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Exercise 10 - System Analysis

10.1 Autonomous and Non-Autonomous Systems

Consider a nonlinear continuous-time system of the form

d

dt
x(t) = f(x(t), t) with x(t0) = x0, (10.1)

where x(t) ∈ Rn and t ∈ R. Such systems are called non-autonomous or time-varying
(TV). If the system features no explicit time dependency, it is called autonomous or
time-invariant (TI).
Note that TV systems can be transformed in TI form by augmenting the state space as
follows. Let

x̃(t) =

[
x(t)

xn+1(t)

]
with xn+1(t) = t. Then,

d

dt
x̃(t) =

[
f(x(t), xn+1(t))

1

]
=: f̃(x̃(t)) with x̃(t0) =

[
x0
t0

]
.

10.2 Asymptotic Behavior of Systems

Definition 1 (Limit Point). A point p ∈ Rn is a limit point of the system ẋ = f(x, t) if
there exists a sequence of points x(t1), x(t2), . . . with the same initial condition x(t0) = x0
such that

lim
i→∞

[
ti

x(ti)

]
=

[
±∞
p

]
for x0 6= p.

Definition 2 (Limit Set). A limit set is set of limit points with the same initial condition
x(t0) = x0.

Definition 3 (Attractor and Repellor). A limit set is called

• attractor if it is approached for ti → +∞;

• repellor if it is approached for ti → −∞.

There are four types of limit sets:

Equilibria: An equilibrium x∗ is a point in Rn for which f(x∗, t) = 0∀t.

Periodic Solutions: A periodic solution is a trajectory for which it holds that x(t+T ) =
x(t)∀t, where T is the period of the solution. For TV systems: f(x, t) = f(x, t+ τ)
with kτ = T , where τ is the period of the system.

Remark. A continuous-time time-invariant system can exhibit periodic solutions
only if n ≥ 2.

Quasiperiodic Solutions: A quasiperiodic solution is characterized by two more in-
commensurate frequencies, i.e. ω/Ω ∈ R \Q.
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Chaos: Chaos in a deterministic dynamical system is bounded steady state behaviour
that is not an equilibrium, periodic solution or quasiperiodic solution. Chaos is
aperiodic oscillation with a sensitive dependence on initial condition.

Remark. A continuous-time time-invariant system can exhibit chaotic solutions only
if n ≥ 3.

10.3 Lyapunov Stability

Definition 4 (Lyapunov Stable Equilibrium). An equilibrium point x∗ of ẋ = f(x) is
Lyapunov stable if

∀ε > 0 ∃δ(ε) > 0 : ‖x(t0)− x∗‖ < δ =⇒ ‖x(t)− x∗‖ < ε ∀t ≥ t0.

Otherwise, x∗ is called unstable.

Figure 1: Lyapunov stable equilibrium.

Remark. The definition ∀δ > 0 there exists an ε > 0 can be used to define the boundedness
of the system. Note that boundedness and stability are not equivalent.

Definition 5 (Local/Global Attractiveness). An equilibrium x∗ is locally/globally at-
tractive if

∃δ > 0/∀δ > 0 : ‖x(t0)− x∗‖ < δ =⇒ lim
t→∞
‖x(t)− x∗‖ = 0.

Definition 6. An equilibrium point which is stable and locally/globally attractive is
locally/globally asymptotically stable.

Example 1. Consider the system ẋ = −x with the equilibrium x∗ = 0. We may prove
that x∗ is globally asymptotically stable as follows:

• stable: We know that x(t) = x0e
−t. Now, given ε > 0 can we find a δ > 0 s.t.

‖x0 − 0‖ = ‖x0‖ < δ ⇒ ‖x(t) − 0‖ = ‖x(t)‖ < ε? To ensure ‖x(t)‖ < ε, or
equivalently ‖x0e−t‖ < ε, it suffices to pick ‖x0‖ < ε, since ‖e−t‖ ≤ 1. Hence, we
may choose δ = ε. As this holds for all ε > 0, the equilibrium point x∗ = 0 is stable.
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• globally attractive: for all δ > 0 we have limt→∞ x(t) = 0, meaning that the equi-
librium point is globally attractive.

Hence, the equilibrium point is globally asymptotically stable.

Let α : R+
0 → R+

0 be a continuous, strictly increasing function with α(0) = 0 and
limq→∞ α(q) =∞. Such functions are said to be of class KL.

Example 2. The function α(q) = q2 is of class KL as α(0) = 02 = 0 and limq→∞ q
2 =∞.

Definition 7 ((Local) Positive Definiteness). A function V (x) : Rn → R is called:

1. locally positive definite (LPDF) if there exists a function α(·) of class KL and a
h > 0 such that V (0) = 0 and V (x) ≥ α(‖x‖) for all ‖x‖ < h.

2. Positive definite (PDF) is 1 is true for all h > 0.

LDPF and PDF functions are also called candidate Lyapunov functions.

Remark. The following equivalences hold:

• V (x) PDF if and only if V (x) > 0∀x 6= 0, lim‖x‖→∞ V (x) =∞.

• V (x) = x>Px is PDF with symmetric P if and only if P is positive definite, i.e.,
x>Px > 0 ∀x 6= 0.

Example 3. The function V (x) = 2x21 +x22 is PDF as V (0) = 0 and V (x) ≥ α(‖x‖) with
α(‖x‖) = ‖x‖2 = x21 + x22 for all x ∈ R2.

Example 4. The function V (x) = x21 +x22/(1 +x22) is LPDF but not PDF. We can verify
that graphically in Figure 2.

x1 x2

V
(x
)

Figure 2: Plot of the Lyapunov function V (x).

The total time derivative of V (x) is

d

dt
V (x(t)) =

∂V

∂t
+
∂V

∂x

>dx

dt

=
∂V

∂x

>
f(x).

(10.2)

Then, we can analyze the stability of the equilibrium point x∗ = 0 as follows.
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Theorem 1 (Basic Lyapunov Theorem). Let x∗ = 0 be an equilibrium of ẋ = f(x):

1. If there exists V (x) LPDF and V̇ (x) ≤ 0∀x with ‖x‖ < h for some h > 0, x∗ = 0 is
stable.

2. If there exists V (x) (L)PDF and −V̇ (x) (L)PDF, x∗ = 0 is locally/globally asymp-
totically stable.

Remark. The theorem provides sufficient conditions for stability, not necessary conditions.
Hence, an equilibrium might be stable even if the Lyapunov theorem fails to prove stability.

Remark. There is no loss of generality in assuming x∗ = 0. For a general equilibrium
x∗ 6= 0 we introduce the coordinate transformation y = x − x∗ and analyze the stability
properties of y∗ = 0.
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10.4 Tips

No hints for this week’s exercise session ,.
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10.5 Example

Your SpaghETH is now a powerhouse in the food truck industry. In a bid to further
increase your revenues, you decide to start offering Tiramisù. As part of the procedure to
prepare the famous Italian dessert, mascarpone cheese has to be thoroughly mixed with
sugar. To save on electricity, you decide to do it manually with an old-fashioned ladle (oh
boy, you’re in for a wild ride). You opt to model this process as an actuated pendulum
where you, unfortunately, are the actuator. Mascarpone is a firm cheese, and hence you
realize that some sort of damping has to be taken into account.
Summarising, the dynamical model for your pendulum can be expressed in the form:

θ̈ + θ̇ + sin(θ) = F cos(t),

with θ(0) = θ0 and θ̇(0) = θ̇0, and θ(t) describes the displacement with respect to the
vertical axis.

1. Transform the system in the form ˙̄x = f(x̄, t) with x̄(0) = x̄0.

2. Transform the system in the form ˙̃x = f̃(x̃) with x̃(0) = x̃0.

3. Set F = 0. Tranform the system in ẋ = f(x) with x(0) = x0 and find the equilibrium
points.

4. Analyze the stability properties of the equilibrium point at the origin with the energy
function as a Lyapunov function

E(θ, θ̇) =
1

2
θ̇2 + (1− cos(θ)).

Does the result match your physical intuition of the system?

5. Analyze the stability properties of the equilibrium point at the origin with an aug-
mented energy as a Lyapunov function

Eaug(θ, θ̇) =
1

4
θ2 +

1

2
θθ̇ + E(θ, θ̇).

6. Is the equilibrium at the origin globally asymptotically stable?
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Solution.

1. Let x̄1 = θ and x̄2 = θ̇. The transformed system is

˙̄x1 = x̄2
˙̄x2 = − sin(x̄1)− x̄2 + F cos(t),

with x̄0 =
[
θ0 θ̇0

]>
.

2. Let x̃1 = θ, x̃2 = θ̇, and x3 = t. The transformed system is

˙̃x1 = x̃2
˙̃x2 = − sin(x̃1)− x̃2 + F cos(x̃3)

˙̃x3 = 1,

with x̃0 =
[
θ0 θ̇0 0

]>
.

3. Let x1 = θ and x2 = θ̇. The transformed system is

ẋ1 = x2

ẋ2 = − sin(x1)− x2,

with x0 =
[
θ0 θ̇0

]>
.The equilibrium points are x∗ =

[
kπ 0

]>
with k ∈ Z.

4. Note that

V (x) =
1

2
x22 + (1− cos(x1))

is a valid candidate as it is locally positive definite. We have

d

dt
V (x(t)) = sin(x1) · x2 + x2 · (− sin(x1)− x2) = −x22.

As V (x) ≤ 0 (but not LPDF) we can conclude that the equilibrium point is stable.

Remark. The choice of the Lyapunov function V (x), with its 1 − cos(x1) term, is
motivated by the fact that we want V (x) to be at least locally positive definite, as
it’s the case in the interval (−2π, 2π).

5. Again, note that

V (x) =
1

4
x21 +

1

2
x1x2 +

1

2
x22 + (1− cos(x1))

is a valid candidate as it is positive definite. We have

d

dt
V (x(t)) =

(
1

2
x1 +

1

2
x2 + sin(x1)

)
· x2 +

(
1

2
x1 + x2

)
· (− sin(x1)− x2)

= −1

2
x22 −

1

2
x1 sin(x1).

As x1 sin(x1) > 0 for all |x1| < π, x1 6= 0, we have V̇ (x) < 0 for all ‖x‖ < h for some
h > 0. Hence, the equilibrium point is locally asymptotically stable.

6. As the system has multiple equilibria, the equilibrium point at the origin cannot be
globally asymptotically stable.
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