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Exercise 9 - Parameter Identification

9.1 Introduction

So far, we have investigated how to come up with a mathematical model of a system.
This modeling was based on laws from the field of physics, whereby we assumed that
some parameters of the system were known. Now, these parameters are to be identified
by running experiments.
It turns out that these experiments are usually not straightforward to perform since the
correct input signals (test signals) have to be applied, i.e. the obtained data has to fully
characterize the system’s properties.
Once the data has been collected, it may be used for the following purposes:

• to identify unknown system structures and system parameters;

• to validate the results of the system modeling and parameter identification.

It is very important not to use the same data set for both purposes since doing so would
result in an improper validation process.

9.2 Linear Least Squares Method

The linear least squares technique allows us to find the “best” set of parameters to fit a
certain static, linear (in the parameters) model of the form

y(k) = h(u(k))> · π + e(k) k = 1, 2, . . . , r, (9.1)

where

• r ∈ N+: total number of measurements;

• y(k) ∈ R: system’s output, k-th measurement;

• u(k) ∈ Rm system’s input corresponding to the k-th measurement

• h(·) ∈ Rq: “regressor”, describes the nonlinear dependence of the output from the
input;

• π ∈ Rq: vector of the q unknown system’s parameters;

• e(k) ∈ R: error of the k-th measurement.

Example 1. The model
y(k) = au(k)2 + b+ e(k)

is linear in the parameters. Let π =
[
a b

]>
, then the system can be brought in the form

(9.1) with

y(k) =
[
u(k)2 1

]︸ ︷︷ ︸
h(u(k))>

[
a
b

]
+ e(k).
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Example 2. The model
y(k) = u(k)a + au(k)

is nonlinear in the parameter a.

Example 3. The model
y(k) = u(k)a

is nonlinear in the parameter a. However, if we write

ln(y(k)) = ln(u(k)a) = a ln(u(k))

the model is linear and of the form of Equation (9.1).

The least squares problem consists of finding the parameter vector πLS that, given a data
set, minimizes the sum of the errors as follows

πLS = arg min
π

r∑
k=1

e(k)2 = arg min
π

r∑
k=1

(y(k)− h(u(k))>π)2

Now let

e =

e(1)
...

e(r)

 y =

y(1)
...

y(r)

 H =

h(u(1))>

...
h(u(r))>


then

πLS = arg min
π
e>e = arg min

π
(y −Hπ)>(y −Hπ).

The minimum can be obtained by setting the derivative w.r.t. π to zero1

∂

∂π

(
y>y − y>Hπ − π>H>y + π>H>Hπ

)
= −2H>y + 2H>Hπ

!
= 0

which gives
πLS = (H>H)−1H>y. (9.2)

Remark. The matrix H† = (H>H)−1H> is also called Moore-Penrose inverse of H. In
MATLAB pinv(H).

Remark. In MATLAB, (9.2) is implemented using (H’*H)\H’*y. Explicitly computing
the inverse of a matrix (as in (H’*H)^(-1)) may result in numerical instabilities.

Weighted Least Squares Method

Assume now that the errors are weighted by some weigths w(k) > 0. Then,

πLS = arg min
π

r∑
k=1

w(k)e(k)2 = arg min
π

r∑
k=1

w(k)(y(k)− h(u(k))>π)2

1Stricly speaking, it should be shown that πLS is a minimum. However, as the matrix of second
derivatives 2H>H is positive definite, πLS a minimum.
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Using the same notation as above and with W = diag(w1, . . . , wr) we obtain

πLS = arg min
π
e>We = arg min

π
(y −Hπ)>W (y −Hπ).

Setting the derivative to 0 gives

πLS = (H>WH)−1H>Wy.

Remark. In a probabilistic environment, it might be reasonable to set w(k) = 1/σ(k)2,
where σ(k)2 is the standard deviation of measurement k.

Remark. Non-diagonal matrices W might be used to penalize unlikely combinations of
errors.

9.3 Iterative Least Squares Methods

In the previous sections we presented a batch approach, i.e., a methodology where data
is first collected, organized, and then the solution is computed. However, this approach
might be computationally demanding for real-time applications since at each time step
the whole problem has to be solved again. Therefore we try to come up with an algorithm
that allows us to recursively update πLS as new measurements
are available. As shown in the lecture, a possible way is the following:

πLS(r + 1) = πLS(r) +
1

1 + c(r + 1)
· Ω(r) · h(u(r + 1)) ·

(
y(r + 1)− h(u(r + 1))>πLS(r)

)
Ω(r + 1) = Ω(r)− 1

1 + c(r + 1)
· Ω(r) · h(u(r + 1)) · h(u(r + 1))> · Ω(r)

c(r + 1) = h(u(r + 1))> · Ω(r) · h(u(r + 1)).

Remark. If we have r > 0, the recursive algorithm can be initialized by calculating πLS(r)
with Equation (9.2) and setting

Ω(r) =
r∑

k=1

h(u(k)) · h(u(k))>,

whereas, in case no measurements are available, a possible (simple) initialization is

πLS(0) = E[π], Ω(0) = Iq×q.

There exist many extensions/variations for the recursive least squares method. Among
them, we highlight:

• The least squares with exponential forgetting, where old data is weighted with some
forgetting factor λ ∈ (0, 1). That is, at time k the measurement has weight λr−k.
Then,

πLS,λ = arg min
π

r∑
k=1

λr−ke(k)2 = arg min
π

r∑
k=1

λr−k(y(k)− h(u(k))>π)2

• The Kaczmarz’s projection algorithm, which is more computationally efficient than
the regular least squares algorithm.

This document can be downloaded at
https://n.ethz.ch/~lnicolas/systemmodeling.html
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9.4 Identification of Parameters in Dynamic Systems

So far, we assume that the model of the system was algebraic, i.e.,

y(k) = h(u(k))>u(k) + e(k).

If we have systems of the form

π0
d

dt
y(t) = h(u(t))π + e(t).

how should we proceed?
We distinguish between two cases:

• Taking measurements in steady state. That is, by considering

0 = h(u(t))π + e(t)

and doing least squares for all the available measurements. However, this does not
allow us to estimate π0 as d

dt
y = 0.

• Numerically finding the optimal parameters. That is,

π0, π = arg min
π0,π

n∑
k=1

(y(k)− ŷ(k))2,

where ŷ is the output of the simulated system. In other words, we try to find the
parameters that minimize the error between the output of the simulation and the
measurements. Note that there exists no closed from equation of π0 and π; the
problem has to be tackled numerically.

This document can be downloaded at
https://n.ethz.ch/~lnicolas/systemmodeling.html
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9.5 Example

Since your SpaghETH is going well, you want to optimize and control the production of
your meals depending on how satisfied your customers are. In order to analyze this, you
find a model to describe the satisfaction of your customers at any time t. This could help
you standardizing your whole production process and designing a controller which can
handle any situation.
The model is mathematically given as

d

dt
S(t) = T · qmeal +D · αmeal − S(t)

T

C
= P.

The first equation of the model relates the satisfaction S(t) of the cooked meal to several
factors. Namely, this depends on

• the percentage of waiting time T for the customers to receive their meal (T =
waiting time

total permanence time
),

• the quality of the meal qmeal,

• the digestibility of the meal D,

• a factor describing the size of the portion αmeal,

• and the satisfaction itself S(t).

The second equation, defines the waiting time percentage for receiving the meal T , as a
function of

• the normalized number of pots needed to cook all the meals P , i.e. the sum of
employed pots divided by the number of pots normally used to cook a meal,

• and of the busy ratio of the food truck C, i.e. the ratio of customers currently served
to the maximum customers that can be served.

We are interested in finding the parameters T and αmeal with the Least Squares Method,
using data from the feedbacks received at the end of the stay (that is to say in steady
state) on two meals: pasta al ragù and Älplermagronen.

C D S P qmeal

Pasta al ragù (R) 0.5 3 4 1 1

Älplermagronen (A) 1
√

3 2
√

3
√

3

1. Write down the least squares problem for the steady state of the system.

2. Determine the parameters T and αmeal with the least squares method.

3. By computing πLS you realize that something does not work. You find out that the
intern who should count the number of pots for Älplermagronen was drunk and thus
the number he reported is not reliable. How can you take this into account within
the framework provided by the least squares method? Provide a possible solution.

This document can be downloaded at
https://n.ethz.ch/~lnicolas/systemmodeling.html
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4. You realize that the waiting time T is described better as

(P · C)T = β,

where 0 < β < 1 ∈ R is a known constant. Solve the Least Squares Problem (only
for the model of the waiting time) for the following measurements.

C P

Pasta al ragù (R) 0.5 1

Älplermagronen (A) 1
√

3

This document can be downloaded at
https://n.ethz.ch/~lnicolas/systemmodeling.html
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Solution.

1. We consider the system in its equilibrium state. The relations become

Si = T · qmeal,i +Di · αmeal

Pi =
T

Ci
,

where i ∈ {R,A}. The parameter vector we look for reads

π =

[
T

αmeal

]
.

The measurement vector ỹ reads

ỹ =


SR
PR
SA
PA

 =


4
1
2√
3

 .
and the H matrix reads

H =


qmeal,R DR

1
CR

0

qmeal,A DA
1
CA

0

 .
2. Using the general solution for the least square problem (see Eq. (9.2)), one obtains
πLS as

πLS =
(
H>H

)−1
H>ỹ

=

[1 2
√

3 1

3 0
√

3 0

]
1 3
2 0√
3
√

3
1 0



−1 [

1 2
√

3 1

3 0
√

3 0

]
4
1
2√
3


=

[
9 6
6 12

]−1 [
6 + 3

√
3

12 + 2
√

3

]
=

1

72

[
12 −6
−6 9

] [
6 + 3

√
3

12 + 2
√

3

]
=

1

72

[
72 + 36

√
3− 72− 12

√
3

−36− 18
√

3 + 108 + 18
√

3

]
=

[√
3
3

1

]
3. In order to take into account the reduced confidence in one of the measurement we

make use of the weighted least square method. We (arbitrarily) opt to weigh the
faulty information 1/10 of the other measurements. Thus, W reads

W =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0.1

 .
This document can be downloaded at
https://n.ethz.ch/~lnicolas/systemmodeling.html
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The parameter vector πLS,W can be computed using the weighted least square for-
mula

πLS,W =
(
H>WH

)−1
H>Wỹ

=

[1 2
√

3 1

3 0
√

3 0

]
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

10




1 3
2 0√
3
√

3
1 0



−1

·

[
1 2

√
3 1

3 0
√

3 0

]
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

10




4
1
2√
3


= · · ·

=

[
11
√
3

51

1 +
√
3

17

]

Remark. We could have chosen

W̃ =


10 0 0 0
0 10 0 0
0 0 10 0
0 0 0 1


without changing the final result. The only thing that matters is the relative weigh-
ing.

4. Since the model is not linear, we cannot apply the standard method directly. How-
ever, with a simple transformation is possible to obtain a linear model, namely

(P · C)T = β ⇐⇒ ln
(
(P · C)T

)
= ln(β)

and we hence obtain a linear model by noticing that

T ln(P · C) = ln(β).

Within this setting we have

πLS =
[
T
]
,

ỹ =

[
ln(β)
ln(β)

]
,

H =

[
ln (PR · CR)
ln (PA · CA)

]
=

[
ln (0.5)

ln
(√

3
)] ,

W =

[
1 0
0 1

]
.

This document can be downloaded at
https://n.ethz.ch/~lnicolas/systemmodeling.html
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Finally, it holds

πLS,W =
(
H>WH

)−1
H>Wỹ

=

([
ln(0.5) ln(

√
3)
] [ln(0.5)

ln(
√

3)

])−1 [
ln(0.5) ln(

√
3)
] [ln(β)

ln(β)

]
= · · ·

= −
4 ln

(
2
√
3

3

)
ln (β)

4 ln (2)2 + ln (3)2
.

This document can be downloaded at
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