Exercise 8 - Recap

1 Angular Momentum

For the angular momentum we use the classic definition:

$$\hat{L}_x = \hat{y}\hat{p}_z - \hat{z}\hat{p}_y, \quad \hat{L}_y = \hat{z}\hat{p}_x - \hat{x}\hat{p}_z, \quad \hat{L}_z = \hat{x}\hat{p}_y - \hat{y}\hat{p}_x, \quad \hat{L}^2 = \hat{L}_x^2 + \hat{L}_y^2 + \hat{L}_z^2.$$

We have seen that \hat{L}_x, \hat{L}_y , and \hat{L}_z do not commute, but they all commute with \hat{L}^2 . The eigenfunctions are the spherical harmonics and the eigenvalues are function of l:

$$\hat{L}^{2}Y_{l}^{m_{l}} = \hbar^{2}l(l+1)Y_{l}^{m_{l}},$$
$$\hat{L}_{z}Y_{l}^{m_{l}} = \hbar m_{l}Y_{l}^{m_{l}},$$

where l = 0, 1, 2, ... and $m_l = -l, -l + 1, ..., l - 1, l$.

2 Spin

Due the intrisic spin of the particle, it acts as if it has an inherent rotation about z-axis. Similarly to the angular momentum is eigenvalue problem is:

$$\hat{S}^2 |s, m_s\rangle = \hbar^2 s(s+1) |s, m_s\rangle.$$
$$\hat{S}_z |s, m_s\rangle = \hbar m_s |s, m_s\rangle.$$

for $s = 0, \frac{1}{2}, 1, \frac{3}{2}, \dots$ and $m_s = -s, -s + 1, \dots, s - 1, s$.

Remark. For an electron: it can occupy different orbitals, so l can vary $(s, d, p, \ldots$ orbitals). However, each quantum mechanical particle has a fixed spin s. For an electron $s = \frac{1}{2}$, for a photon s = 1.

Therefore, for an electron (or any $\frac{1}{2}$ -spin particle) there are two possible eigenstates:

$$|s, m_s\rangle \rightarrow \begin{cases} |\frac{1}{2}, +\frac{1}{2}\rangle & \text{"spin up"}, \\ |\frac{1}{2}, -\frac{1}{2}\rangle & \text{"spin down"}, \end{cases}$$

where up/down refer to the projection of the spin along the z-axis. We can choose these eigenstates as out basis vectors, that is

$$\begin{aligned} |\frac{1}{2}, +\frac{1}{2} \rangle &\to \begin{bmatrix} 1\\ 0 \end{bmatrix}, \\ |\frac{1}{2}, -\frac{1}{2} \rangle &\to \begin{bmatrix} 0\\ 1 \end{bmatrix}. \end{aligned}$$

Then, the general sping state can be written as a linear combination:

$$\begin{split} |\chi\rangle &= a|\frac{1}{2}, +\frac{1}{2}\rangle + b|\frac{1}{2}, -\frac{1}{2}\rangle, \\ |\chi\rangle &= a\begin{bmatrix}0\\1\end{bmatrix} + b\begin{bmatrix}0\\1\end{bmatrix}, \\ |\chi\rangle &= \begin{bmatrix}a\\b\end{bmatrix} \end{split}$$

The operators in this basis are given by

$$\hat{S}^{2} = \frac{3}{4}\hbar^{2} \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}, \qquad \hat{S}_{z} = \frac{\hbar}{2} \begin{bmatrix} 1 & 0\\ 0 & -1 \end{bmatrix}, \qquad \hat{S}_{x} = \frac{\hbar}{2} \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix}, \qquad \hat{S}_{y} = \frac{\hbar}{2} \begin{bmatrix} 0 & -i\\ i & 0 \end{bmatrix}.$$

Example. Let's work out \hat{S}^2 . We know it is a 2 × 2 matrix, that is

$$\hat{S}^2 = \begin{bmatrix} c & d \\ e & f \end{bmatrix}$$

We use the eigevalue equations:

$$\begin{split} \hat{S}^2 |\frac{1}{2}, \pm \frac{1}{2} \rangle &= \hbar^2 s(s+1) |\frac{1}{2}, \pm \frac{1}{2} \rangle \\ &= \hbar^2 \frac{1}{2} \left(\frac{1}{2} + 1 \right) |\frac{1}{2}, \pm \frac{1}{2} \rangle \\ &= \frac{3}{4} \hbar^2 |\frac{1}{2}, \pm \frac{1}{2} \rangle. \end{split}$$

In matrix notation:

$$\begin{bmatrix} c & d \\ e & f \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{3}{4}\hbar^2 \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad \Rightarrow \qquad \begin{bmatrix} c \\ e \end{bmatrix} = \frac{3}{4}\hbar^2 \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Thus, $c = \frac{3}{4}\hbar^2$ and e = 0. Similarly

$$\begin{bmatrix} c & d \\ e & f \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{3}{4}\hbar^2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} \qquad \Rightarrow \qquad \begin{bmatrix} d \\ f \end{bmatrix} = \frac{3}{4}\hbar^2 \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

which leads to d = 0 and $f = \frac{3}{4}\hbar^2$. Hence,

$$\hat{S}^2 = \frac{3}{4}\hbar^2 \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}.$$

Example. Consider a particle with spin 2. The possible values of m_s are $\{-2, -1, 0, 1, 2\}$. Therefore, there are 5 eigenstates, given by $|2, \pm 2\rangle, |2, \pm 1\rangle$, and $|2, 0\rangle$. In vector form we would have 5-dimensional vectors/matrices.