L. Lauritzen, D. J. Spiegelhalter,

Probabilistic Networks and Expert Systems.Springer, 1999.
[7] Ch. M. Bishop,Pattern Recognition and Machine Learning.New York:

Springer Science+Business Media, 2006.
[8] J. Pearl,Probabilistic Reasoning in Intelligent Systems.2nd ed. Morgan

Kaufmann, 1988.
[9] R. Kindermann and J. L. Snell,Markov Random Fields and Their

Applications.Amer. Math. Soc., 1980.
[10] S. M. Aji and R. J. McEliece, “The generalized distributive law,”IEEE

Trans. Information Theory,vol. 46, no. 2, pp. 325–343, March 2000.
[11] S. M. Aji and R. J. McEliece, “The generalized distributive law and free

energy minimization,”Proc. 39th Allerton Conf. on Communications,
Control, and Computing,Monticello, Illinois, pp. 672–681, October
2001.

[12] Y. Weiss and W. T. Freeman, “On the optimality of the max-product be-
lief propagation algorithm in arbitrary graphs,”IEEE Trans. Information
Theoryvol. 47, no. 2, pp. 736–744, 2001.

[13] P. Rusmevichientong and B. Van Roy, “An analysis of belief propagation
on the turbo decoding graph with Gaussian densities,”IEEE Trans.
Information Theory,vol. 47, pp. 745–765, Feb. 2001.

[14] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Generalized Belief Prop-
agation,” Advances in Neural Information Processing Systems (NIPS),
vol. 13, pp. 689–695, December 2000.

[15] J. Feldman, D. Karger, and M. J. Wainwright, “LP decoding,”Proc. 41st
Allerton Conf. on Communication, Control, and Computing,Monticello,
Illinois, Oct. 1–3, 2003.

[16] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Constructing free-energy
approximations and generalized belief propagation algorithms,”IEEE
Trans. Information Theory,Vol. 51, No. 7, pp. 2282–2312, July 2005.

[17] V. Kolmogorov and M. J. Wainwright, “On the optimality of tree-
reweighted max-product message-passing,” Proc. 21st Conf. on Uncer-
tainty in Artificial Intelligence, Edinburgh, Scotland, July 2005.

[18] T. P. Minka,A Family of Algorithms for Approximate Bayesian Inference.
PhD thesis, Massachusetts Institute of Technology (MIT), 2001.

[19] T. P. Minka, “Expectation propagation for approximate Bayesian infer-
ence,” inProceedings of the 17th Annual Conference on Uncertainty in
Artificial Intelligence (UAI-01),vol. 17, pp. 362–369, 2001.

[20] J. Winn and C. Bishop, “Variational message passing,”Journal of
Machine Learning Research,vol. 6, pp. 661–694, 2005.

[21] M. Chertkov and V. Y. Chernyak, “Loop series for discrete statistical
models on graphs,”J. Statistical Mechanics: Theory and Experiment,
June 2006.

[22] N. Wiberg,Codes and Decoding on General Graphs.Linköping Studies
in Science and Technology, Ph.D. Thesis No. 440, Univ. Linköping,
Sweden, 1996.

[23] A. P. Worthen and W. E. Stark, “Unified design of iterative receivers
using factor graphs,”IEEE Trans. Information Theory,vol. 47, no. 2,
pp. 843–849, Feb. 2001.

[24] J. Boutros and G. Caire, “Iterative multiuser joint decoding: unified
framework and asymptotic analysis,”IEEE Trans. Information Theory,
vol. 48, no. 7, pp. 1772–1793, July 2002.

[25] E. Biglieri, A. Nordio, and G. Taricco, “Iterative receivers for coded
MIMO signaling,” Wirel. Commun. Mob. Comput.,vol. 4, no. 7, pp. 697–
710, November 2004.

[26] G. Colavolpe and G. Germi, “On the application of factor graphs and the
sum-product algorithm to ISI channels,”IEEE Trans. Communications,
vol. 53, no. 5, pp. 818–825, May 2005.

[27] G. Colavolpe, A. Barbieri, and G. Caire, “Algorithms for iterative
decoding in the presence of strong phase noise,”IEEE J. on Selected
Areas in Communications,vol. 23, no. 9, pp. 1748–1757, Sept. 2005.

[28] Huaning Niu, Manyuan Shen, J. A. Ritcey, and Hui Liu, “A factor
graph approach to iterative channel estimation and LDPC decoding over
fading channels,”IEEE Trans. Wireless Communications,vol. 4, no. 4,
pp. 1345–1350, July 2005.

[29] A. W. Eckford, “The factor graph EM algorithm: applications for LDPC
codes,” Proc. 6th Workshop on Signal Proc. Advances in Wireless
Communications,June 5–8, 2005, pp. 910–914.

[30] Qinghua Guo, Li Ping, and H.-A. Loeliger, “Turbo equalization based
on factor graphs,”Proc. 2005 IEEE Int. Symp. on Information Theory,
Adelaide, Australia, Sept. 4–9, 2005, pp. 2021–2025.

[31] F. Simoens and M. Moeneclaey, “Code-aided estimation and detection
on time-varying correlated MIMO channels: a factor graph approach,”
EURASIP Journal of Applied Signal Processing,vol. 2006, No. 1, pp. 1–
11, 2006.

[32] R. Drost and A. C. Singer, “Factor graph algorithms for equalization,”
IEEE Trans. Signal Processing,to appear.

[33] H.-A. Loeliger, “Least squares and Kalman filtering on Forney graphs,”
in Codes, Graphs, and Systems,(festschrift in honour of David Forney
on the occasion of his60th birthday), R. E. Blahut and R. Koetter, eds.,
Kluwer, 2002, pp. 113–135.

[34] H.-A. Loeliger, J. Dauwels, V. M. Koch, and S. Korl, “Signal processing
with factor graphs: examples,”Proc. First Int. Symp. on Control,
Communications and Signal Processing,March 21–24, Hammamet,
Tunisia, pp. 571–574.

[35] S. Korl, H.-A. Loeliger, and A. G. Lindgren, “AR model parameter
estimation: from factor graphs to algorithms,”Proc. IEEE Int. Conf. on
Acoustics, Speech, and Signal Processing,May 17–21, 2004, Montreal,
Canada, vol. V, pp. 509-512.

[36] J. Dauwels and H.-A. Loeliger, “Phase estimation by message passing,”
Proc. 2004 IEEE Int. Conf. on Communications,June 20–24, 2004,
Paris, France, pp. 523–527.

[37] V. M. Koch and H.-A. Loeliger, “EMG signal decomposition by loopy
belief propagation,”Proc. IEEE Int. Conf. on Acoustics, Speech, and
Signal Processing,March 18-23, 2005, Philadelphia, PA, USA, pp. 397–
400.

[38] S. Korl, A Factor Graph Approach to Signal Modelling, System Identi-
fication and Filtering.Ph.D. thesis at ETH Zurich No 16170, Hartung
Gorre Verlag, Konstanz, 2005.

[39] J. Dauwels,On Graphical Models for Communications and Machine
Learning: Algorithms, Bounds, and Analog Implementation.Ph.D. thesis
at ETH Zurich No 16365, 2005.

[40] Y. Mao, F. R. Kschischang, B. Li, S. Pasupathy, “A factor graph approach
to link loss monitoring in wireless sensor networks,”IEEE J. on Selected
Areas in Communications,vol. 23, no. 4, April 2005, pp. 820–829.

[41] B. J. Frey, N. Mohammad, Q. D. Morris, Wen Zhang, M. D. Robinson,
S. Mnaimneh, R. Chang, Qun Pan, E. Sat, J. Rossant, B. G. Bruneau,
J. E. Aubin, B. J. Blencowe, and T. R. Hughes, “Genome-wide analysis
of mouse transcripts using exon microarrays and factor graphs,”Nature
Genetics,vol. 37, no. 9, Sept. 2005.

[42] B. J. Frey and D. Dueck, “Clustering by passing messages between data
points,” Science,vol. 315, 16 Feb. 2007, pp. 972–976.

[43] G. D. Forney, Jr., “Codes on graphs: normal realizations,”IEEE Trans.
Information Theory,vol. 47, no. 2, pp. 520–548, 2001.

23

[44] N. Wiberg, H.-A. Loeliger, and R. K̈otter, “Codes and iterative decoding
on general graphs,”Europ. Trans. Telecommunications,vol. 6, pp. 513–
525, Sept. / Oct. 1995.

[45] Y. Mao and F. R. Kschischang, “On factor graphs and the Fourier
transform,” IEEE Trans. Information Theory,vol. 51, no. 5, pp. 1635–
1649, May 2005.

[46] S. Roweis and Z. Ghahramani, “A unifying review of linear Gaussian
models,”Neural Computation,vol. 11, no. 2, pp. 305–345, Feb. 1999.

[47] S. Haykin,Adaptive Filter Theory.3rd ed., Prentice Hall, 1996.
[48] X. Wang and H. V. Poor, “Iterative (turbo) soft interference cancellation

and decoding for coded CDMA,”IEEE Trans. Communications,vol. 47,
pp. 1046–1061, July 1999.

[49] J. Hu, H.-A. Loeliger, J. Dauwels, and F. Kschischang, “A general
computation rule for lossy summaries / messages with examples from
equalization,”Proc. 44th Allerton Conf. on Communication, Control,
and Computing,Monticello, Illinois, Sept. 27–29, 2006.

[50] H.-A. Loeliger, “Some remarks on factor graphs,”Proc. 3rd Int. Symp.
on Turbo Codes & Related Topics,Sept. 1–5, 2003, Brest, France,
pp. 111–115.

[51] J. Dauwels, S. Korl, and H.-A. Loeliger, “Steepest descent on factor
graphs,” Proc. IEEE Information Theory Workshop, Rotorua, New
Zealand, Aug. 28 – Sept. 1, 2005, pp. 42–46.

[52] P. M. Djuric, J. H. Kotecha, J. Zhang, Y. Huang, T. Ghirmai,
M. F. Bugallo, and J. Miguez, “Particle filtering,”IEEE Signal Proc.
Mag., vol. 20, pp. 19–38, Sept. 2003.

[53] A. Doucet, J. F. G. de Freitas, and N. J. Gordon, eds.,Sequential Monte
Carlo Methods in Practice.New York: Springer-Verlag, 2001.

[54] M. Briers, A. Doucet, and S. S. Singh, “Sequential auxiliary particle
belief propagation,”Proc. 7th. Int. Conf. on Information Fusion,2005.

[55] F. Hamze and N. de Freitas, “Hot coupling: a particle approach to
inference and normalization on pairwise undirected graphs,”Advances
in Neural Information Processing Systems 18,Y. Weiss, B. Scḧolkopf,
and J. Platt, eds., MIT Press, 2006, pp. 491–498.

[56] J. Dauwels, S. Korl, and H.-A. Loeliger, “Particle methods as message
passing,”Proc. 2006 IEEE Int. Symp. on Information Theory,Seattle,
USA, July 9–14, 2006, pp. 2052–2056.

[57] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the EM algorithm,”Journal of the Royal
Statistical Society,vol. 39, Series B, pp. 1–38, 1977.

[58] P. Stoica and Y. Selén, “Cyclic minimizers, majorization techniques, and
the expectation-maximization algorithm: a refresher,”IEEE Signal Proc.
Mag., January 2004, pp. 112–114.

[59] S. Lauritzen, “The EM algorithm for graphical association models with
missing data,”Computational Statistics and Data Analysis,vol. 19,
pp. 191–201, 1995.

[60] J. Dauwels, S. Korl, and H.-A. Loeliger, “Expectation maximization as
message passing,”Proc. 2005 IEEE Int. Symp. on Information Theory,
Adelaide, Australia, Sept. 4–9, 2005, pp. 583–586.

[61] J. Dauwels, A. W. Eckford, S. Korl, and H.-A. Loeliger, “Expectation
maximization in factor graphs,” in preparation.

[62] P. O. Vontobel,Kalman Filters, Factor Graphs, and Electrical Networks.
Internal report INT/200202, ISI-ITET, ETH Zurich, April 2002.

[63] P. O. Vontobel and H.-A. Loeliger, “On factor graphs and electrical
networks,” inMathematical Systems Theory in Biology, Communication,
Computation, and Finance,J. Rosenthal and D. S. Gilliam, eds., IMA
Volumes in Math. & Appl., Springer Verlag, 2003, pp. 469–492.

