Exercise 8 - Recap

1 Angular Momentum

For the angular momentum we use the classic definition:

$$
\hat{L}_{x}=\hat{y} \hat{p}_{z}-\hat{z} \hat{p}_{y}, \quad \hat{L}_{y}=\hat{z} \hat{p}_{x}-\hat{x} \hat{p}_{z}, \quad \hat{L}_{z}=\hat{x} \hat{p}_{y}-\hat{y} \hat{p}_{x}, \quad \hat{L}^{2}=\hat{L}_{x}^{2}+\hat{L}_{y}^{2}+\hat{L}_{z}^{2} .
$$

We have seen that \hat{L}_{x}, \hat{L}_{y}, and \hat{L}_{z} do not commute, but they all commute with \hat{L}^{2}. The eigenfunctions are the spherical harmonics and the eigenvalues are function of l :

$$
\begin{aligned}
& \hat{L}^{2} Y_{l}^{m_{l}}=\hbar^{2} l(l+1) Y_{l}^{m_{l}}, \\
& \hat{L}_{z} Y_{l}^{m_{l}}=\hbar m_{l} Y_{l}^{m_{l}}
\end{aligned}
$$

where $l=0,1,2, \ldots$ and $m_{l}=-l,-l+1, \ldots, l-1, l$.

2 Spin

Due the intrisic spin of the particle, it acts as if it has an inherent rotation about z-axis. Similarily to the angular momentum is eigenvalue problem is:

$$
\begin{aligned}
\hat{S}^{2}\left|s, m_{s}\right\rangle & =\hbar^{2} s(s+1)\left|s, m_{s}\right\rangle, \\
\hat{S}_{z}\left|s, m_{s}\right\rangle & =\hbar m_{s}\left|s, m_{s}\right\rangle .
\end{aligned}
$$

for $s=0, \frac{1}{2}, 1, \frac{3}{2}, \ldots$ and $m_{s}=-s,-s+1, \ldots, s-1, s$.
Remark. For an electron: it can occupy different orbitals, so l can vary (s, d, p, \ldots orbitals). However, each quantum mechanical particle has a fixed spin s. For an electron $s=\frac{1}{2}$, for a photon $s=1$.
Therefore, for an electron (or any $\frac{1}{2}$-spin particle) there are two possible eigenstates:

$$
\left|s, m_{s}\right\rangle \rightarrow \begin{cases}\left|\frac{1}{2},+\frac{1}{2}\right\rangle & \text { "spin up", } \\ \left|\frac{1}{2},-\frac{1}{2}\right\rangle & \text { "spin down", }\end{cases}
$$

where $u p /$ down refer to the projection of the spin along the z-axis. We can choose these eigenstates as out basis vectors, that is

$$
\begin{aligned}
\left|\frac{1}{2},+\frac{1}{2}\right\rangle & \rightarrow\left[\begin{array}{l}
1 \\
0
\end{array}\right], \\
\left|\frac{1}{2},-\frac{1}{2}\right\rangle & \rightarrow\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
\end{aligned}
$$

Then, the general sping state can be written as a linear combination:

$$
\begin{aligned}
& |\chi\rangle=a\left|\frac{1}{2},+\frac{1}{2}\right\rangle+b\left|\frac{1}{2},-\frac{1}{2}\right\rangle, \\
& |\chi\rangle=a\left[\begin{array}{l}
0 \\
1
\end{array}\right]+b\left[\begin{array}{l}
0 \\
1
\end{array}\right], \\
& |\chi\rangle=\left[\begin{array}{l}
a \\
b
\end{array}\right]
\end{aligned}
$$

The operators in this basis are given by

$$
\hat{S}^{2}=\frac{3}{4} \hbar^{2}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad \hat{S}_{z}=\frac{\hbar}{2}\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \quad \hat{S}_{x}=\frac{\hbar}{2}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad \hat{S}_{y}=\frac{\hbar}{2}\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right] .
$$

Example. Let's work out \hat{S}^{2}. We know it is a 2×2 matrix, that is

$$
\hat{S}^{2}=\left[\begin{array}{ll}
c & d \\
e & f
\end{array}\right] .
$$

We use the eigevalue equations:

$$
\begin{aligned}
\hat{S}^{2}\left|\frac{1}{2}, \pm \frac{1}{2}\right\rangle & =\hbar^{2} s(s+1)\left|\frac{1}{2}, \pm \frac{1}{2}\right\rangle \\
& =\hbar^{2} \frac{1}{2}\left(\frac{1}{2}+1\right)\left|\frac{1}{2}, \pm \frac{1}{2}\right\rangle \\
& =\frac{3}{4} \hbar^{2}\left|\frac{1}{2}, \pm \frac{1}{2}\right\rangle .
\end{aligned}
$$

In matrix notation:

$$
\left[\begin{array}{ll}
c & d \\
e & f
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\frac{3}{4} \hbar^{2}\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \Rightarrow \quad\left[\begin{array}{l}
c \\
e
\end{array}\right]=\frac{3}{4} \hbar^{2}\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Thus, $c=\frac{3}{4} \hbar^{2}$ and $e=0$. Similarily

$$
\left[\begin{array}{cc}
c & d \\
e & f
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\frac{3}{4} \hbar^{2}\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad \Rightarrow \quad\left[\begin{array}{l}
d \\
f
\end{array}\right]=\frac{3}{4} \hbar^{2}\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

which leads to $d=0$ and $f=\frac{3}{4} \hbar^{2}$. Hence,

$$
\hat{S}^{2}=\frac{3}{4} \hbar^{2}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] .
$$

Example. Consider a particle with spin 2. The possible values of m_{s} are $\{-2,-1,0,1,2\}$. Therefore, there are 5 eigenstates, given by $|2, \pm 2\rangle,|2, \pm 1\rangle$, and $|2,0\rangle$. In vector form we would have 5 -dimensional vectors/matrices.

