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Exercise 5 - Hydraulic Turbines and
Electromagnetic Systems

5.1 Hydraulic Turbines

Whole courses are dedicated to the modeling of gas turbines. For the sake of simplicity,
we restrict our analysis to hydraulic turbines, in particular the Pelton Turbine (Allan
Pelton, 1880). A sketch of the system is depicted in Figure 1. The water flows through
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Figure 1: Sketch of a pelton turbine.

a nozzle which converts potential energy (essentially pressure) into kinetic energy. We
assume that the turbine turns at constant speed. The quantities we want to model are

• The mean force acting on the turbine FT = f(w, ω,
∗
V );

• the resulting wheel torque TT = g(w, ω,
∗
V );

• the power transferred from the fluid to the turbine,

where w is the absolute velocity of the water, ω is the rotational velocity of the turbine,

and
∗
V is the water volume flow relative to the turbine blade.

5.1.1 The Mean Force FT

The power transfer from the fluid to the turbine is accomplished by momentum exchange,
itself consequence of the velocity difference between the fluid and the turbine. Hence, the
momentum of the fluid is given by

dB = 2 · (w −R · ω) · dm

= 2 · (w −R · ω) ·
∗
V · ρ · dt,
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where we used dm =
∗
V ·ρ ·dt. In order to obtain the force, we differentiate over time and

get

FT =
dB

dt

= 2 · ρ · (w −R · ω) ·
∗
V .

5.1.2 The Wheel Torque TT

The torque reads now easily

TT = FT ·R

= 2 · ρ ·R · (w −R · ω) ·
∗
V .

5.1.3 The Wheel Power Output PT

The power acting on the turbine is thus

PT = TT · ω

= 2 · ρ ·R ·
∗
V · (w −R · ω) · ω

5.1.4 Optimal Energy Transfer

Considering the velocity of the water after leaving the turbine’s cup

v = w − 2 ·R · ω,

one can image different scenarios:

• If the turbine is at rest, the end velocity of the water will be w. In this case, no
power is transferred from the water to the wheel.

• If the turbine turns at R ·ω = w, the water undergoes no deceleration. In this case,
no power is transferred from the water to the wheel.

• Setting w = 3 ·R · ω results in the maximal power output of the turbine.

• Setting w = 2 ·R ·ω results in the maximum energy conversion possible since v = 0.

Remark. A more rigorous approach to the derivation of these equations is presented in
the Appendix at the end of the document.

This document can be downloaded at
https://n.ethz.ch/~lnicolas/systemmodeling.html
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5.2 Electromagnetic Systems

One can generalize electromagnetic systems as RLC networks, composed of:

• resistances R;

• inductances L;

• capacitances C.

The reservoirs encountered with this kind of systems are:

• The magnetic energy, stored in magnetic fields B.

• The electric energy, stored in electric fields E.

These systems are best described through the parameters listed in Table 1.

Capacitance C Inductance L

Energy WE = 1
2
C · U2(t) WM = 1

2
L · I2(t)

Level Variable U(t) (voltage) I(t) (current)

Conservation Law C · d
dt
U(t) = I(t) L · d

dt
I(t) = U(t)

Table 1: Linear Electric Elements.

Remark. Notice that resistances are not reservoirs since they do not have any dynamics.
In fact, changes in voltage result in instantaneous changes in current according to Ohm’s
law: U(t) = R · I(t).

In general, the electrical power can be computed for all components as

P = U(t) · I(t).

In order to work with RLC networks, Kirchoff’s laws are crucial:

(I) The algebraic sum of all currents in each network node is zero.

(II) The algebraic sum of all voltages following a closed network loop is zero.

Remark. The conservation laws for the capacitance and inductance are an equivalent
formulation of the reservoir based approach d

dt
W = P (t). For instance, for a capacitance

C we have

P (t) =
d

dt
WE(t)

= C · U(t) · d

dt
U(t)

= U(t) · I(t).

This document can be downloaded at
https://n.ethz.ch/~lnicolas/systemmodeling.html
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Figure 2: RLC oscillator structure.

5.2.1 The Electric Oscillator

An electric oscillator is a type of circuit which produces a periodic, oscillating electronic
signal (often a sine wave or a square wave). Typical applications are filters in signal-
processing applications. An RLC oscillator is depicted in Figure 2.
Let us analyze the system:

Inputs/Outputs:

• The input of the system is the input voltage u(t).

• The output of the system is the output voltage y(t).

Reservoirs:

As stated before, the two relevant reservoirs are:

• The magnetic energy stored in L.

• The electric energy stored in C.

Energy balance:

As stated before, the Kirchoff’s laws are analogous to the energy balance. For the system,
the second Kirchoff law reads

UL(t) + UR(t) + UC(t) = u(t).

Differential Equations:

We use the two differential equations which describe the capacitance C and the inductance
L. The differential equation for the inductance L reads

UL(t) = L · d

dt
I(t).

The differential equation for the capacitance reads

I(t) = C · d

dt
UC(t).

Finally, Ohm’s law reads
UR(t) = R · I(t).

This document can be downloaded at
https://n.ethz.ch/~lnicolas/systemmodeling.html
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Result:

By considering that the voltage y(t) coincides with the voltage through C, i.e. y(t) =
UC(t), and considering the current I(t) as I(t) = d

dt
Q(t), one can write:

I(t) = C · d

dt
UC(t)

= C · d

dt
y(t).

Hence,

d

dt
I(t) = C · d2

dt2
y(t).

By plugging this result into the voltage balance, we get

UL(t) + UR(t) + UC(t) = u(t)

L · C · d2

dt2
y(t) +R · C · d

dt
y(t) + y(t) = u(t).

5.3 Electromechanical Systems

Electric motors are widely used in many control applications. Most of them are rotational
motors, which can be classified as follows:

• Classical DC drives: Motors with mechanical commutation of the current in the
rotor coils and constant (permanent magnet) or time-varying stator fields (external
excitation).

• Modern brushless DC drives: Motors which have an electronic commutation of
the stator current and permanent magnet on the rotor (i.e., no brushes).

• AC drives: Motors which have an electronic commutation of the stator current
and use self-inductance to build up the rotor fields.

Remark. For more accurate visual explanations please refer to:

https://www.youtube.com/watch?v=LAtPHANEfQo

https://www.youtube.com/watch?v=bCEiOnuODac

https://www.youtube.com/watch?v=LtJoJBUSe28

5.3.1 Modeling of a DC motor

The circuit which decribes a DC-motor is depicted in Figure 3. We assume that the motor
is permanently excited and that parameters κ in the motor and in the generator laws are
constant (see below). Furthermore, we assume that the mechanical part of the motor
undergoes friction losses Tloss = d · ω(t). The important laws that are useful to analyze
these types of systems are the Lorentz law

F =

∫
L

I dL×B

This document can be downloaded at
https://n.ethz.ch/~lnicolas/systemmodeling.html
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Figure 3: Sketch of a DC motor circuit.

and the Faraday law

U = − d

dt

∫
S

B dS.

These two laws allow us to couple the mechanical and electric part of an electromechanical
system. For example, the force generated by a coil immersed in a magnetic field can be
written as

F (t) = κmot · I(t) (motor law)

and the induced EMF as

Uind(t) = κel · ω(t) (generator law)

Let us analyze the system:

Inputs/Outputs:

• The input of the system are the armature voltage u(t) (control input for motors)
and the load torque Tl(t) (in control systems considered as a disturbance).

• The output of the system is the measurement of the rotor speed ω(t).

Reservoirs:

Two relevant reservoirs are present:

• The magnetic energy stored in the rotor coil. This has level variable I(t).

• The kinetic energy stored in the rotor. This has level variable ω(t).

Energy Conservation Laws:

As we have two relevant reservoirs, we deal with two energy conservation laws. The
conservation of the magnetic energy reads (using Kirchoff’s second law)

L · d

dt
I(t) = −R · I(t)− Uind(t) + u(t).

The conservation of kinetic energy of the rotor reads

Θ · d

dt
ω(t) = Tm(t)− Tl(t)− d · ω(t).

This document can be downloaded at
https://n.ethz.ch/~lnicolas/systemmodeling.html
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Differential Equations:

The power of the electric part of the motor should equal the power of the mechanical part
of the motor. This reads

Pelec(t) = Pmech(t)

Uind(t) · I(t) = Tm(t) · ω(t)

κ · ω(t) · I(t) = Tm(t) · ω(t)

⇒ Tm(t) = κ · I(t).

Plugging this information into the energy conservation equations we get

L · d

dt
I(t) = −R · I(t)− κ · ω(t) + u(t)

Θ · d

dt
ω(t) = κ · I(t)− Tl(t)− d · ω(t).

(5.1)

5.3.2 Motor vs Generator

Motors and generators have essentially the same physical structure, but are used to achieve
different things. A motor’s task is to convert electrical energy into kinetic energy, which
means that one drives the current of the circuit to produce an angular velocity of the
motor’s shaft, an effect which in turn reduces the current. Hence, in (5.1) the coupling
terms κI and κω come with a positive and negative sign respectively.
As far as generators are concerned, their goal is to convert mechanical energy into electrical
energy (think of manually rotating the shaft), which implies that an increasing current is
produced by an increment in ω, i.e. the signs are now flipped.

This document can be downloaded at
https://n.ethz.ch/~lnicolas/systemmodeling.html
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5.4 Tips

You may model the circuit as shown below.

+
−Uind(t)

LG LNRG RN

UN(t)

I(t)

This document can be downloaded at
https://n.ethz.ch/~lnicolas/systemmodeling.html
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5.5 Example

In order to reduce the costs of electricity of your SpaghETH, you decide to augment your
systems with a turbine, in order to recover energy from the pot filling process. Assume
water, having the density ρ, gets into the pot with a user-defined absolute velocity w
and area S. The water hits a turbine rotating with angular velocity ω(t). The turbine is
mechanically linked to a shaft with moment of inertia Θ. To the shaft it is also attached
an electric generator with generator/motor (equal for the two) constant κ. Frictions
losses are known to be of the form Tf = βω(t). The electric circuit is equipped with an
inductance L. The external loads are modeled as a constant resistance R. Since the goal
of the exercise is to control the power delivered to the load, you start by formulating a
model of the system. A sketch of the system with the relative parameters is shown in
Figure 4.

R

L

Θ

κ

Figure 4: Sketch of the system.

1. What are the input(s) and output(s) to the system?

2. List all the reservoirs and the relative state variables.

3. Draw the causality diagram of the system.

4. Give the algebraic or differential equation for each block of the causality diagram.

5. Show that changing the inductance influences the power delivered by the turbine.

This document can be downloaded at
https://n.ethz.ch/~lnicolas/systemmodeling.html
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Solution.

1. The input to the system is water velocity w(t). The output is the power delivered
to the load. We will denote the signal with P (t).

2. The reservoirs of the system and their relative level variables are:

• Kinetic energy of shaft, with level variable ω(t).

• Electrical energy, with level variable I(t).

3. The causality diagram is shown in Figure 5.

Kinetic Energy Shaft

Electrical Circuit

Turbine

Power

w

Tt

ω

I

P (t)

Figure 5: Causality diagram.

4. The torque delivered by the turbine is described by

Tt = 2 · ρ ·R · S · (w −R · ω)2.

Conservation of mechanical energy for the shaft gives

Θ
dω(t)

dt
= Tt − κI(t)− βω(t).

The circuit is then described by

L
dI

dt
= −RI(t) + κω(t).

This document can be downloaded at
https://n.ethz.ch/~lnicolas/systemmodeling.html
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The resulting power is then

P (t) = I(t)U(t) = RI(t)2.

5. See causality diagram.

This document can be downloaded at
https://n.ethz.ch/~lnicolas/systemmodeling.html
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A Mean Force Acting on the Pelton Turbine

We consider a moving control volume that contains the blade of the turbine, see Figure 6.

vrel,in

vrel,out

ex

vblade

Figure 6: Moving control volume.

The absolute velocities of the fluid entering and exiting the control volume are given by

vin = w · ex, vout = −v · ex.

The relative velocities (w.r.t. the control volume) can then be computed via

vrel = v − vblade = v −Rω · ex.

Now, our first goal is to find v as a function of the given quantities. In order to achieve
this, we apply the (stationary) mass conservation law on the control volume∫

S

ρ · vrel · n dS = 0

where S is the enclosing surface of the control volume and n is a unit vector perpendicular
to it, pointing outwards. The only parts of the control volume crossed by fluid are the
inlet and the outlet, therefore we have∫

Sin

ρ · vrel,in · nin dSin︸ ︷︷ ︸
I1

+

∫
Sout

ρ · vrel,out · nout dSout︸ ︷︷ ︸
I2

= 0

where

I1 =

∫
Sin

ρ(w −Rω)(−1) dSin = −ρSin(w −Rω),

and similarly
I2 = −ρSout(v −Rω).

It follows that

v =
Sin

Sout

(w −Rω)−Rω,

which, for identical areas, simplifies to v = w − 2Rω.

To find the force acting on the blade we apply conservation of momentum∫
S

ρ · v · (vrel · n) dS = −FT

This document can be downloaded at
https://n.ethz.ch/~lnicolas/systemmodeling.html
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where we neglect influences of friction, gravity, surface tension and pressure gradients.
Similarly to the previous calculation we obtain

ρSin

[
w
0

]
(−1)(w −Rω) + ρSout

[
−v
0

]
(−1)(−v −Rω) = −

[
FT,x

FT,y

]
.

Looking at the x-direction we have

ρS(w(Rω − w)− v(v +Rω)) = −FT,x.

By inserting our previous result for v we can simplify the above expression as

FT,x = 2ρS(w −Rω)2,

and, inserting
∗
V = S(w −Rω), we can finally write

FT = 2ρ
∗
V (w −Rω).

This document can be downloaded at
https://n.ethz.ch/~lnicolas/systemmodeling.html

13

mailto:andreael@ethz.ch
mailto:lnicolas@ethz.ch
mailto:gmoscato@ethz.ch
https://n.ethz.ch/~lnicolas/systemmodeling.html

	Hydraulic Turbines
	The Mean Force FT
	The Wheel Torque TT
	The Wheel Power Output PT
	Optimal Energy Transfer

	Electromagnetic Systems
	The Electric Oscillator

	Electromechanical Systems
	Modeling of a DC motor
	Motor vs Generator

	Tips
	Example
	Mean Force Acting on the Pelton Turbine

