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Exercise 7 - Fluiddynamic Systems

7.1 Valves

The flow of fluids between reservoirs is determined by valves, whose inputs are the pressure
up- and downstream, denoted by pin and pout respectively. Here, we present methods to
model valves with

• incompressible fluids and

• compressible fluids.

7.1.1 Modeling Assumptions

• The friction effects in the flow are modeled by using experimentally determined
correction factors.

• Inertial effects in the flow are neglected. In fact, the mass of fluid around the valve
is very small if compared to the mass stored in the receiving reservoirs.

• The valves are insulated.

• All flow phenomena are zero dimensional, i.e., spatial dependences are neglected.

7.1.2 Valves with Incompressible Fluids

Incompressible fluids (constant density) are characterized by low Mach numbers, where
the Mach number is defined as

M =
u

c
,

where u is local flow velocity and c the local speed of sound through the medium.

Remark. As a rule of thumb, we can consider a fluid to be incompressible if M < 0.3 and
the flow is quasi-steady and isothermal.

The fluid mass flow
∗
m can be then derived by using a modified Bernoulli equation. This

reads
∗
m(t) = cd · A ·

√
2 · ρ · (pin(t)− pout(t)), (7.1)

where cd is the discharge coefficient (factor which takes into account flow restrictions,
friction and other losses), A is the open area of the valve and ρ is the density of the fluid.
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7.1.3 Valves with Compressible Fluids

The model we use to deal with compressible effects is the isenthalpic throttle. The name
originates from the fact that the fluid enthalpy crossing the valve remains constant, i.e.
the process is adiabatic and no work is performed on the system.

By referring to Figure 1, one can divide the valve into two distinct regions (before and
after the vertical line respectively).

Figure 1: Two regions for the model.

Upstream Region: isentropic conversion of pressure in kinetic energy, i.e. flow velocity
increases (pressure decreases); laminar flow.

Downstream Region: fluid decelerates, kinetic energy is converted in thermal energy
and no (or little) pressure recuperation occurs; turbolent flow.

Furthermore we can see that

• the pressure in the narrowest part of the valve is approximately equal to the down-
stream pressure.

• The temperature of the flow before and after the valve is approximately the same.

Using the first law of thermodynamics and the properties of isentropic expansions for a
perfect gas, we can develop an equation for the mass flow

∗
m(t) = cd · A(t) · pin(t)√

R · ϑin

·Ψ(pin(t), pout(t)),

where

Ψ(pin(t), pout(t)) =


√
γ ·
(

2
γ+1

) γ+1
γ−1

for pout(t) < pcr(t),(
pout(t)
pin(t)

) 1
γ ·

√
2γ
γ−1 ·

[
1−

(
pout(t)
pin(t)

) γ−1
γ

]
for pout(t) ≥ pcr(t),
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and

pcr =

(
2

γ + 1

) γ
γ−1

· pin(t),

where γ is the specific heat ratio.

At critical pressure pcr, the flow reaches in its narrowest part sonic conditions, i.e. M = 1.
For air and similar gases a simplification can be taken into account. This reads

Ψ(pin(t), pout(t)) =


1√
2

for pout < 0.5pin,√
2pout
pin
·
[
1− pout

pin

]
for pout ≥ 0.5pin.
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7.2 Tips

Exercise (a): Don’t forget to include the discharge coefficients for the respective inlets
and outlets.

Exercise (b): Model the friction forces as dampers with coefficient γ.

Exercise (c): No tips.

Exercise (d): No tips.

This document can be downloaded at
https://n.ethz.ch/~lnicolas/systemmodeling.html
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7.3 Example

As SpaghETH is rapidly growing, you decide to buy a building where pasta, risotto,
and sauces can be easily stored. Due to the large orders, your chief technical manager
suggests to study a way to efficiently move around the heavy boxes. You opt for a spring-
fluiddynamic system, consisting of a chamber, two valves, a piston, and a box, as depicted
in Figure 2.
The chamber, modeled as a cylinder of diameter D, is connected to a reservoir of air with
constant pressure pr = 10 bar and constant temperature ϑr through a valve of opening area
A1(t) and discharge coefficient cd,1. Moreover, the chamber is connected to the ambient,
where the pressure and temperature are p∞ = 1 bar and ϑ∞, through second valve with
opening A2(t) and discharge coefficient cd,2. Experiments have shown that the pressure
in the chamber changes dynamically and is (on average) approximately 1.5 bar. To model
the valves you may assume constant γ = 1.4 and constant specific heats cv and cp. You
use simplified models. The walls of the chamber have the constant temperature ϑ∞ and
the heat transfer coefficient for the internal wall is α. No heat is transferred to the piston.
The piston and the box have mass mp and mass mb, respectively. They move frictionless
on a flat surface. The spring has the constant k and is unstretched for x = 0.

SpaghETH

pr, ϑr

p∞, ϑ∞

k

cd,2, A2(t)

cd,1, A1(t)

x(t)

D

p(t), ϑ(t),m(t)

Figure 2: Sketch of the system.

1. What are the input(s) and output(s) to the system.

2. List the reservoirs with the level variables.

3. Draw a causality diagram of the system.

4. In what conditions will the valves operate?

5. Formulate the relations describing each block.

This document can be downloaded at
https://n.ethz.ch/~lnicolas/systemmodeling.html
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Solution.

1. The inputs are the opening surfaces of the two valves. The output is the position
of the piston (or of the box).

2. The reservoirs of the system are:

• Mass of air in the chamber with level variable m(t);

• Internal energy in the chamber with level variable ϑ(t);

• Kinetic energy of the piston and of the box with level variable ẋ(t);

• Potential energy in the spring with level variable x(t).

3. The causality diagram is sketched in Figure 3.

Mass balance

Energy balance

Ideal gases

Kinetic/Potential energy

Valve inValve out

Heat losses Power

m(t)

ϑ(t)

p(t)

A1(t)A2(t)

∗
min(t)

∗
mout(t)

x(t)

∗
Qloss(t)

ẋ(t)

∗
W (t)

Figure 3: Causality diagram of the system.
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4. For the first valve we have

pcr =

(
2

γ + 1

) γ
γ−1

· 10 bar ≈ 5.3 bar > pout(t).

Hence, the valve operates in “sonic conditions”. For the second valve we have

pcr =

(
2

γ + 1

) γ
γ−1

· 1.5 bar ≈ 0.8 bar < pout(t).

Hence, the valve operates in “normal conditions”.

5. The relations for the valves are

∗
min(t) = cd,1 · A1(t) ·

pr√
R · ϑr

·

√
γ ·
(

2

γ + 1

) γ+1
γ−1

∗
mout(t) = cd,2 · A2(t) ·

p(t)√
R · ϑ(t)

·
(
p∞
p(t)

) 1
γ

·

√√√√ 2γ

γ − 1
·

[
1−

(
p∞
p(t)

) γ−1
γ

]

The mass balance yields then

d

dt
m(t) =

∗
min(t)− ∗

mout(t).

The energy balance reads

d

dt
(cv ·m(t) · ϑ(t)) =

∗
min(t) · cp · ϑr −

∗
mout(t) · cp · ϑ(t)−

∗
W (t)−

∗
Qloss(t),

where

∗
Qloss(t) = α · (S + πD · x(t)) · (ϑ(t)− ϑ∞),
∗
W (t) = p(t) · S · ẋ(t)

with S = πD2/4. Note that the pressure can then be computed by using the ideal
gas relation

p(t) =
1

V (t)
·m(t) ·R · ϑ(t).

where V (t) = S · x(t) and R = cp − cv. The position of the piston obeys to

(mp +mb) · d2

dt2
x(t) = (p(t)− p∞) · S − k · x(t).

Remark. In an earlier version of this document, it was wrongly stated that the work

on the gas
∗
W is computed as

∗
W = (p(t)− p∞) · S · ẋ(t). Even though the net work

on the piston is indeed computed using the pressure difference, the work exchange
between the system and the environment is independent of the ambient pressure.

This document can be downloaded at
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