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1 The Wave Function and the Schrödinger Equation

1.1 Quick Checks

T F Ψ(x, t) has no direct physical meaning.

T F According to the uncertainty principle, if σx is very large, then the momentum
is well determined.

T F Any solution of the T.I.S.E. can be normalized.

T F To obtain the T.I.S.E. from the T.D.S.E., we had to assume that the potential
energy function was time-independent.

T F If we confine an electron inside a finite volume with V (x) = 0, its ground state
energy can never be exactly zero.

T F Stationary states have a probability density that does not change with time.

T F If a particle is described by a wave packet, its energy is always well defined.

T F d
dt

∫ +∞
−∞ |Ψ(x, t)|2 dx = 0 arises only for unphysical solutions to the 1D SE.

T F
∫ +∞
−∞ |Ψ(x, t)|2 dx = 0 arises only for unphysical solutions to the 1D SE.

T F It holds 〈H2〉 =
(∑

i |ci|2Ei
)2

.

T F It holds 〈H2〉 =
(∑

i |ci|2E2
i

)
.

1.2 Exercises

1. See Final Exam 2013, Exercise 1d.

2. See Problem Set 2, Exercise 2.

3. See Problem Set 2, Exercise 4.

4. See Final Exam 2013, Exercise 4.

5. See Final Exam 2013, Exercise 1c.

6. See Extra Questions 5.
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2 Formalism

2.1 Quick Checks

T F The momentum operator p̂ is not Hermitian, since p̂ 6= p̂∗.

T F The Dirac Delta function is not in Hilbert space.

T F The function f(x) = sin(x) is in Hilbert space.

T F The function f(x) = e−x sin(x) is in Hilbert space.

T F The function f(x) = e−x
4

sin(x) is in Hilbert space.

T F Every classical observable can be represented in QM by a Hermitian Operator.

T F The operator Â = diag(4, 4, 2) is Hermitian.

T F The operator Â = diag(4, 4, i) is Hermitian.

T F For a free particle, the separable solutions to the SE are not in Hilbert space.

2.2 Exercises

1. See Problem Set 4, Exercise 2.

2. (a) Since there are three independent states we can use 3D vectors:

ψ1 →

1
0
0

 , ψ2 →

0
1
0

 , ψ3 →

0
0
1

 .
The general wavefunction is then

ψ = c1ψ1 + c2ψ2 + c3ψ3

or

|ψ〉 =

c1c2
c3

 ,
where |c1|2 + |c2|2 + |c3|2 = 1.

(b) For the stationary states we know that

Ĥψn = Enψn.

Thus,

Ĥ =
~2π2

2ma2

1 0 0
0 4 0
0 0 9

 .
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3 Measurements

3.1 Quick Checks

T F In quantum mechanics, all measurements are probabilistic.

T F Two Hermitian operators always commute.

T F If a particle is in a non-stationary state, the measurement of its energy must yield
one of several values.

T F If a quantum mechanical observable is measured, one possible result is always the
expectation value of the observable.

T F An uncertainty relation will exist for any two observables that have operators
that do not commute.

T F p̂x and p̂y are compatible observables.

T F Since V̂ = V (x̂) and [x̂, p̂] 6= 0, the operators p̂ and V̂ never commute.

3.2 Exercises

1. See Final Exam 2013, Exercise 3.

2. [a−, a+] = 1.

3. See Problem Set 4, Exercise 5.

4. See Extra Questions 5.

5. We need to solve
∂

∂x
fq = qfq.

Using separation of varibles we obtain∫
1

f
df =

∫
q dx,

which leads to
fq(x) = C exp(qx).

Thus, any complex number q is eigenvalue of Q̂ with eigenfunction fq = C exp(qx). Since∫ +∞

−∞
|fq|2 dx =∞,

none of the eigenfunctions can be normalized, i.e. they are not in Hilbert space.
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4 Quantum Mechanics in 3D

4.1 Quick Checks

T F Given a specific shell in a hydrogenic atom, all of the subshells have the same
energy.

T F The orbital shapes that we know from chemistry (s, p, d, etc.) come from the
solutions to the angular equation of the hydrogen atom.

T F For a single-particle system with a spherically symmetric potential, the eigen-

functions of Ĥ will involve the spherical harmonics.

T F In our mathematical treatment of the hydrogen atom, the potential energy func-
tion only affected the radial equation.

T F Each spin eigenstate can be represented as a two-dimensional vector.

T F For an atom with two electrons we can solve the TISE exactly (using separation
of variables) if we ignore the intraction between the particles.

T F For an one-electron atom with the potential V (r, t) = e2

4πε0
1
r cos(ωt) we can solve

the TISE exactly.

T F For an electron, the value of s can be ±1
2 .

T F L̂x and L̂2 are compatible observables .

T F The electron has a spin angular momentum because it is rotating in space.

T F If we excite an electron in a hydrogen atom, we can change both its s and l.

T F If we state that the spin of an electron is “up” with respect to the z axis, this
means its spin-angular-momentum vector is pointing parallel to the z axis.

T F An electron cannot be both “spin up” and “spin down”.

4.2 Exercises

1. See Final Exam 2013, Exercise 1b.

2. See Problem Set 7, Exercise 1.

3. See Problem Set 7, Exercise 5.

4. (a) Since L̂zY
ml
l = ~mlY

ml
l the possible values are −2~,−~, 0, ~, 2~. The expectation of

Lz is

〈Lz〉 =
2

7
~ +

2

7
(−~) +

1

14
0 +

1

14
(−2~− ~ + 0 + ~ + 2~) = 0.

(b) Since L̂2Y ml
l = ~2l(l + 1)Y ml

l the possible values are 0, 2~2, 6~2. The expectation of
Lz is

〈L2〉 =
2

7
2~2+

2

7
2~2+

1

14
0+

1

14
(6~2+6~2+6~2+6~2+6~2) =

16 + 0 + 30

14
~2 =

46

14
~2.

5. See Problem Set 7, Exercise 2.
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5 Systems with Multiple Particles

5.1 Quick Checks

Circle True or False.

T F In a multielectron atom with two electrons in 2p orbital the possible values of L
are 0, 1, 2.

T F Given a system of two identical particles, the exchange operator P̂ always com-

mute with the Hamiltonian operator Ĥ.

T F The Pauli exclusion principle applies to both fermions and bosons.

T F In quantum mechanics, an electron and proton are always distinguishable.

T F Quantum mechanics allows us to determine the length of the orbital angular
momentum vector.

T F The Pauli’s principle applies to particles with s = 3
2 .

T F The electron configuration of an atom (e.g.1s22s22p2) is enough information to
describe its exact energy.

T F In multielectron atoms, the 3p orbitals are lower in energy than the 4s orbitals.

T F In multielectron atoms, the 3d orbitals are lower in energy than the 4s orbitals.

T F It is possible to have the following term symbol for a multielectron atomic state:
1D1.

T F The term symbol for J = 2, L = 1, and S = 1 is 1D1.

T F For multielectron atoms, the energy of the single-particle states only depends on
n.

5.2 Exercises

1. (a) 2 n = 3, l = 2,ml = 1,ms = 0.

4 n = 2, l = 0,ml = 0,ms = −1/2.

4 n = 7, l = 2,ml = −2,ms = 1/2.

2 n = 3, l = −3,ml = −2,ms = −1/2.

2 n = 0, l = 0,ml = 0,ms = 1/2.

(b) See Problem Set 9, Exercise 1b.

2. See Problem Set 9, Exercise 1c.

3. See Final Exam 2013, Exercise 2b.

4. See Final Exam 2013, Exercise 2c and Exercise 2d.

5. (a) In the box (0 ≤ x ≤ a) the Hamiltonian reads

Ĥ = − ~2

2me

(
∂2

∂x21
+

∂2

∂x22
+

∂2

∂x23

)
+

e2

4πε0

(
1

|x1 − x2|
+

1

|x2 − x3|
+

1

|x2 − x3|

)
,

where me denotes the mass of the electron. Outside of the box the potential is infinity.
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(b) The simplified Hamiltonian reads

Ĥ = − ~2

2me

(
∂2

∂x21
+

∂2

∂x22
+

∂2

∂x23

)
.

(c) Due to Pauli’s Principle the two electrons will have n = 1 and one electron n = 2.
Thus, the ground state energy is

E0 =
~2π2

2mea2
+

~2π2

2mea2
+

22~2π2

2mea2
=

6~2π2

2mea2
.

Remark. Since the electrons do not interact the TISE can be separated. By doing
that, we obtain the classic 1D harmonic oscillator with one electron. The wave
function is then the multiplication of the three wave function and the energy is the
sum of the three energies.

(d) The Pauli’s principle does not applies to electrons and proton (since they are distin-
guishable). Thus, the proton will be in n = 1. The ground state energy is

E0 =
6~2π2

2mea2
+

~2π2

2mea2
=

7~2π2

2mea2
.

(e) The fourth electron will have n = 2. Thus,

E0 =
6~2π2

2mea2
+

22~2π2

2mpa2
=

6~2π2

2mea2
+

4~2π2

2mpa2
,

where mp denotes the mass of the proton.

6. (a) f(~r1, ~r2) = |~r1|+ |~r2|+ 1 is symmetric;

(b) f(~r1, ~r2) = |~r1|+ 2|~r2| is neither symmetric nor antisymmetric;

(c) f(~r1, ~r2) = −|~r1|+ |~r2|+ 1 is neither symmetric nor antisymmetric;

(d) f(~r1, ~r2) = −|~r1|+ |~r2| is antisymmetric;

(e) f(~r1, ~r2) = |~r1|2 + |~r2|3 is neither symmetric nor antisymmetric;

(f) f(~r1, ~r2) = (|~r1| − |~r2|)2 is symmetric;

(g) f(~r1, ~r2) = sin(|~r1| − |~r2|) is antisymmetric.
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6 Solids

6.1 Quick Checks

Circle True or False.

T F Electronic bands exist in semiconductor and insulators, but not metals.

T F In metals at T = 0 K, the electronic states are filled up to the Fermi level.

T F Doping is used to enhance the conductivity of solids.

T F If we add more electrons to a crystalline metallic solid, such that additional
electronic states are occupied, the Fermi energy rises.

T F Bloch’s theorem applies to systems that have a potential-energy function that is
periodic in space.

T F The electronic density of states at the Fermi energy affects the ability of a solid
to conduct electricity.

T F Semiconductors have band gaps, but insulators do not.

T F Bloch’s theorem states that the wave function in a solid is the same for each atom
in the solid.

6.2 Exercises

1. See Problem Set 10, Exercise 2.

2. See Problem Set 10, Exercise 5.
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7 Approximate Methods

7.1 Quick Checks

T F The variational principle can be used to estimate the ground state wave function.

T F Perturbation theory is mostly concerned with the calculation of the ground state
energy.

T F To get a good solution with the variational principle, we should make a good
guess at a trial and add many adjustable parameters.

T F The variational principle allows one to minimize the ground state energy by

varying Ĥ ′.

T F If your trial function has many adjustable parameters, the variational principle
guarantees the exact ground state energy.

T F Perturbation theory assumes non-degenerate states.

T F The ground state energy is lower-bounded by the minimum of the potential energy
Vmin.

T F Any function can be used as trial function for the variational principle.

T F In general, the accuracy of perturbation theory increases as the “strength” of the
perturbation decreases.

T F Perturbation theory in an alternative way to find the exact solution to the TISE.

7.2 Exercises

1. See Final Exam 2013, Exercise 5.

2. See Problem Set 11, Exercise 2.

3. See Problem Set 11, Exercise 3.
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