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Exercise 3 - Lagrange Formalism

3.1 The Lagrange Formalism

The Lagrange formalism is a powerful tool that allows to derive the equations of motion
of a mechanical system. This method offers several advantages over the reservoir based
approach/Newton’s laws if

• the system features multiple degrees of freedom/bodies;

• constraint forces are to be eliminated;

• no knowledge about internal forces is required;

• direct inclusion of non-holonomic constraints in the EoM is sought.

3.1.1 Generalized Coordinates

Generalized coordinates are signed displacements/angles that can be used to describe the
configuration of a system. Conventionally, they are stored in a vector q ∈ Rn, arbitrarily
ordered.

3.1.2 Holonomic and Non-holonomic Constraints

Constraints establish a mathematical relation between the generalized coordinates and
their time derivatives. In general, non-holonomic constraints can be written as

f(q, q̇, t) = 0. (3.1)

A non-holonomic constraint can be thought as a restriction of the trajectory that the
system takes to reach a certain configuration. When no dependency on q̇ is present, the
constraint is called holonomic and reads

f(q, t) = 0. (3.2)

A holonomic constraint can be interpreted as a restriction of the reachable configurations
that the system can take.

Example 1. For a pendulum of length 2L one may use q =
[
θ
]

or q =
[
x y

]>
subject

to the constraint f(x, y) = x2 + y2 − L2 = 0, where x and y are the coordinates of the
center of mass of the pendulum. The latter equation is a holonomic constraint for the
pendulum.

Degrees of Freedom

In general, it holds that
p = n− r,

where p is the number of degrees of freedom of a system, n the number of generalized
coordinates used to describe the system and r the number of holonomic constraints acting
on the system. Moreover, if a non-holonomic constraint can be integrated (is integrable),
then it will become holonomic and eliminate degrees of freedom as well.

This material is based on the HS17 teaching assistance taught by Nicolas Lanzetti and
Gioele Zardini.
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Example 2. Let’s assume to have a constraint acting on a system described by n gener-
alized coordinates qi. If the constraint is holonomic, then it reads

f(q1, · · · , qn, t) = 0,

which can be rewritten as
q1 = f̃(q2, · · · , qn, t),

which implies that the number of coordinates required is reduced by 1.

Minimal Coordinates

A set of generalized coordinates is called minimal if it contains exactly p coordinates.

Integrability

Every holonomic constraint f satisfies

df

dt
=

n∑
i=1

∂f(q, t)

∂qi
q̇i +

∂f(q, t)

∂t

=
n∑

i=1

ai(q, t)q̇i + b(q, t).

(3.3)

Consider now the following example.

Example 3. Consider a wheel moving on a straight line without slipping. Here, we have

q =
[
x φ

]>
. The non-slipping condition can be expressed by the constraint

ẋ = Rφ̇.

This constraint might look non-holonomic, as it involves ẋ and φ̇. However, we may
integrate w.r.t. time both sides and rewrite the constraint as

x− x0 = R(φ− φ0).

From this last equation it is clear that the constraint is holonomic.

3.1.3 Conservative Systems

A system is called conservative if all forces F acting on it either do no work or can be
expressed as the gradient of some scalar function U , called potential. That is,

F = −∇U.

If one or more forces do not satisfy the above conditions, the system is not conservative.

This document can be downloaded at
https://n.ethz.ch/~lnicolas/systemmodeling.html
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3.1.4 The Lagrange Method

Given a mechanical system, the method reads as follows:

(I) Identify the vector of generalized coordinates q.

(II) Is the system holonomic or non-holonomic? Are non-holonomic constraints inte-
grable?

(III) Define the total kinetic and the potential energy of the system. Recall that the
kinetic energy expressed with respect to the center of mass of the system reads

T =
1

2
mṙ(t)2︸ ︷︷ ︸

translation

+
1

2
Θω(t)2︸ ︷︷ ︸
rotation

and that the potential energy for a mechanical system generally reads

U = mgh+
1

2
klin∆x2︸ ︷︷ ︸

linear spring

+
1

2
krot∆ϕ

2︸ ︷︷ ︸
torsional spring

. (3.4)

(IV) Define the Lagrange function or Lagrangian

L(q, q̇) = T (q, q̇)− U(q),

where T is the total kinetic energy of the system and U is the total potential energy
of the system.

(V) If there are nonconservative forces and/or torques acting on the system, these should
be taken into account. In order to do this, we want to compute the generalized
forces Qk

1.

(VI) Write the Lagrange formalism for each generalized coordinate qk. For holonomic
systems this reads

d

dt

(
∂L
∂q̇k

)
− ∂L
∂qk

= Qk, k = 1, . . . , n, (3.5)

where Qk are the generalized forces of the system. These n equations are the
equations of motion of system. They can then be written as

M(q, t) · q̈ = F(q, q̇,Q, t), (3.6)

where M is the so-called mass matrix.

Remark. It is possible to use the Lagrange formalism also in case the system is subjected
to non-holonomic constraints. Then, the Lagrange equations contain an additional term
capturing this property. The treatment of the non-holonomic case is out of the scope of
the System Modeling lecture and, as such, will not be part of the final exam.

1The computation of generalized forces is beyond of the scope of the System Modeling lecture. How-
ever, for the sake of completeness, we provide an efficient method in the Appendix of this document.

This document can be downloaded at
https://n.ethz.ch/~lnicolas/systemmodeling.html
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3.2 Tips

Exercise 1: For (e): be careful, S1 is moving.

Exercise 2: No slipping condition:

ϕ

O

O
R R

C C

O′s

This document can be downloaded at
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3.3 Example

Due to the large demand, your SpaghETH shall increase the production. You decide to
automate the mixing of pasta in water by carefully optimizing its operation. To do that,
you start by formulating a model of the system. A sketch is shown in Figure 1.

m1

m2, L,Θ

x

ex

ey

kk

θ

Figure 1: Sketch of the system.

The ladle is modeled as a bar of mass m2, length L, and moment of inertia (w.r.t. its
center of mass) Θ = 1

12
m2L

2. The ladle is attached to a point mass m1. In order to
deal with possible vibrations, the mass is attached to two springs with spring constant k.
Assume the springs are unstretched at x = 0. Gravitational effects are to be considered;
friction, aerodynamic losses as well as water resistance are to be neglected.

1. How many degrees of freedom does the system have? List at least two possible
choices of generalized coordinates.

2. Is the system holonomic?

3. Is the system conservative?

4. Determine the kinetic energy of the system.

5. Determine the potential energy of the system.

6. Determine the equations of motion of the system.

7. Describe qualitatively how your answer would change if

(a) an external force F acts horizontally on the mass m1.

(b) the system is brought in an electric field.

This document can be downloaded at
https://n.ethz.ch/~lnicolas/systemmodeling.html
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Solution.

1. The system has two degrees of freedom. Possible choices of generalized coordinates
are (x, θ) and (x, φ), where φ denotes the angle between the bar and the ex-direction.
Note that (x, xbar) and (x, ybar) are not valid minimal coordinate choices as they do
not describe the position of the mass uniquely.

2. No constraints depend on q̇. Thus, the system is holonomic.

3. All forces acting on the system are potential (or do no work), hence the system is
conservative.

4. Let r1(t) be the position vector of the mass m1 and r2(t) the position of the center
of mass of the bar. In order to compute the kinetic energy, we first compute the
velocities of the mass m and of the bar. In an inertial frame we get

r1(t) =

x0
0

 , r2(t) =

x+ L
2

sin(θ)
−L

2
cos(θ)
0

 .
The velocities are then

ṙ1(t) =

ẋ0
0

 , ṙ2(t) =

ẋ+ L
2
θ̇ cos(θ)

L
2
θ̇ sin(θ)

0

 .
The angular velocity of the bar is given by

ω =

0
0

θ̇

 .
Thus, the kinetic energy of the system is

T =
1

2
m1|ṙ1|2 +

1

2
m2|ṙ2|2 +

1

2
Θ|ω|2

=
1

2
m1ẋ

2 +
1

2
m2

((
ẋ+

L

2
θ̇ cos(θ)

)2

+
L2

4
θ̇2 sin2(θ)

)
+

1

2

1

12
m2L

2θ̇2

=
1

2
m1ẋ

2 +
1

2
m2

(
ẋ2 +

L2

4
θ̇2 + ẋLθ̇ cos(θ)

)
+

1

2

1

12
m2L

2θ̇2.

Remark. Alternatively, the velocity of the center of mass of the bar can be computed
with

ṙ2 = ṙ1 + ω × r12 =

ẋ0
0

+

0
0

θ̇

×
 L

2
sin(θ)

−L
2

cos(θ)
0

 =

ẋ+ L
2
θ̇ cos(θ)

L
2
θ̇ sin(θ)

0

 .
5. The potential energy of the system is

U =
1

2
kx2 +

1

2
k(−x)2 −m2g

L

2
cos(θ) = kx2 −m2g

L

2
cos(θ).

This document can be downloaded at
https://n.ethz.ch/~lnicolas/systemmodeling.html

6

mailto:andreael@ethz.ch
mailto:lnicolas@ethz.ch
mailto:gmoscato@ethz.ch
https://n.ethz.ch/~lnicolas/systemmodeling.html


�Leonardo Andreae, Nicolas Lanzetti & Giovanni Moscato System Modeling, HS18

6. The Lagrangian is defined as

L = T − V

=
1

2
m1ẋ

2 +
1

2
m2

(
ẋ2 +

L2

4
θ̇2 + ẋLθ̇ cos(θ)

)
+

1

2

1

12
m2L

2θ̇2 − kx2 +m2g
L

2
cos(θ).

The derivatives are

∂L
∂ẋ

= m1ẋ+m2ẋ+
1

2
m2Lθ̇ cos(θ),

∂L
∂θ̇

= m2
L2

4
θ̇ +

1

2
m2Lẋ cos(θ) +

1

12
m2L

2θ̇,

∂L
∂x

= −2kx,

∂L
∂θ

= −1

2
m2ẋLθ̇ sin(θ)−m2g

L

2
sin(θ).

The equation of motion for the generalized coordinate x is

d

dt

(
m1ẋ+m2ẋ+

1

2
m2Lθ̇ cos(θ)

)
− (−2kx) = 0

⇒ (m1 +m2)ẍ+
1

2
m2L

(
θ̈ cos(θ)− θ̇2 sin(θ)

)
+ 2kx = 0.

The equation of motion for the generalized coordinate θ is

d

dt

(
m2

L2

4
θ̇ +

1

2
m2Lẋ cos(θ) +

1

12
m2L

2θ̇

)
−
(
−1

2
m2ẋLθ̇ sin(θ)−m2g

L

2
sin(θ)

)
= 0

⇒ m2

(
L2

4
+
L2

12

)
θ̈ +

1

2
m2L

(
ẍ cos(θ)− ẋθ̇ sin(θ)

)
+

1

2
m2ẋLθ̇ sin(θ) +m2g

L

2
sin(θ) = 0.

7. (a) The system would not be conservative anymore. The force F has to be con-
sidered as generalized force Q1 acting on the generalized coordinate x and as
generalized force Q2 acting on the generalized coordinate θ.

(b) The system is still conservative. The electric potential can be included in U .

This document can be downloaded at
https://n.ethz.ch/~lnicolas/systemmodeling.html
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A Computation of Generalized Forces with Jacobians

Suppose to have a force F acting on point A of the system. The velocity of point A can
always be written as

vA = JAq̇ + νA,

where JA is the translational Jacobian matrix of point A, q is the generalized-coordinates
vector, and νA is an offset term. The resulting general force can be written as

QA = J>
AF.

Suppose to have a torque M acting on the body. The angular velocity of the system ω
can always be written as

ω = JRq̇ + νE,

where JR is the rotational Jacobian matrix and νE is an offset term. The resulting general
force can be written as

QR = J>
RM.

Example (Adapted from Exam HS2016)

Consider the mechanical system depicted in Figure 2. Let the vector of (minimal) gener-

alized coordinates be q =
[
α β

]>
. Calculate the generalized force vector Q2 associated

with the force F2.

m1

ey

ex

m2

F2

α

β
l1

l2

Point A

Figure 2: Sketch of the system.

Solution. The velocity of point A can be written as:

vA = JAq̇ + νA.

Therefore, one way to obtain the Jacobian is to compute the velocity of point A as a
function of the generalized velocities and read out the matrix. First, we compute the
position vector as

rOA =

l1 cos(α) + l2 cos(β)
l1 sin(α)− l2 sin(β)

0

 ,
This document can be downloaded at
https://n.ethz.ch/~lnicolas/systemmodeling.html
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the velocity is then given by

vA =
d

dt
(rOA) =

−l1α̇ sin(α)− l2β̇ sin(β)

l1α̇ cos(α)− l2β̇ cos(β)
0

 ,
which can be rewritten as a matrix multiplication in the following way:

vA =

−l1 sin(α) −l2 sin(β)
l1 cos(α) −l2 cos(β)

0 0


︸ ︷︷ ︸

JA

·
[
α̇

β̇

]
︸︷︷︸

q̇

+

0
0
0


︸︷︷︸
νA

.

This formulation allows us to read out the required quantities directly.

The generalized force Q2 is then given by

Q2 = J>
A · F2 =

[
−l1 sin(α) l1 cos(α) 0
−l2 sin(β) −l2 cos(β) 0

]
·

 0
F2

0

 =

 F2l1 cos(α)
−F2l2 cos(β)

0

 .
Remark. If we were to compute the generalized force corresponding to a torque, we would
apply the same procedure with the angular velocity ω of the body.

This document can be downloaded at
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