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Exercise 2 - Mechanical Systems

2.1 Mechanical Systems

We start our analysis of systems by considering mechanical systems. In order to model
such systems with the tools presented last week, we present a quick recap on how to
compute energies and power. Of course, these tools represent only an alternative to the
methods taught in courses such as Dynamics and Advanced Dynamics.

2.1.1 Kinetic Energy

The kinetic energy of a rigid body is denoted with T and can be expressed as the sum of
the translational and the rotational kinetic energy. That is,

T (t) = Tt(t) + Tr(t)

=
1

2
mṙ(t)2 +

1

2
Θω(t)2,

(2.1)

where r is the position vector of the center of mass, Θ is the moment of inertia with respect
to the center of mass, and ω is the angular velocity of the body. Note that ṙ2 = ṙ>ṙ.

Remark. Equation (2.1) is a simplified version of the kinetic energy formula for 2D rigid
bodies.

Remark. Recall that moment of inertia for a 2D rigid body B with respect to an axis
through point O is defined as ∫

B
dO(x, y)2 dm.

dO(x, y) dm

O
x

y

B

It follows by definition that the moment of inertia is an additive quantity. That is, given
two masses with moments of inertia Θ1 and Θ2 w.r.t. the same point P , the total moment
of inertia w.r.t P is simply given by Θtot = Θ1 + Θ2.

2.1.2 Potential Energy

The potential energy of a system is a sole function of r(t), i.e.,

U(t) = U(r(t)). (2.2)

Practical examples are the gravitational potential energy:

Ug = mgh, (2.3)
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and the spring potential energy:

Uspring =
1

2
kx2, (2.4)

where g is the gravitational acceleration and k is the spring constant and x the displace-
ment from the relaxed position of the spring.

2.2 Mechanical Systems: Reservoir-based Approach

We can directly apply the reservoir-based approach to mechanical systems. Here, reser-
voirs consist of:

• Kinetic energies, whose level variables are typically velocities and/or

• Potential energies, whose level variables are typically positions or angles.

Flows are then given in terms of powers. We distinguish between the power of a force F:

PF = F>v, (2.5)

and the power of a torque T:
PT = T>ω, (2.6)

where v is the velocity of the point of application of the force and ω the angular velocity
of the body.

Remark. Generally, one uses (2.6) for free torques. Be careful not to account for both the
power of a force and the power of the torque such force produces.

Then, for each reservoir we may proceed as usual with

d

dt
E(t) = P+(t)− P−(t). (2.7)

Typical examples of forces acting on mechanical systems are:

• Gravitational force, given by

Fg = mg; (2.8)

• spring force, given by
Fspring = kx; (2.9)

• rolling friction, approximated as

Fr = crmg, (2.10)

where cr is the rolling friction coefficient. Note that this force is dissipative in nature
and acts in the opposite direction of the motion of the rolling object.

• Aerodynamic drag force, expressed by

Fa =
1

2
ρcwAv

2, (2.11)

where ρ is the surrounding fluid density, cw the drag coefficient, A the projected
surface of the moving object (also known as apparent area) and v the relative velocity
of the object w.r.t. the surrounding fluid.

This document can be downloaded at
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Remark. For systems with only one degree of freedom it might be easier to directly use

d

dt
Etot(t) =

∑
i

Pi(t),

where Etot = Ekin,tot + Utot is the total energy of the system.

Example 1. Consider the mechanical oscillator depicted in Figure 1.

u u

Fspring

Figure 1: Mechanical oscillator.

The reservoirs are:

• the kinetic energy with level variable v and

• the potential energy of the spring with level variable x.

The conservation laws read, respectively

d

dt

(
1

2
mv2

)
= u · v − kx · v

and

d

dt

(
1

2
kx2
)

= kx · v.

Then, some basic algebraic manipulations lead to

mv̇ = u− kx
ẋ = v,

or, equivalently, to
mẍ = u− kx.

This document can be downloaded at
https://n.ethz.ch/~lnicolas/systemmodeling.html
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2.3 Tips

Exercise 1: No tips. ,

Exercise 2: Compute the kinetic energies in horizontal and vertical directions separately.

This document can be downloaded at
https://n.ethz.ch/~lnicolas/systemmodeling.html
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2.4 Example

Since your company SpaghETH is going well, you decide to improve the service offered by
purchasing a crane from your colleagues at CranETH. The idea is to efficiently distribute
the pots with hot water to the truck drivers. A sketch of the crane is shown in Figure 2.

s

ω

Figure 2: Sketch of the system.

The crane platform has negliglible mass. The crane itself has mass mc and moment of
inertia with respect to the vertical axis Θ. The crane has front surface A, the density of
air is known and is given by ρ, the aerodynamic coefficient is cw and the rolling friction
coefficient cr. Additionally, a frictional torque, expressed as Tfric = βω, counteracts the
crane’s rotation.
Experiments have shown that the aerodynamic drag coeffiecient is a function of the rota-
tional velocity of the crane. The crane is carrying a pot of mass mp which is attached at
an adjustable distance s from the vertical axis. You may treat the pot as a point mass.
Furthermore, assume that the center of mass of the system does not change as the mass
mp moves, i.e. it always lies on the vertical axis of the crane. The propulsive force acting
horizontally on the crane and the propulsive torque acting on the crane vertical axes are
given by

Fp(φ1) = Fmax · (1− exp(−c1φ1))

Tp(φ2) = Tmax · (1− exp(−c2φ2)) ,

where φ1(t) and φ2(t) are the normalized actuators positions. The constants Pmax, Tmax, c1,
and c2 are known. Finally, assume that the rope force always balances the weight of the
pot.

1. Determine the inputs and the outputs of the system.

2. List the reservoir(s) and the corresponding level variable(s).

3. Draw a causality diagram of the system.

4. Formulate the differential/algebraic equations needed to describe the system.

5. Is the system linear or nonlinear? Explain.

This document can be downloaded at
https://n.ethz.ch/~lnicolas/systemmodeling.html
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Solution.

1. The inputs are the actuator values φ1 and φ2 as well as the distance s of the pot
from the central axis. The outputs are the translational and rotational velocities of
the system.

2. The system has two reservoirs:

• the kinetic translational energy of the system Etr, whose level variable is the
velocity v of the system;

• the kinetic rotational energy of the system Erot, whose level variable is the
rotational velocity ω of the system.

As the rope force balances the weight of the pot the gravitational potential energy
of the pot is not a reservoir.

3. The causality diagram is shown in Figure 3.

Translational energy Rotational Energy

Propulsive
force

Propulsive
torque

Fp Tp

v ω

φ1 φ2 s

Figure 3: Causality diagram of the system.

4. The differential equation for the translational energy of the truck reads

d

dt
Etr = P+ − P−,

which reduces to

d

dt
Etr = Fpv −

1

2
ρcw(ω)Av3 − cr(mc +mp)gv.

This leads to the differential equation

(mc +mp)vv̇ = Fpv −
1

2
ρcw(ω)Av3 − cr(mc +mp)gv

This document can be downloaded at
https://n.ethz.ch/~lnicolas/systemmodeling.html
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which simplifies to

v̇ =
1

mc +mp

·
(
Fp −

1

2
ρcw(ω)Av2 − cr(mc +mp)g

)
.

The differential equation for the rotational energy of the crane reads

d

dt
Erot = P+ − P−,

which reduces to
d

dt
Erot = Tpω − βω2.

The rotational energy of the system is

Erot =
1

2
(Θ +mps

2)ω2.

Hence, the differential equation reads

(Θ +mps
2)ωω̇ +mpω

2sṡ = Tpω − βω2,

which simplifies to

ω̇ =
1

(Θ +mps2)
· (Tp − βω −mpωsṡ) .

5. The system is nonlinear, in fact the dynamics of both the translational and rotational
velocities as well as the input dependencies are nonlinear.

This document can be downloaded at
https://n.ethz.ch/~lnicolas/systemmodeling.html

7

mailto:andreael@ethz.ch
mailto:lnicolas@ethz.ch
mailto:gmoscato@ethz.ch
https://n.ethz.ch/~lnicolas/systemmodeling.html

	Mechanical Systems
	Kinetic Energy
	Potential Energy

	Mechanical Systems: Reservoir-based Approach
	Tips
	Example

