Exercise 1 - The Momentum Operator

The momentum operator is

$$
\hat{p}=-i \hbar \frac{\partial}{\partial x}
$$

What does that mean?
The expectation value of the position of the particle is

$$
\langle x\rangle=\int_{-\infty}^{+\infty} x|\Psi|^{2} \mathrm{~d} x
$$

The expectation value of the momentum is therefore

$$
\begin{aligned}
m \frac{\mathrm{~d}\langle x\rangle}{\mathrm{d} t} & =m \frac{\mathrm{~d}}{\mathrm{~d} t} \int_{-\infty}^{+\infty} x|\Psi|^{2} \mathrm{~d} x \\
& =m \int_{-\infty}^{+\infty} x \frac{\partial}{\partial t} \Psi^{*} \Psi \mathrm{~d} x \\
& =m \int_{-\infty}^{+\infty} x\left(\frac{\partial \Psi^{*}}{\partial t} \Psi+\frac{\partial \Psi}{\partial t} \Psi^{*}\right) \mathrm{d} x \\
& =m \int_{-\infty}^{+\infty} x\left(-\frac{1}{i \hbar}\left(-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi^{*}}{\partial x^{2}}+V \Psi^{*}\right) \Psi+\frac{1}{i \hbar}\left(-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi}{\partial x^{2}}+V \Psi\right) \Psi^{*}\right) \mathrm{d} x \\
& =m \int_{-\infty}^{+\infty} \frac{x}{i \hbar} \frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2} \Psi^{*}}{\partial x^{2}} \Psi-\frac{\partial^{2} \Psi}{\partial x^{2}} \Psi^{*}\right) \mathrm{d} x \\
& =m \int_{-\infty}^{+\infty}\left(-\frac{i \hbar}{2 m}\right) x \frac{\partial}{\partial x}\left(\frac{\partial \Psi^{*}}{\partial x} \Psi-\frac{\partial \Psi}{\partial x} \Psi^{*}\right) \mathrm{d} x \\
& =-\frac{i \hbar}{2}\left(\left.x\left(\frac{\partial \Psi^{*}}{\partial x} \Psi-\frac{\partial \Psi}{\partial x} \Psi^{*}\right)\right|_{-\infty} ^{+\infty}-\int_{-\infty}^{+\infty}\left(\frac{\partial \Psi^{*}}{\partial x} \Psi-\frac{\partial \Psi}{\partial x} \Psi^{*}\right) \mathrm{d} x\right) \\
& =\frac{i \hbar}{2}\left(\int_{-\infty}^{+\infty} \frac{\partial \Psi^{*}}{\partial x} \Psi \mathrm{~d} x-\int_{-\infty}^{+\infty} \frac{\partial \Psi}{\partial x} \Psi^{*} \mathrm{~d} x\right) \\
& =\frac{i \hbar}{2}\left(\left.\Psi^{*} \Psi\right|_{-\infty} ^{+\infty}-\int_{-\infty}^{+\infty} \frac{\partial \Psi}{\partial x} \Psi^{*} \mathrm{~d} x-\int_{-\infty}^{+\infty} \frac{\partial \Psi}{\partial x} \Psi^{*} \mathrm{~d} x\right) \\
& =-i \hbar \int_{-\infty}^{+\infty} \frac{\partial \Psi}{\partial x} \Psi^{*} \mathrm{~d} x \\
& =\int_{-\infty}^{+\infty} \Psi^{*}\left(-i \hbar \frac{\partial}{\partial x}\right) \Psi \mathrm{d} x .
\end{aligned}
$$

Thus, it holds $\hat{p}=-i \hbar \frac{\partial}{\partial x}$.

