
�L. Andreae, L. Guerrini, N. Lanzetti & G. Moscato System Modeling, HS18

Exercise 11 - Linear Systems Analysis
Up to this point we have gathered different tools for modeling various types of systems and
determining their unknown parameters. Also, some insight was provided in the analysis
of nonlinear systems. It turns out, however, that working with such systems and trying to
understand their behaviour can be very difficult since not many approaches are available.
To tackle this problem, they are linearized and, by performing this operation, the analysis
becomes easier and some conclusions about the original nonlinear behaviour can be drawn.
The nonlinear systems resulting form the modeling take the form

d

dt
x(t) = f(x(t), u(t), t)

y(t) = g(x(t), u(t), t),
(11.1)

with

• x(t) ∈ Rn: state of the system;

• u(t) ∈ Rm: input to the system;

• y(t) ∈ Rp: output of the system.

11.1 Normalization

Normalization consists of the scaling of the variables of interest and allows us to avoid
numerical issues when simulating and optimizing a given system.
Consider the scaling factors xi,0, uj,0, yk,0 and the normalized variables xi,N(t), uj,N(t), yk,N(t)
such that

xi(t) = xi,0 · xi,N(t) → xi,N(t) =
xi(t)

xi,0
i = 1, 2, . . . , n,

uj(t) = uj,0 · uj,N(t) → uj,N(t) =
uj(t)

uj,0
j = 1, 2, . . . ,m,

yk(t) = yk,0 · yk,N(t) → yk,N(t) =
yk(t)

yk,0
k = 1, 2, . . . , p.

The normalization constants are chosen such that the normalized variables have no phys-
ical units and have roughly the order of magnitude 1.
We can write this transformation in vector notation as

x = Tx · xN , Tx = diag{x1,0, . . . , xn,0},
u = Tu · uN , Tu = diag{u1,0, . . . , um,0},
y = Ty · yN , Ty = diag{y1,0, . . . , yp,0}.

From which we obtain

d

dt
xN = T−1

x f(Tx · xN , Tu · uN , t) =: fN(xN , uN , t)

yN = T−1
y g(Tx · xN , Tu · uN , t) =: gN(xN , uN , t).

Remark. It can be shown that such a transformation does not change the properties of
the system.
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11.2 Linearization

Linear dynamical systems can be studied very effectively using tools from linear system
theory. Even though linearization is an imperfect representation of general nonlinear
systems it can be useful to characterize local behaviour.
Consider a trajectory x̄(t) such that ˙̄x(t) = f(x̄(t), ū(t)) with given ū(t). Let

δx(t) := x(t)− x̄(t),

δu(t) := u(t)− ū(t).
(11.2)

be small perturbations from the trajectory x̄(t) and the input ū(t), respectively. The
perturbation dynamics reads

d

dt
δx(t) =

d

dt
(x(t)− x̄(t))

= f(x(t), u(t))− f(x̄(t), ū(t))

= f(x̄(t) + δx(t), ū(t) + δu(t))− f(x̄(t), ū(t))

≈ ∂f

∂x

∣∣∣∣
(x̄(t),ū(t))︸ ︷︷ ︸

A(t)∈Rn×n

δx(t) +
∂f

∂u

∣∣∣∣
(x̄(t),ū(t))︸ ︷︷ ︸

B(t)∈Rn×m

δu(t).

and similarly for the output

δy(t) ≈ ∂g

∂x

∣∣∣∣
(x̄(t),ū(t))︸ ︷︷ ︸

C(t)∈Rp×n

δx(t) +
∂g

∂u

∣∣∣∣
(x̄(t),ū(t))︸ ︷︷ ︸

D(t)∈Rp×m

δu(t).

Hence, we are left with

δẋ(t) = A(t)δx(t) +B(t)δu(t) (11.3)

δy(t) = C(t)δx(t) +D(t)δu(t). (11.4)

Remark. If (x̄(t), ū(t)) = (x∗, u∗) we have f(x∗, u∗) = 0 and A(t) = A, B(t) = B, C(t) = C
and D(t) = D.

Remark. δx and δu describe a deviation from the equilibrium trajectory.

Example 1. Consider the nonlinear system

ẋ1 = x2 + 1

ẋ2 = sin(x1) · x2 + x1 · u.

The linearization around a trajectory (x̄(t), ū(t)) is

δẋ(t) =

[
0 1

cos(x̄1(t)) · x̄2(t) + ū(t) sin(x̄1(t))

]
δx(t) +

[
0

x̄1(t)

]
δu(t).

The linearization around the equilibrium x∗1 = 0, x∗2 = −1, u∗ = 4 is

δẋ(t) =

[
0 1
3 0

]
δx(t) +

[
0
0

]
δu(t).
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11.3 Solution to the Linear ODE

Consider a general linear time-invariant system of the form

ẋ = Ax+Bu

y = Cx+Du.
(11.5)

Note that this is also what we get after linearizing a non-linear TI system and dropping
the δ in the previous notation.
The solution to the ODE reads

x(t) = eAtx(0) +

∫ t

0

eA(t−τ)Bu(τ) dτ

y(t) = CeAtx(0) +

∫ t

0

CeA(t−τ)Bu(τ) dτ +D · u(t)

where

eAt = I + At+
A2t2

2!
+ . . . =

∞∑
k=0

Aktk

k!
.

11.4 Stability of Linear Systems

For linear time-invariant systems of the form

ẋ(t) = Ax(t),

A ∈ Rn×n, with solution
x(t) = eAtx(0).

The Jordan decomposition of A reads

A = TJT−1,

and therefore
x(t) = T · eJt · T−1 · x(0).

If A is a diagonalizable matrix, J is the diagonal matrix of the eigenvalues of A and T is
the collection of the corresponding eigenvectors, that is

J = Λ = diag{λ1, . . . , λn} and T =
[
v1 · · · vn

]
Then the solution x(t) reads

n∑
i=1

ci · vieλit

for some ci ∈ R depending on the initial condition.
We distinguish three cases as t→∞:

Re(λi) < 0 x(t)→ 0;

Re(λi) > 0 ‖x(t)‖ → ∞;

Re(λi) = 0 ‖x(t)‖ remains bounded.
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Definition 1 (Stable subspace Es). The stable subspace is the span of the eigenvectors
associated with eigenvalues with negative real part; that is

Es = span(vi) such that Re(λi) < 0.

Definition 2 (Unstable subspace Eu). The unstable subspace is the span of the eigen-
vectors associated with eigenvalues with positive real part; that is

Eu = span(vi) such that Re(λi) > 0.

Definition 3 (Center subspace Ec). The stable subspace is the span of the eigenvectors
associated with eigenvalues with zero real part; that is

Ec = span(vi) such that Re(λi) = 0.

Remark. Assuming the matrix A is diagonalizable, then

Rn = Es ⊕ Eu ⊕ Ec,

i.e. the three subspaces span Rn.
The operator ⊕ denotes a binary operation known as Minkowski sum and it is defined as
follows. Let X ⊆ Rn and Y ⊆ Rn be two vector spaces, then Z = X ⊕ Y ⊆ Rn is given
by

Z = X ⊕ Y = {x+ y |x ∈ X, y ∈ Y }

Lyapunov indirect method

Lyapunov indirect method exploits the linearized system to characterize local stability of
equilibrium of the original non-linear dynamical system.
Consider a general autonomous system ẋ(t) = f(x(t)) with an equilibrium x∗. Define
δx(t) = x(t)− x∗, linearize and obtain

δẋ(t) = A · δx(t). (11.6)

Assume now, that A is diagonalizable, that is to say that, for all eigenvalues of A, the
algebraic and geometric multiplicity coincides, i.e. A has n mutually linearly independent
eigenvectors vi. Then the linearized system (11.6) predicts the behavior around x∗ of the
original nonlinear system as follows:

Linearized System Nonlinear System

δx∗ is ... x∗ is ...

stable if Eu = ∅ =⇒ No conclusion is possible; we
need to check higher order
terms.

(globally) asymptotically stable if Ec = Eu = ∅ =⇒ locally asymptotically stable
unstable if Eu 6= ∅ =⇒ unstable

If, instead, A is not diagonalizable and the eigenvalues with zero real part have geometric
multiplicity smaller than the corresponding algebraic multiplicity, i.e. the eigenvectors
are not linearly independent, then, the equilibrium of the linear system is unstable even
if A has no eigenvalues with positive real part.
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11.5 Lyapunov Theorem for Linear-Time-Invariant Systems

Definition 4 (Hurwitz Matrix). A matrix A ∈ Rn is Hurwitz if and only if all of its
eigeinvalues have negative real part, equivalently Eu = Ec = ∅.

Definition 5 (Positive Definite Matrix). A symmetric matrix Q is positive definite (no-
tation: Q � 0) if and only if all of its eigenvalues are strictly positive.

For a LTI system of the form (11.6) the below statements are equivalent

1. A is Hurwitz.

2. For all symmetric, positive definite matrices Q = Q> � 0 exists a symmetric,
positive definite matrix P = P> � 0 such that

V (x) = x>Px =⇒ V̇ (x) = −x>Qx.

3. The equilibrium at δx∗ = 0 is asymptotically stable.

Under these conditions, the relationship between P and Q is given by the Lyapunov
Equation:

A>P + PA = −Q. (11.7)

This document can be downloaded at
https://n.ethz.ch/~lnicolas/systemmodeling.html

5

mailto:andreael@ethz.ch
mailto:laurague@ethz.ch
mailto:lnicolas@ethz.ch
mailto:gmoscato@ethz.ch
https://n.ethz.ch/~lnicolas/systemmodeling.html


�L. Andreae, L. Guerrini, N. Lanzetti & G. Moscato System Modeling, HS18

11.6 Tips

No tips for today’s exercise ,.

This document can be downloaded at
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11.7 Example

Since you are close to the end of the semester and your engineering team goes soon on
holiday, you decide to work with the financial team of SpaghETH to build predictions
for the future. After rigorous studies in the customers’ behavior you come up with a
dynamical model for costumers’ interest in SpaghETH, denoted by x1, and the revenue,
denoted by x2. Note that x1 and x2 denotes deviations from a reference configuration.
The nonlinear system is described by the following differential equations:

ẋ1 = 3x1x
2
2 + x3

2x
2
1

ẋ2 = x2
1x2 + 4x3

2 − 4x2 − x3
1x

2
2.

1. Linearize the system around the equilibrium x∗ =
[
0 0

]>
and find the matrix A.

2. What can you conclude about the stability properties of the origin?

3. Evaluate the stability of the origin using the Lyapunov function

V =
1

2
(x2

1 + x2
2).
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Solution.

1. The linearization matrix A reads

A =

[ ∂
∂x1

(3x1x
2
2 + x3

2x
2
1) ∂

∂x2
(3x1x

2
2 + x3

2x
2
1)

∂
∂x1

(x2
1x2 + 4x3

2 − 4x2 − x3
1x

2
2) ∂

∂x2
(x2

1x2 + 4x3
2 − 4x2 − x3

1x
2
2)

]∣∣∣∣
(0,0)

=

[
3x2

2 + 2x1x
3
2 6x1x2 + 3x2

2x
2
1

2x1x2 − 3x2
1x

2
2 x2

1 + 12x2
2 − 4− 3x2

1x
2
2

]∣∣∣∣
(0,0)

=

[
0 0
0 −4

]
.

2. The eigenvalues of matrix A are λ1 = 0 and λ2 = −4. Using the Lyapunov principle,
we cannot evaluate the stability of the origin of the nonlinear system, since the
linearized one is just stable around the equilibrium.

3. The total time derivative of the Lyapunov function reads

V̇ = x1ẋ1 + x2ẋ2

= x1 · (3x1x
2
2 + x3

2x
2
1) + x2 · (x2

1x2 + 4x3
2 − 4x2 − x3

1x
2
2)

= 3x2
1x

2
2 + x2

2x
2
1 + 4x4

2 − 4x2
2

= 4x2
2 · (x2

1 + x2
2 − 1).

Note that V̇ ≤ 0 for x2
1 + x2

2 ≤ 1. That is, V̇ (x) ≤ 0 for ‖x‖2 ≤ h for h = 1. Hence,
we can conclude that the origin is stable.

Remark. Note that V̇ (x) is not negative definite. Note for instance that V̇ (x) = 0

for x =
[
1 0

]>
, which clearly violates the condition V (x) < 0 for x 6= 0.

Remark. Note that this does not mean that the origin is not (locally) asymptotically
stable. A different Lyapunov function might succeed in proving (local) asymptotic
stability of the equilibrium.
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