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Exercise 4 - Hydraulic Systems

4.1 Hydraulic Systems

Hydraulic systems are, in general, described by the Navier-Stokes equations as you might
have learned in fluid dynamics courses. In order to simplify the modeling of such systems,
it is convenient to use simpler formulations. Typical elements which constitute hydraulic
systems are:

• ducts,

• compressible nodes,

• valves (treated within the next few weeks).

4.1.1 Hydraulic Ducts

A sketch for a water duct is depicted in Figure 1. The quantities that we need to model
a duct are the height difference h, the top and bottom pressures p1(t), p2(t), the length
of the duct l, the velocity of the water flowing into the duct v(t), the density of the
flowing fluid ρ, and the cross-sectional area of the duct A. In general, we are interested
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Figure 1: Sketch of a water duct.

in modeling the velocity of the fluid, i.e. finding an equation of the form

d

dt
v(t) = f(p1(t), p2(t), v(t), h, ρ, A, l). (4.1)

A free body diagram of the fluid is shown in Figure 2.
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Figure 2: Free body diagram of the fluid.

Applying Newton’s law to the chunk of water inside the duct gives

m · dv

dt
= Fpressure + Fgravity,x − Ffric. (4.2)

Under the assumption of a constant pressure distribution over the cross-sectional area A
we may write

Fpressure = (p1(t) · A− p2(t) · A)

The mass of the fluid in the duct is given by

ρ · V = ρ · A · l
⇒ dm = ρ · A · dx.

To compute the contribution of gravity, we integrate over the whole duct

Fgravity =

∫
duct

g · dm

= g

∫ l

0

[
sin(α)
− cos(α)

]
· ρ · A · dx

= ρ · g · A · l ·
[

sin(α)
− cos(α)

]
Using the facts that the elevation angle α satisfies

sin(α) =
h

l
,

we may write
Fgravity,x = h · ρ · g · A.
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The friction force depends on the shape factor l
d

and reads

Ffric =
1

2
· ρ · v2 · sign(v) · λ · Al

d
(4.3)

where λ is a constant coefficient and d is the diameter of the pipe. Plugging the found
results in Equation (4.2) one gets the conservation law along the longitudinal axis of the
duct

m
d

dt
v(t) = ρ · l · A · d

dt
v(t) = A · (p1(t)− p2(t)) + A · ρ · g · h− Ffric(t). (4.4)

4.1.2 Compressibility of Ducts

The compressibility is the property of ducts (and possibly other fluid containers) to
deform under the effect of an applied pressure. Mathematically, it is defined as

σ0 =
1

V0

∂V

∂p
, (4.5)

where V [m3] is the volume, p [Pa] is the pressure, and σ0 [Pa−1] the compressibility.
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Figure 3: Sketch of the hydraulic compressibility

In general, since the fluid entering the element is not equal to the one exiting, we have a
time-varying volume

d

dt
V (t) =

∗
V in(t)−

∗
V out(t). (4.6)

Changes in volume cause a direct increase in the acting pressure according to

p(t) =
1

σ0

· ∆V (t)

V0︸ ︷︷ ︸
∆pcompress

+p0, ∆V (t) = V (t)− V0, (4.7)

where p0 and V0 denote the static (unloaded) pressure and volume of the elastic element
respectively.

This document can be downloaded at
https://n.ethz.ch/~lnicolas/systemmodeling.html

3

mailto:andreael@ethz.ch
mailto:lnicolas@ethz.ch
mailto:gmoscato@ethz.ch
https://n.ethz.ch/~lnicolas/systemmodeling.html


�Leonardo Andreae, Nicolas Lanzetti & Giovanni Moscato System Modeling, HS18

4.1.3 Compressibility of Fluids

Analogously, we define compressibility of matter (fluids in particular) as

σ0 = − 1

V0

∂V

∂p
, (4.8)

where V [m3] is the volume, p [Pa] is the pressure, and σ0 [Pa−1] the compressibility.
Note that the only difference with the above is a minus sign in the definition, that is

p(t) = − 1

σ0

∆V (t)

V0

+ p0 ∆V (t) = V (t)− V0. (4.9)
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4.2 Tips

Formulate the mass balance for the water tank as

d

dt
mW = ρ · AW ·

d

dt
h̄W = ṁin − ṁout

with a fictitious height h̄W . Then, you may find the true height hW with

hW = h̄W + λW · sign

(
d

dt
hW

)
·
(

d

dt
hW

)2

.

Moreover, the mass flow of a incompressible fluid through a valve with opening area A
can be modeled as

ṁ(t) = cd · A ·
√

2ρ · (pbefore − pafter),

where cd is the so-called discharge coefficient.

This document can be downloaded at
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4.3 Example

Your SpaghETH is growing every week more and although no particular production issues
occur you are concerned about ecology. Since each tank of pasta you cook needs water
and a correct salt seasoning for it to taste that delicious, you need a lot of salt and water,
which are often wasted. For this reason, you open a research branch in your startup which
decides to design a duct-hydraulic system to counteract the waste of water and salt. The
tank where the pasta cooks is connected to a duct (diameter dT), the Tunnel. Before the
water enters a second duct (diameter dT), the Seasoner, a pump increases its pressure by
∆p. Note that only compressibility effects of the Tunnel should be taken into account.
The pressure at the water’s surface p∞ is assumed to be known. Assume a circular tunnel,
whose area reads AT = πd2

T/4. The area of the water tank is AW (with AW � AT). A
sketch of the system with the relative parameters is shown in Figure 4.

Pump

Salt

dT

hT

lT

lD

h(t)
hV

λBP, ρ, vBP(t), σ

λAP, ρ, vAP(t)

Figure 4: Sketch of the system.

1. List all the reservoirs and the relative state variables.

2. Find the pressure p1(t) at the beginning of the Tunnel as a function of the velocity
in the Tunnel vBP(t).

3. Formulate the differential equation for vBP(t) as function of the pressure right before
the pump p2(t).

4. Exploiting the compressibility of the Tunnel, find the pressure p2(t) explicitly.

5. Formulate the differential equation for vAP(t).

6. Formulate the differential equation for h(t).

This document can be downloaded at
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Solution.

1. The reservoirs of the system and their relative state variables are:

• The Tunnel kinetic energy. The state variable of this reservoir is the velocity
of the water in the Tunnel vBP(t).

• The Seasoner kinetic energy. The state variable of this reservoir is the velocity
of the water in the Tunnel vAP(t).

• The water mass in the tank. The state variable of this reservoir is the water’s
height h(t).

• The compressibility of the Tunnel. The state variable of this reservoir is the
water volume V (t).

2. Bernoulli:
First, we need to use Bernoulli’s law from the water’s surface to the beginning of
the Tunnel, in order to find the local pressure. This reads

02 +
p∞
ρ

+ g · h(t) =
vBP(t)2

2
+
p1(t)

ρ
+ g · hV

p1(t) = p∞ + g · ρ · (h(t)− hV)− ρ · vBP(t)2

2
.

(4.10)

Here, we are making the assumption that the area of the tank is much larger than
that of the tunnel, thus ḣ(t) ≈ 0.

3. Tunnel:
The impulse equation for the Tunnel reads

ρ · lT · AT ·
d

dt
vBP(t) = AT · (p1(t)− p2(t))− Ffric(t), (4.11)

where Ffric(t) is the friction force, which reads

Ffric(t) = AT · λBP ·
lT · ρ
2 · dT

· sign(vBP(t)) · vBP(t)2. (4.12)

The pressure p2(t) is obtained from the compressibility of the Tunnel.

4. Compressibility:
As learned in the lecture, the pressure before the valve p2(t) is computed as

p2(t) =
1

σ
· ∆V (t)

V0

+ pstat

=
1

σ
· V (t)− V0

V0

+ ρ · g · (h(t)− hV) + p∞,

(4.13)

where

V0 =
lT · π · d2

T

4
. (4.14)

The volume balance reads

dV (t)

dt
= V ∗in − V ∗out

= AT · (vBP(t)− vAP(t)).
(4.15)
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5. Seasoner:
The impulse equation for the Seasoner reads

ρ·(lD+hT−hV)·AT ·
d

dt
vAP(t) = AT ·(p2(t) + ∆p− p∞)+AT ·ρ·g ·(hV−hT)−Ffric(t),

(4.16)
where Ffric(t) is the friction force, which reads

Ffric(t) = AT · λAH ·
(lD + hT − hV) · ρ

2 · dT

· sign(vAP(t)) · vAP(t)2. (4.17)

6. Water Tank:
The water tank stores water’s mass. Its state variable is the height of the water
tank h(t). The mass balance reads

d

dt
m(t) = ρ · AW ·

dh(t)

dt

=
∗
min −

∗
mout

= ρ · AT · (vAP(t)− vBP(t)).

(4.18)

This leads to a relation for the change of the water height

d

dt
h(t) =

AT

AW

· (vAP(t)− vBP(t)) . (4.19)
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