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Abstract — A general framework, based on ideas of Tanner, for the description of codes and itera-
tive decoding (“turbo coding”) is developed. Just like trellis-based code descriptions are naturally
matched to Viterbi decoding, code descriptions based on Tanner graphs (which may be viewed as
generalized trellises) are naturally matched to iterative decoding. Two basic iterative decoding
algorithms (which are versions of the algorithms of Berrou et al. and of Hagenauer, respectively)
are shown to be natural generalizations of the forward-backward algorithm (Bahl et al.) and the
Viterbi algorithm, respectively, to arbitrary Tanner graphs. The careful derivation of these algo-
rithms clarifies, in particular, which a priori probabilities are admissible and how they are properly
dealt with. For cycle codes (a class of binary linear block codes), a complete characterization is
given of the error patterns that are corrected by the generalized Viterbi algorithm after infinitely
many iterations.

1. Introduction

Until recently, most known decoding procedures for error-correcting codes were based on either algebraically cal-
culating the error pattern or on some sort of tree or trellis search. With the advent of turbo coding [1], however, a
third decoding principle has finally had its breakthrough: iterative decoding.

Iterative decoding is not a new idea, though. Most of the key ideas were already present in Gallager’s pioneering
work on low-density parity-check codes [2]. At its time, Gallager’s work was actually considered to indicate a
promising direction for both research and applications, but the appearance of sequential decoding on the one hand
and the rapid advances in algebraic coding theory on the other hand had soon made it fall into oblivion.!

Another pioneering work is Tanner’s “recursive approach to low complexity codes” [4], which is a general frame-
work, based on bipartite graphs, for the description and decoding of low-complexity codes such as product codes,
low-density parity-check codes, and many others. The main thesis of the present paper is that, with respect to iter-
ative decoding, the natural way of describing a code is by means of a Tanner graph, just like trellis-based code
descriptions are natural for Viterbi decoding [5]. In fact, we will see that Tanner graphs (which we will define
slightly more general than in [4]) can be viewed as generalized trellises. (More precisely, it is the “time axis” of a
trellis that is generalized to a Tanner graph.)

1. The perhaps most significant later work on low-density parity-check codes is [3], where the codes were studied from a complex-
ity-theory viewpoint.
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Having introduced Tanner graphs as generalized trellises, it will not come as a surprise that iterative decoding on
such graphs can be formulated as a generalized version of trellis decoding. We will describe two such algorithms
in detail: the min-sum algorithm and the sum-product algorithm. The former may be seen as a generalization of
the Viterbi algorithm and the latter as a generalization of the “forward-backward” algorithm of Bahl et al. [6].

When applied to the turbo codes of Berrou et al. [1] (which are included in our general framework), the sum-prod-
uct algorithm leads to (a version of) the decoding algorithm of [1], while the min-sum algorithm leads to (a ver-
sion of) an algorithm that has been proposed in [7] as an easily implemented approximation of the algorithm of
[1]. It should be noted that both algorithms were outlined by Tanner (and, to some extent, already by Gallager),
though sketchily and without reference to trellis decoding.

Trellises yield cycle-free Tanner graphs. Code “realizations” of lower complexity (such as turbo codes) are
obtained from Tanner graphs with cycles. We will outline how known bounds on the trellis complexity can be
generalized to arbitrary Tanner graphs.

When applied to Tanner graphs with cycles, the operation of the two mentioned algorithms is not well understood.
For the class of cycles codes [8, pp. 136-138], however, we will give a complete characterization of all error pat-
terns that are corrected by the generalized Viterbi algorithm after infinitely many iterations.

We wish to emphasize that the (few) examples of this paper are not chosen for their performance, but only to illus-
trate concepts.

The paper is structured as follows. In Section 2, we introduce Tanner graphs. The two basic iterative algorithms
are described in Section 3, which contains also the analysis of the min-sum algorithm for cycle codes. Section 4,
finally, contains some conclusions. Appendix A outlines the mentioned generalization of bounds on trellis com-
plexity to arbitrary Tanner graphs. The proofs are collected in Appendix B. Some simulation results are given in
Appendix C.

2. Tanner Graphs

In this section we propose a framework for code descriptions, or “realizations”, that are suitable for iterative
decoding. The basic ideas of this approach are due to Tanner [4]. (Note, however, that our terminology and nota-
tion differ from that of [4].) We extend Tanner’s work by making explicit the connections to trellis coding on the
one hand and to system theory on the other hand. We begin with two informal examples.

Figures 1 (right) and 2 (bottom) show two different Tanner graphs for the same binary linear (7, 3, 4) code. A par-
ity check matrix for this code is shown in Figure 1 (left). Note that the last three rows of this matrix are linearly
dependent from the other rows and thus redundant.

The (Tanner) graph in Figure 1 (right) is simply an illustration of the structure of that parity check matrix. The
codeword components are represented by circular nodes—which we will refer to as sites—and each row of the
matrix is represented by a small dot which is connected to those sites (i.e., codeword components) that are
checked by that row.

[1010001]
1101000
0110100

H=[0011010
0001101
1000110
0100011

Figure 1 A parity-check matrix realization of the binary (7, 3, 4) code. (The numbers correspond to the
matrix columns.)
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Figure 2 A trellis realization of the binary (7, 3, 4) code.

Figure 2 shows a trellis (top) for the same code together with the Tanner graph (bottom) for that trellis. We now
have two types of sites: visible sites, which correspond to codeword components, and hidden sites, which are
depicted as double circles and correspond to the state spaces of the trellis. The small dots now stand for the indi-
vidual sections of the trellis.

We will soon give the formal definition of (our extended version of) a Tanner graph as (the illustration of) a
“check structure” for a “system”. We hope that the reader will not be repelled by our system-theoretic terminol-
ogy, the advantages of which will only gradually become obvious.

2.1 Systems and Check Structures

A configuration space is a direct product W = HS e ¥A;» where {A_ } _ is acollection of alphabets (or state
spaces). In the majority of our examples (e.g., Figure 1), the index set N will consist of the integers {1, ..., n} and
A; = F, (the binary field) for all s € N, i.e., the configuration space is the familiar space E" of blnary n-tuples.
More general configuration spaces are, however, essential, e.g., for trellis-based constructlons, where some of the
alphabets A are actually state spaces of the trellis (cf. Figure 2).

We will usually assume that the index set N as well as all alphabets A s» § € N, are finite. (Neither of these
assumptions are essential, though.) Elements of W will be called configurations. Elements of N will be referred to
as sites.

The components of a configuration x € W will be denoted by X, s € N. More generally, the restriction (projec-
tion) of x € W to a subset R N of sites will be denoted by xg . For a set of configurations X ¢ W and a site
subset R c N we will use the notation X & {xg:xe X}.

A system is a triple (N, W, B), where N is a set of sites, W is a configuration space, and B c W is the behavior.
(This “behavioral” notion of a system is due to Willems [9], cf. also [10].) The members of B will be called valid
configurations. A system is linear if all alphabets A are vector spaces (or scalars) over the same field, the config-
uration space W is the direct product of the alphabets, and the behavior B is a subspace of W.

A check structure for a system (N, W, B) is a collection Q of subsets of N (check sets) such that any configuration
x € W satisfying x; € B, for all check sets E e Q is valid (i.e., in B). The restriction (projection) By of the
behavior to a check set E is called the local behavior at E. A configuration x is locally valid on E if x £ € B . Note
that a configuration is valid if and only if it is locally valid on all check sets.

A Tanner graph is a visualization of a check structure: the Tanner graph (of a given check structure) is a bipartite
graph (as in Figure 1), where each site is represented by a circle and a check set E is represented by a dot (small
filled circle) that is connected to those sites (circles) that are members of E. Note that a check structure Q does not
by itself define a behavior B; the local behaviors By, are required too.
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Figure 3 The trivial check structure (or Tanner graph) with only one check set.

Any system has a trivial check structure @ = {N} consisting of only one check set that contains all the sites,
cf. Figure 3. Not surprisingly, this trivial check structure turns out to be unsuitable for iterative decoding. What
will be needed are check structures such that the local behaviors B, E € Q, are “simple”.

Example 1 (parity check matrix), cf. Figure 1. A binary block code C of length n may be viewed as the system
(N,W,B),where N = {1,2,...,n} , W = E",and B = C is the set of codewords. If H is a parity check matrix
for C (i.e., HxT = 0 if and only if x € C), then the ones in each row of H define a subset of N, and the collection
of all these subsets forms a check structure for the system. In this case, all the local behaviors are defined by sim-
ple parity checks. A special case of this example are Gallager’s low-density parity-check codes [2]. An important
special case of Gallager’s codes are “cycle codes” [8, pp. 136-138], which are defined by the additional condition
that each site belongs to exactly two check sets.

In Example 1, all sites correspond to components of the codewords. However, it is often useful to allow sites that
do not correspond to codeword components; such sites will be called hidden sites (or latent sites, cf. [9]), and the

remaining sites will be called visible. The system is then denoted by the quadruple (L, V, W, B) , where L are the

hidden sites and V are the visible sites. A codeword of the system is the restriction x,, of a valid configuration
x € B to the visible sites V. The visible behavior or output code of the system is B, = {xy:x € B}. A system
(L, V, W, B) with a check structure Q will be called a realization of the corresponding output code B, .

Hidden sites will be depicted by double circles, cf. Figure 2.

Any desired system may be trivially augmented with a single hidden site to allow for a check structure as shown
in Figure 4: the value x at the single hidden site s takes on a different value for each of the valid configurations
x € B. The check structure is defined as Q = { {s, s'} : s' € V} where s is the single hidden site, i.e., there is a
separate check set for each visible site. It will not surprise the reader that this construction, too, is unsuitable for
iterative decoding. What will be needed are hidden sites with “small” alphabets (state spaces).

Example 2 (trellis), cf. Figure 2. A familiar type of hidden sites are the state spaces of a trellis, as is illustrated by
Figure 2. The hidden sites correspond to the state spaces and the visible sites correspond to the output symbols.
There is a check set for each trellis section, and the corresponding local behavior is simply the set of branches of
that trellis section.

O

Figure 4 Another trivial check structure.
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Figure 5 The Tanner graph of the turbo codes of Berrou et al [1].

The motivation for introducing hidden sites—and indeed for studying check structures at all—is to find code real-
izations that are suitable for iterative decoding. At this point, little is known about how the realization affects the
decoding performance. However, it seems reasonable that a realization that is to be used for iterative decoding
should have

i. small check sets with simple local behaviors
ii. not too many hidden sites, and small hidden state spaces
iii. no short cycles in the Tanner graph.

The first two requirements follow from the fact that the complexity of iterative decoding is roughly proportional
to the number and alphabet size of the sites as well as to the number of check sets and to the complexity of the
local behaviors. The third requirement follows from the fact that iterative decoding (in the form considered in this
paper) is optimal for cycle-free graphs (cf. Section 3), and its application to graphs with cycles is (for the time
being) primarily justified by good experimental results. Moreover, the minimum distance of the code is often
determined by the length of the shortest cycle. (This is well understood for cycle codes [8, pp. 136-138].)

Both the role of hidden sites and the importance of avoiding short cycles are illustrated by the turbo codes of Ber-
rou et al. [1], the Tanner graph of which is shown in Figure 5. The system consist of two trellises that share certain
output symbols via an “interleaver” (i.e., the order of the common symbols in one trellis is a permutation of the
order in the other trellis). It is well known that the amazing performance of these codes is primarily due to the
interleaver, i.e., due to the cycle structure of the Tanner graph.

For binary codes, an interesting special class of realizations are those that have only binary hidden sites (i.e., all
sites are binary). Such realizations may be considered as punctured low-density parity-check codes. One such
example is shown in Figure 6. Its Tanner graph consists of two layers of visible sites and an intermediate layer of
hidden sites.

The point of considering Tanner graphs with cycles (as opposed to cycle-free graphs such as trellises) is that the
overall complexity of the realization is reduced. What happens, roughly, is that a single trellis state space of size m
is split into a number of state spaces of size m; such that Himi =m. This issue is discussed further in
Appendix A, where it is proved (for linear codes) that Himi 2m.

In graph theory, the length of the shortest cycle is called girth, and a great deal is known on graphs of maximal
girth [11][12]. Many possibilities exist for the construction of codes from such extremal graphs. A few such con-
structions were given in [13] and [14].
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17 sites

Figure 6 A realization of a (34, 17, 5) quasi-cyclic binary linear code. The Tanner graph “wraps around”
at the sides.

3. Two Basic Iterative Algorithms

Let (N, W, B) be a system with a check structure Q. We will describe two basic iterative algorithms, which may
be viewed as generalized versions of the Viterbi algorithm and the forward-backward! algorithm of Bahl et al. [6],
respectively.

The algorithms take as input a set of real-valued local cost functions® and produce a similar set of final cost func-
tions as output. The purpose of the final cost functions is to concentrate all appropriate information from the local
cost functions into each site and check set. (For cycle-free check structures, this is done in an “optimal” way, as
we will see.)

There is one local cost function for each site s € N, denoted by v, : A; — 92 (where &% denotes the real num-
bers), and one for each check set E € Q, denoted by 7y : Wy — 92. Similarly, there is one final cost function for
each site s € N, denoted by p : A;— 92, and one for each check set, denoted by pj: Wy — 2. The overall
structure of the algorithms is illustrated by Figure 7.

ALGORITHM
Local cost functions “Auxiliary” Final cost functions
cost functions
oo Ty K
YE I'Ls, E Ke

Figure 7 The overall structure of the algorithms.

During the computation, the algorithms maintain a set of “auxiliary” cost functions: for each pair (s, E) of adja-
cent site and check set (i.e., s € E), there is one “check-set-to-site” cost function [ Es As—™ G and one “site-to-
check-set” cost function p p: A — 9. As illustrated by Figure 8, the cost Hg, (@) may be interpreted as the
contribution from E to s on the cost of assigning x; = a. Similarly, the cost |, ;(a) may be thought of as the
contribution from s to E on the cost of the same assignment. (These interpretations will be made precise for the
case of cycle-free check structures.) '

.. mn
s, E E
s pa—
-’ I"LE, s .
Figure 8 The auxiliary cost functions W, g: A, >R and \p : A, > R.

1. This algorithm is much used in signal processing (hidden Markov models) [15], where it is attributed to L. E. Baum.
2. It may be easier to think of “cost vectors”.
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3.1 The Min-Sum Algorithm

The min-sum algorithm is a straightforward generalization of the Viterbi algorithm [5]. (The resulting algorithm
is essentially Tanner’s Algorithm B [4]; Tanner did not, however, observe the connection to Viterbi decoding.)
Hagenauer’s low-complexity turbo decoder [7] fits directly into this framework. Also a well-known decoding
algorithm for generalized concatenated codes [16] is related, as is threshold decoding [17].

The goal of the min-sum algorithm is to find a valid configuration x € B such that the sum of the local costs (over
all sites and check sets) is as small as possible. When using the min-sum algorithm in a channel-decoding situa-
tion with a memoryless channel and a received vector y, the check-set costs Y4(x;) are typically omitted (set to
zero) and the local site costs y,(x,) are the usual channel log-likelihoods —log p(yslxs) (for visible sites; for hid-
den sites they are set to zero). (Alternatively, we could set Yg(x;) to “infinity” for locally invalid configurations
and minimize over the whole configuration space W.) On the binary symmetric channel, for example, the local site
cost Yy(x,) would be the Hamming distance between x; and the received symbol y_.

The algorithm consists of the following three steps:

* Initialization. The local cost functions Y, and Y are initialized as appropriate (using, e.g., channel
information). The auxiliary cost functions p ; and |,  are set to zero.

* Iteration. The auxiliary cost functions W ; and [y . are alternatingly updated a suitable number of
times as follows (cf. also Figure 9). The site-to-check-set cost M, g(a) is computed as the sum of
the site’s local cost and all contributions coming into s except the one from E:

B @) = Y@+ Y M (0. 6]
E'e Q:
se E, EQ';t E

The check-set-to-site cost 1, (a) is obtained by examining all locally valid configurations on E
that match a on the site s, for each summing the check-set’s local cost and all contributions coming
into E except the one from s. The minimum over these is taken as the cost [ (a):

Hg (@) = min [YE(xE)+ > uy E(xx')]- )

xg€Bp:x;=a s’eE:s'#s

* Termination. The final cost functions i and W, are computed as follows. The final site cost | (a)
is computed as the sum of the site’s local cost and all contributions coming into s, i.e.,

B@) = v@+ Y  Hp @, 3

E'e Q:seE

and the final check-set cost l(a) is computed as the sum of the check-set’s local cost and all con-
tributions coming into E, i.e.,

Mg@ = Y@+ Y 1y a,). @

s'e E

Before going into what the min-sum algorithm actually computes, we define the global cost for a valid configura-
tion x € B as

G & Y vp)+ Y 1) (&)

Ee Q seN
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us, E(a) = Ys(a) + uEv s(a) + p‘Ez, s(a) l‘I‘E, S(a) = mn; ['YE(xE) + us]! E(xSl) + uSz, E(xsz)]
*g€ Pk

Figure 9 The updating rules for the min-sum algorithm.

In a typical channel-decoding situation where the check-set costs Y;(x) are set to zero and the local site costs are
Y (x,) 2 —logp(ys|xs), the global cost G(x) becomes the log-likelihood —logp(y|x) for the codeword x; then
maximum-likelihood decoding corresponds to finding a valid configuration x € B that minimizes G(x). As we
will see, the min-sum algorithm does this minimization when the check structure is cycle free. In addition, it is
also possible to assign nonzero values to the check-set costs Yg(xz) in order to include an a priori distribution
over the codewords: if we define 7y, such that —logp(x) = ZEE oYexp), then the global cost will be
G(x) & -logp(x) - logp(y|x) = —logp(x|y) —logp(y), and minimizing G(x) is equivalent to maximizing the a
posteriori codeword probability p(x|y) . (See the next section for more about a priori probabilities.)

The following theorem is the fundamental theoretical property of the min-sum algorithm:

Theorem 1 If the check structure is finite and cycle free, then the cost functions converge after
finitely many iterations and the final cost functions become

b@ = min G ©)
and
He@ = min  G©). )

x€B:ixg=a

The proof is given in Appendix B.1.

Usually, we also want to find the “best” configuration (rather than only its cost). Such a configuration is obtained
by taking, for each site 5, a value x € A, that minimizes the final cost W (x,) . (It may happen that for some sites
several site values minimize the final cost for some sites; then it may be non-trivial to find a valid configuration
that minimizes L, at all sites. For a cycle-free check structure, however, there is a straightforward procedure to
solve this problem: start in a leaf site s (one that belongs to a single check set) and choose an optimal value for x;
then extend the configuration successively to neighbor sites, always choosing site values that both are valid and
minimizes the final cost.)

In a practical implementation it is important to handle numerical issues properly. Typically, the cost functions
Mg s and U o grow out of range quickly. To overcome this, an arbitrary normalization term may be added to the
updating formulas without affecting the finally chosen configuration.
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3.2 The Sum-Product Algorithm

The sum-product algorithm is a straightforward generalization of the forward-backward algorithm for the compu-
tation of per-symbol a posteriori probabilities in a trellis. Two other special cases of the sum-product algorithm
are the classical “turbo” decoder by Berrou et al. [1] and one of Gallager’s decoding algorithms for low-density
parity-check codes [2]. The general case was outlined by Tanner [4], who did not, however, consider a priori
probabilities.

In the sum-product algorithm, the local cost functions Y, and Y, have a multiplicative interpretation: we define
the global “cost” for any configuration x € W as

GO & T et [T 1)) - @®)

Ee Q seN

The term “cost” is somewhat misleading in the sum-product algorithm, since it is usually subject to maximization
(rather than minimization as in the min-sum algorithm); we have chosen this term to keep the two algorithms as
parallel as possible. Also, the algorithm does not maximize G directly; it merely computes certain “local projec-
tions” of G, which in turn are natural candidates for maximization.

When discussing the sum-product algorithm, we will usually not consider the behavior B explicitly. Instead we
will require that the check-set costs y.(x) are zero for local configurations that are non-valid, i.e., we require

Ye(xg) = 0 for x; ¢ B. )

In the typical channel-decoding situation, with a memoryless channel and a received vector y, the local site costs
Y,(x,) are set to the channel likelihoods p(ys|xs) (for visible sites; for hidden sites Yy, is set to one), and the local
check-set costs are chosen according to the a priori distribution for the transmitted configuration x, which must be
of the form p(x) = HEE QYE(x ) - This form includes Markov random fields [18], Markov chains, and, in partic-
ular, the uniform distribution over any set of valid configurations. (The latter is achieved by taking Y, as the indi-
cator function for By, with an appropriate scaling factor.) With this setup, we get G(x) = p(x)p(y|x) =< p(x|y),
i.e., G(x) is proportional to the a posteriori probability of x. We will see later that, if the check structure is cycle
free, the algorithm computes the a posteriori probability for individual site (symbol) values
p(x, |y) = Zx’ cBix,=x, G(x"), which can be used to decode for minimal symbol error probability.

The algorithm consists of the following three steps:

* Initialization. The local cost functions Y, and 7y, are initialized as appropriate (using, e.g., channel
information and/or some known a priori distribution). The auxiliary cost functions 1 . and K,
are set to one.

* Iteration. The auxiliary cost functions [ . and W . are updated a suitable number of times as fol-
lows (cf. also Figure 10). The site-to-check-set cost W, (@) is computed as the product of the site’s
local cost and all contributions coming into s except the one from E:

Hop@ =v@ [ we@. (10)
E'e Q:

se EE'+E

The check-set-to-site cost [y (a) is obtained by summing over all locally valid configurations on
E that match a on the site s, each term being the product of the check-set’s local cost and all contri-
butions coming into E except the one from s:

e @ = Y Y My g(x,). (11

’ ’

xpe Wpix;=a s'eE:s'#s
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K £(@) = V(@ Ug (@) b (@) Mg (@) = ZW Ve p) B, g ) M, p(X)

X, =a

Figure 10 The updating rules for the sum-product algorithm.
Note that the sum in (11) actually runs only over By (the locally valid configurations) since Yz(xz)
is assumed to be zero for x; ¢ Bg.

* Termination. The final cost functions i, and 1, are computed as follows. The final site cost p(a)

is computed as the product of the site’s local cost and all contributions coming into s, i.e.,

@ =7v@ [ ~e@,

E'eQ:seE

and the final check-set cost Wg(a) is computed as the product of the check-set’s local cost and all
contributions coming into E, i.e.,
He(@) = Y@ ] uy glag).
s'e E
The fundamental theoretical result for the sum-product algorithm is the following:

Theorem 2 If the check structure is finite and cycle free, then the cost functions converge after
finitely many iterations and the final cost functions become

Y W

xeB:x;=a

(@)

and

Hga) 2 GW.

xeB:xg=a

The proof is essentially identical with that of Theorem 1, cf. Appendix B.1.

In particular, we have:

Corollary 3 If the global cost function G(x) is (proportional to) some probability distribution over
the configuration space, then the final cost functions are (proportional to) the corresponding mar-
ginal distributions for the site values and the local configurations. In particular, if G(x) is propor-
tional to the a posteriori probability p(x|y) , then the final cost W is proportional to the per-symbol
a posteriori probability p(xs| y) and the final cost W is proportional to the per-check-set a posteri-
ori probability p(x E|y) .

12)

13)

14)

5)
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In a decoding (estimation) application, an estimate for the site value x, is obtained by choosing the value x, that
maximizes the final cost L (x,) . With a cycle-free check structure, this minimizes the probability of symbol error.

Again, in a practical implementation, it is important to handle numerical issues properly. Typically, it is necessary
to include a normalization factor in the updating formulas in order to prevent the costs from going out of numeri-
cal range. This normalization factor does not influence the final maximization.

3.3 Implementation Issues

We have already mentioned that normalization is important to avoid numerical problems. It is also worth men-
tioning that, in the min-sum algorithm, it is natural to represent costs as integers (as is usual with implementations
of the Viterbi algorithm). Since the integers are closed under addition and minimization, no precision is lost dur-
ing the computation.

Another interesting issue is that of updating order. With a cycle-free check structure, each auxiliary cost function
need only be updated once: when all its “incoming” cost functions have been computed. Such an updating order is
normally used by the forward-backward algorithm and the “soft-output” Viterbi algorithm [19], where the trellis
is processed first from left to right and then from right to left. (The original Viterbi algorithm avoids the back-
wards phase by remembering, for each “state” (i.e., hidden site value), what incoming branch (local configura-
tion) gave the smallest cost; such a scheme can be generalized to any cycle-free check structure.)

Even with a check structure that is not cycle free, certain updating orders may be more natural (or efficient) than
others. In the classical “turbo” decoder [1], for example, the two trellises are processed alternatingly, in a forward-
backward manner. In Gallager’s decoder for low-density codes, on the other hand, the updating is supposed to be
done in parallel hardware.

The reader may have noted that, for both the min-sum and the sum-product algorithm, the updating formulas for
the site-to-check-set cost functions on the one hand and the check-set-to-site cost functions on the other hand are
very similar. In fact, sites could be treated as a special kind of check sets, which would formally unify the update
formulas.

3.4 Check Structures that are Not Cycle Free

We are primarily interested in check structures that contain cycles. In this case, the theorems of sections 3.1
and 3.2 do not apply; in fact, the algorithms may not converge at all. It turns out, however, that the final site cost
functions usually have a rather clear minimum (or maximum, for the sum-product algorithm). Moreover, the
decoding performance of the algorithms is often very good. Indications of this behavior were already present in
Gallager’s work [2], but the full potential of the algorithms was not obvious (or even conjectured) before the work
of Berrou et al. [1].

While a complete analysis of the algorithms is not yet available, it is clear that the theorems may be applied to the
first few iterations, i.e., before any cycle has closed. More precisely, for some fixed site s, let T (/) = N consist of
those sites (including s itself) that can be reached from s via less than [ intermediate sites, where 2/ < g and g is
the length of the shortest cycle in Q. If the algorithm is terminated after [ iterations, then the algorithm will have
operated on a cycle-free “subsystem” (T (0), WT:(,) , B") , and thus the theorems of sections 3.1 and 3.2 apply to
this subsystem. Note that, in general, the modified behavior B’ is different (larger) than the projection of the orig-
inal behavior to the site set T,(I) since not all check sets affect the computation.

For one class of codes we can, however, characterize the operation of the min-sum algorithm completely: for the
cycle codes [8, pp. 136-138], we can describe exactly what channel outputs give rise to a decoding error. The
analysis also suggests that, for these codes, the deviation from true maximum-likelihood decoding is insignificant,
which is confirmed by the simulation results in Appendix C.
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Figure 11 The Tanner graph of a simple cycle code.

In our set-up, a cycle code is a binary linear system (N, W,B), N = {1...n}, W = FZ”, with a check structure Q
such that

* every site is contained in exactly two check sets

* all checks are simple parity checks, i.e., B 4 {xpe Wg: ) px,=0},EeQ

cf. Figure 11. The parameters of these codes are easily determined from the Tanner graph [8, pp. 136-138]. In par-
ticular, the minimum distance equals the number of sites in a shortest cycle.

A non-returning walk, or simply walk on a check structure Q is a sequence s, ..., 5, of sites corresponding to a
walk on the Tanner graph such that s; ; #s;, i = 1,2, .... A finite walk is closed if, when concatenated with
itself, it is still a (non-returning) walk. Note that every cycle is a closed walk, but, in general, there are closed
walks that are not cycles (e.g., the walk 1,8,7,5,3,6,7,9 in Figure 11). A walk is irreducible if it is impossible to
obtain a shorter walk by removing a (shorter) closed walk. (Note that the mentioned walk in Figure 11 is irreduc-
ible.)

! . . .
We assume that the local check-set costs Y, are all zero. Let p ,(,:l)s , us(, L- be the costs in the min-sum algorithm

after the [:th iteration.

Theorem 4 The following two conditions are equivalent:

k
i. 2 Y, (1) =¥, (0) > 0 for all irreducible closed walks s, ..., s, . (16)
i=1

i pg (1) =R (0) = oo for all pairs (s, E) (with se E)as i — oo 17)

The proof is given in Appendix B.

Note that if “closed walks” in Condition (i) would be replaced by “cycles”, the decoder would be maximum like-
lihood.

4. Conclusions

The main thesis of this paper is that the framework developed in Section 2 (Tanner graphs) for the description of
codes (and “realizations” of codes) is naturally matched to iterative decoding, just like trellises are naturally
matched to Viterbi decoding. Within this framework, we have described and explained two basic iterative decod-
ing algorithms, which are generalizations of the forward-backward algorithm and the Viterbi algorithm, respec-
tively. The latter is more amenable to analysis: for cycle codes, we have given a complete characterization of all
error patterns that are corrected after infinitely many iterations.

Both algorithms are highly suitable for implementation in parallel hardware. While the min-sum algorithm is bet-
ter suited to digital hardware (or software), the sum-product algorithm may be suitable for analog hardware. Such
implementations would look much like “neural networks”; in fact, the prospect of such “neuromorphic” decoders
was an important motivation for this work, cf. [20].
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Finally, the ubiquity of trellis-based algorithms in signal processing suggests that Tanner graphs and their iterative
algorithms will find other applications as well.
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Appendix A. State Space Dimensions and Minimality

It is well known that, for a given ordering of the “time” axis, a linear (block or convolutional) code (or, more gen-
erally, a group code) has a well-defined unique minimal trellis; any trellis for the same code can be collapsed (by
state merging) to the minimal trellis (cf., e.g., [10]). An equivalent statement holds for realizations with an arbi-
trary cycle-free Tanner graph (which is easily seen by adapting the proofs of [10] to this case).

For Tanner graphs with cycles, however, this is no longer true. E.g., for tail-biting convolutional codes, it is easy
to construct examples of inequivalent realizations (in this case: tail-biting trellises) for the same linear code that
are minimal in the sense that no states can be merged [20, pp. 34-36]. Nevertheless, the theory of [10] is easily
adapted to give a lower bound on the size of certain site alphabets (state spaces), which we will now develop.

Let (N, W, B) be a linear system. For disjoint site subsets I and J, the notation [x,, y,] will be used for the con-
catenation of x, and y,, ie, z = [x,y,] € W, ; with z; = x; and z; = y,. This notation will also be
extended to more than two site sets (which must then be pairwise disjoint). We will also use the notion of a “cut”:
A cut on a check structure Q is a partition (K ;I,J) of the sites in Q such that no check set in Q contains sites
from both 7 and J. Informally, there is no “walk” from I to J that does not go through K. We will use the following
obvious result about cuts:

Lemma 5 Let (K;I,J) be a cut on Q. Then any xe W is valid (i.e., in B) if and only if
Xgo1€ By and xg, € By,

For a site subset R < N, we define fBR 2 {xeB: xyr=0},ie, B r consists of those valid configurations that
are zero outside R. We then have the following definition:

Definition Let (I,J) be a partition of N. The abstract state space between I and J is the quotient
space S; (B) £ B/ (B;+ By). The abstract state between I and J of a valid configuration x € B is
the coset G, (x) & x+ (B;+B)) .

For N = {1...n} , the time-j state space of the minimal trellis for B (with the given order of the “time” axis) is in
one-to-one correspondence with the abstract state space S (1. 3 (B). For general check structures, we
only have the following bound:

Theorem 6 Let (N, W, B) be a linear system with the check structure Q. Let (K ; I, J) be a cut on
Q. Then, for any I’ c I and any J’ c J, there exists a linear mapping from By onto S r Bror)-
In particular, dim By > dim § . rBror)-

(The proof will be given below.) Of special interest is the case when K contains only hidden sites:

Corollary 7 Let (L, V, W, B) be a linear system with hidden sites and with a check structure Q.
Let (K;1,J) be a cut on Q such that K contains no visible sites, i.e., I’ £ InV and J’ 2 JAnV
form a partition of V. Then zs  gdim A > dim S, ,(B,).
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Note that this bound can simultaneously be applied to all cuts of the Tanner graph, which results in a linear pro-
gramming bound on the dimensions of the site state spaces. Note further that bounds on the dimensions of the
subcodes Bp may be obtained from the dimension/length profile (generalized Hamming weights) of the code
(cf., e.g., [21]), which in turn can be bounded by known bounds on the minimum distance of block codes. The full
development of this approach is a challenging research problem.

To prove Theorem 6 we need the following lemma:

Lemma8 Let (N, W, B) be a linear system and let (I, J) be a partition of N. Then, for arbitrary
xeBandye B, [x,y,] € B if and only if 6; ,(x) = 0, ().

Proof. [x,y,] € B& [0, (y x),JeB& (y-x) ;€ BJ Similarly,
[xpy;] €e B (y—x) ;€ B, Together, this gives [x,y,] e B&y-xe B,+B, a

Proof of Theorem 6. We first claim that for any valid conﬁguratlons x and y such that x; = y,, we
have 6. ,(x) = o, "), where x' £ x,,u y and y' £ y,,u ;- Indeed, from Lemma 5, we have
[xgx,y,] €B and thus [x' Yyl € By, which implies 0;, ;(x) = 6, ;(y) by Lemma 8
(applied to By, ).

The mapping ¢ :By— S, (B ;) :xgb> Op j(xp ;) (for arbitrary xe B) is thus well
defined. It remains to verify that ¢ is linear; this follows from
P(oxy + Byy) = Oy, p((0xg + Byg) rog) = OOy Xy )+ Bo,. 0o = aexg) + Boly),
which holds for any x, y € B and any scalars o, 3. a

Appendix B. Proofs

B.1 Proof of Theorems 1 and 2

We will actually only carry out the proof for Theorem 1, i.e., for the min-sum algorithm. The proof is readily
adapted to the sum-product algorithm by replacing all sums with products and all minimizations with sums.

Let Q be a cycle-free check structure for the system (N, W, B) . For any site subset R ¢ N, we will use the nota-
tion

G 2 Y 1p+ Y vx) (18)

Ee Q:ECR sS€R

for the part of the global cost that corresponds to R. We then have Gy(x) = G(x) as a special case.

To prove the theorem, we will start with the claimed expression (6) for the final site cost functions. (The final
check-set cost functions will be discussed afterwards.) This expression will be broken down recursively, working
“backwards” through the algorithm, until only the local cost functions remain. In order to keep the notation trans-
parent, the proof is carried out only for the specific check structure of Figure 12; the generalization to arbitrary
check structures will be obvious.

The final site cost functions W

Consider the final cost ul(a) for some value a € A, atsite 1 in Figure 12. Let v,(a) denote the “claimed” value
for the final cost, i.e., vl(a) rmnxe Bix. =a G(x). ThlS expression can be written as a sum of three terms, corre-
sponding to the update rule: '

vi(@ = min Gk) = min {y,a)+ GRl(le) + YEl(xEl) + GRz(sz) + yEz(sz)} (19)

xeB:x =a xeB:x; =a
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3
Figure 12 Computation of the final site cost L,(a).
= 1@ + min [G, () + Vg, (5] + min [Gr,(xg) + Y5, )]  (20)
xklu(l)EBRlu(l}:xl=a xRZU(I}EBRZU(l):x1=a
Vg, @)
Vg, 1@ E,1

This expression has the same structure as the updating rule for the final costs (cf. Figure 12), and we see that the
final cost functions indeed get the claimed value Vv, , provided that the cost functions coming into site 1 have the
right value, i.e., provided that Me,1 = Ve, and Mg, 1 = VE,1- Due to the symmetry of the situation, it suffices
to consider He, 1

The check-set-to-site cost functions W

Figure 13 illustrates the computation of Py (@), which we claim to equal v E, 1(@) . The latter can be broken up
into three independent parts: the local check-set cost YE,(" El) and two costs associated with the site subsets R,
and R, , respectively:

va 1(0) = min [GRl(le) + YEl(xEI)] (21)

*ryun € Bklu(l) ‘X =a

= min [Yg,(xx,) + Gr (kg ) + G (3] 2)

TR U (1) EBRIu(l) Xy =a

=  min Te(g)+  min  Gp(xp)+  min  Gp(xy)|. (23)
xEleBEl:x,=a xkzeliRz:x2=xz XRJEBR3:7‘3=X3

—

Va5, (*2) V3 g (X3)

Again, this expression has the same structure as the updating formula for He, 1 cf. Figure 13. To prove that the
updating indeed computes v E, 10 We will show that the input costs to the updating rule are the same as the terms
of (23), i.e., that W, E, = VaE, and M, E, = ViE - Due to the symmetry of the situation, it suffices to
consider W, E,"
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Figure 13 Computation of the check-set-to-site cost g (a).

The site-to-check-set cost functions W, g

Figure 14 illustrates the computation of p, E, (@), which we claim to equal v, E, (a) . The latter can be broken up
into three independent parts: the local site cost Y,(a) and two costs associated with the site subsets R; and R,
respectively:

vy, El(a) = min GRZ(a) = min {1y(@) + GRs(xRa) + YEg(x Ea) + GR4(xR4) + YEa(an)} 24)
xRZEBR2:x2=a xRZGBR2:x2=a
= Y,(a) + min [Gr(xp) + Ve (6] + min [Gr (vg) + Vg (x5)] - (25)
fkau(z)eakau(z) Xpy=a ) ’fk4u(z)eBk4u(2) X =a
Vg, 2@) Vg, 2@)

Again, this expression has the same form as the updating rule for p, E,’ and we only need to show that the input
to the updating rule has the value of the last terms of (25). This can be done by going back to the previous step,
“the check-set-to-site cost functions Wg ;. This process is repeated recursively until the “leaf sites” are reached
(those that belong to a single check set), where we observe that the very first updating step computes the desired
expression V p:

v, g(x) = mit; G{ &) = Yx). (26)

s s

This completes the proof for the final site costs. For the final check-set costs [ (a) , only the first step of the proof
(the last step of the algorithm) need to be changed, i.e., we need to start in the claimed expression (7) for the final
check-set cost. Thus, let E be any check set (in a cycle-free check structure), and let R, s € E be the set of sites
that are reachable from E through s. Then the claimed expression can be written as

min  G(x) = min yga)+ Y G R (r) = Ve(@) + ), min Gg () » 27)

xeB:xg=a xeB:ixg=a se E seEX€Bixg=a

which matches the formula for |1 (a) , and the recursive process of above can be applied to the terms of the last
sum in (27).
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Figure 14 Computation of the site-to-check-set cost U, g (a) .

B.2 Proof of Theorem 4

With every check set E, every site s € E, and every nonnegative integer /, we associate a new system (with a new
site set T ;(/) and a new configuration space) whose Tanner graph is a tree of depth /. As illustrated in Figure 15,
this tree is obtained by “unfolding” the Tanner graph of the original system, starting at the site s and the check set
E. A site s'e N gives rise to zero, one, or many copies in T (/). The check structure of the tree system is
induced by the check structure Q of the original system; a check set E’ € Q gives rise zero, one, or many tree
check sets that inherit the local behavior B . Every configuration in B gives rise to a valid tree configuration, but
(in general), there are valid tree configurations that do not correspond to configurations in B.

For any tree site s', let n(s") be the corresponding site of the original system. It is clear from Section 3.1 that

ufgf)s(a) =min Y Y- (28)

X s'e T 0

where the minimization is over all valid tree configurations x” whose value at the root site equals a .
We now prove (i) = (ii).

Assume that (i) holds. Since the number of irreducible closed walks on Q is finite, (i) implies that there exists a
real number B >0 such that

k
> ¥, (D -7,0)> B 29)
i=1
for every irreducible closed walk s, ..., s, on Q. There also exists a real number & such that
k
2% (D-7,(0)>8 (30)
i=1

for any irreducible walk s, ..., s, (not necessarily closed).



Codes and Iterative Decoding on General Graphs 18

E, (D

E, L4 ©

©—_E,_(D

E, © ©

E, (3

S ) E,__A{© @

(D E;_(9

E, @
@® 5O
E,_A5 ©

& OO

E, D @)

E, (6

S E, @ ©

(O_E,_(2

®

Figure 15 The tree Tanner graph to the right is obtained from unfolding the Tanner graph to the left, starting
at the site s = 1, the checkset E|, and | = 4.

Let x* be the minimizing x” in (28) for a = 1. The definition of a cycle code implies that this tree configura-
tion " contains an all-ones path that starts at the root of the tree and extends to one of the leaves. Inverting all
site values along this path yields another valid tree configuration P , which is zero at the root site. Let
Fc T, g(I) be the set of tree sites along this path. Then, from (28),

) 1 1 0
B D -BPO2 T Y@ =Yy 31)
s'e T:' D
1 0
= 2 Yoo @) =Y s ). 32)
s'e F

We next observe that this path corresponds to a non-returning walk on Q. This walk can be “factored” into a num-
ber m of irreducible closed walks F, ..., F,, and a remaining irreducible walk F,,. The length of (i.e., the number
of sites in) any component F; is upper bounded by 2e, where e is the number of edges of the (original) Tanner
graph. Decomposing (32) according to this “factorization” and inserting (29) and (30) yields

e (1)~ (©0) 2 mp + 8. (33)

But both  and & are independent of I while m — o for | — o, which gives (ii).
It remains to show (ii) = (i).

Assume that (ii) holds. Then, for any site s € N, there exists an integer [, such that both

RO < Hgy(D) (34)

and
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g £(0) < p (D) (35)

forall 21 . Let [, be the maximum over these [, s € N. For some fixed site s € N and some [ > [, let x" be
the minimizing tree configuration in (28) with a = 0. But (34) and (35) imply that x” is all-zero from the root
site on to depth I — [, . We record this as a lemma:

Lemma B.1 For any fixed site s € N and any [ > [, the minimizing tree configuration x' in (28)
is zero from the root on to depth I -1;.

We now assume, contrary to the claim of the theorem, that there exists an irreducible closed walk F; c N on Q
such that

2 Y (D=7, 0)<0; 36)

se R

we will derive a contradiction, which proves the claim. First note that there exists a real number T such that

k
PRAORAORE: 37

i=1

for any non-returning walk s, ..., s, on Q of length at most I, + |F,| . We now ct%g)ose asitesin F; .Let Ee Q
be the check set “between” s and its successor in F, . For some fixed /> /), let x* " be the minimizing tree con-
figuration in (28) whose root-site value is zero. We now travel from the root to one of the leaves, along the path F
that corresponds to circulating in F, ; along this path, we invert all bits of x© , which results in a valid tree con-
figuration x" with root value one. Applying (28) yields

DR S T Yyioe) =Yoo ) (38)
s'e T, ()
1 0
= 2 Y@ ) =Yg ®s - (39)
s'eF

)

But Lemma B.1 implies that x(o is zero from the root on to depth / - /. Inserting (36) and (37) then yields

Ris(D) — g0 ST (40)

Since 7 is independent of /, this contradicts our assumption that (ii) holds. Q
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Appendix C. Simulation Results

Simulations were performed for the (15,6, 5) cycle code of the Peterson graph [8, pp. 136-138] and the
(34, 17, 5) code of Figure 6, in both cases comparing the performance of the iterative algorithms to that of maxi-
mum-likelihood decoding. As suggested by Theorem 4 (Section 3.4), the performance of iterative decoding is vir-
tually identical to that of maximum-likelihood for the cycle code. For the (34, 17, 5) code, the performance of
iterative decoding is slightly inferior to that of maximum-likelihood decoding.

0

10

Block Error Rate

-8 L L L L L 1

3 4 6 7
SNR [dB)

Figure 16 Decoding performance for the cycle code of the Peterson graph [8, pp. 136-138]. The upper curve

corresponds to 30 iterations of the min-sum algorithm. (The result for the sum-product algorithm is not shown

but is indistinguishable from that of the min-sum algorithm). The bottom curve corresponds to maximum-like-

lihood decoding.

Block Error Rate

- G—————OMin=Sum’

-4 ! L I

3
SNR [dB]

Figure 17 Decoding performance for the (34,17,5) code of Figure 6. The two upper curves correspond to 30
iterations of the sum-product and the min-sum algorithm, respectively. The bottom curve corresponds to maxi-
mum-likelihood decoding.
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