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Motivation

Challenges

90 hours per year
in congestion

Data from: INRIX, International Parking Institute,
Statistical Pocketbook 2018, Aptiv, World Economic Forum, BCG.

30% of congestion caused by drivers
circling and struggling for parking

25% CO2

30% Particulate matter
60% NOx

Autonomous Mobility-on-Demand Systems

• Ride-hailing fleet of (electric) self-driving cars.

• Controlled by a central operator that

• assigns customer requests to vehicles;
• decides on vehicle routes;
• rebalances the fleet.

-30% travel
time

-44% parking
places

-66%
emissions

Data from: Aptiv, World Economic Forum, BCG.

Do Self-driving Cars Swallow Public Transport?
22nd October, 2019 | Nicolas Lanzetti | lnicolas@stanford.edu 2 of 25

mailto:lnicolas@stanford.edu


Introduction Problem Setting Methodology Results Conclusions

Motivation

Challenges

90 hours per year
in congestion

Data from: INRIX, International Parking Institute,
Statistical Pocketbook 2018, Aptiv, World Economic Forum, BCG.

30% of congestion caused by drivers
circling and struggling for parking

25% CO2

30% Particulate matter
60% NOx

Autonomous Mobility-on-Demand Systems

• Ride-hailing fleet of (electric) self-driving cars.

• Controlled by a central operator that

• assigns customer requests to vehicles;
• decides on vehicle routes;
• rebalances the fleet.

-30% travel
time

-44% parking
places

-66%
emissions

Data from: Aptiv, World Economic Forum, BCG.

Do Self-driving Cars Swallow Public Transport?
22nd October, 2019 | Nicolas Lanzetti | lnicolas@stanford.edu 2 of 25

mailto:lnicolas@stanford.edu


Introduction Problem Setting Methodology Results Conclusions

Motivation

Challenges

90 hours per year
in congestion

Data from: INRIX, International Parking Institute,
Statistical Pocketbook 2018, Aptiv, World Economic Forum, BCG.

30% of congestion caused by drivers
circling and struggling for parking

25% CO2

30% Particulate matter
60% NOx

Autonomous Mobility-on-Demand Systems

• Ride-hailing fleet of (electric) self-driving cars.

• Controlled by a central operator that

• assigns customer requests to vehicles;
• decides on vehicle routes;
• rebalances the fleet.

-30% travel
time

-44% parking
places

-66%
emissions

Data from: Aptiv, World Economic Forum, BCG.

Do Self-driving Cars Swallow Public Transport?
22nd October, 2019 | Nicolas Lanzetti | lnicolas@stanford.edu 2 of 25

mailto:lnicolas@stanford.edu


Introduction Problem Setting Methodology Results Conclusions

Motivation

Challenges

90 hours per year
in congestion

Data from: INRIX, International Parking Institute,
Statistical Pocketbook 2018, Aptiv, World Economic Forum, BCG.

30% of congestion caused by drivers
circling and struggling for parking

25% CO2

30% Particulate matter
60% NOx

Autonomous Mobility-on-Demand Systems

• Ride-hailing fleet of (electric) self-driving cars.

• Controlled by a central operator that

• assigns customer requests to vehicles;
• decides on vehicle routes;
• rebalances the fleet.

-30% travel
time

-44% parking
places

-66%
emissions

Data from: Aptiv, World Economic Forum, BCG.

Do Self-driving Cars Swallow Public Transport?
22nd October, 2019 | Nicolas Lanzetti | lnicolas@stanford.edu 2 of 25

mailto:lnicolas@stanford.edu


Introduction Problem Setting Methodology Results Conclusions

Motivation

Challenges

90 hours per year
in congestion

Data from: INRIX, International Parking Institute,
Statistical Pocketbook 2018, Aptiv, World Economic Forum, BCG.

30% of congestion caused by drivers
circling and struggling for parking

25% CO2

30% Particulate matter
60% NOx

Autonomous Mobility-on-Demand Systems

• Ride-hailing fleet of (electric) self-driving cars.

• Controlled by a central operator that

• assigns customer requests to vehicles;
• decides on vehicle routes;
• rebalances the fleet.

-30% travel
time

-44% parking
places

-66%
emissions

Data from: Aptiv, World Economic Forum, BCG.

Do Self-driving Cars Swallow Public Transport?
22nd October, 2019 | Nicolas Lanzetti | lnicolas@stanford.edu 2 of 25

mailto:lnicolas@stanford.edu


Introduction Problem Setting Methodology Results Conclusions

Motivation

Challenges

90 hours per year
in congestion

Data from: INRIX, International Parking Institute,
Statistical Pocketbook 2018, Aptiv, World Economic Forum, BCG.

30% of congestion caused by drivers
circling and struggling for parking

25% CO2

30% Particulate matter
60% NOx

Autonomous Mobility-on-Demand Systems

• Ride-hailing fleet of (electric) self-driving cars.

• Controlled by a central operator that

• assigns customer requests to vehicles;
• decides on vehicle routes;
• rebalances the fleet.

-30% travel
time

-44% parking
places

-66%
emissions

Data from: Aptiv, World Economic Forum, BCG.

Do Self-driving Cars Swallow Public Transport?
22nd October, 2019 | Nicolas Lanzetti | lnicolas@stanford.edu 2 of 25

mailto:lnicolas@stanford.edu


Introduction Problem Setting Methodology Results Conclusions

Motivation

Challenges

90 hours per year
in congestion

Data from: INRIX, International Parking Institute,
Statistical Pocketbook 2018, Aptiv, World Economic Forum, BCG.

30% of congestion caused by drivers
circling and struggling for parking

25% CO2

30% Particulate matter
60% NOx

Autonomous Mobility-on-Demand Systems

• Ride-hailing fleet of (electric) self-driving cars.

• Controlled by a central operator that

• assigns customer requests to vehicles;

• decides on vehicle routes;
• rebalances the fleet.

-30% travel
time

-44% parking
places

-66%
emissions

Data from: Aptiv, World Economic Forum, BCG.

Do Self-driving Cars Swallow Public Transport?
22nd October, 2019 | Nicolas Lanzetti | lnicolas@stanford.edu 2 of 25

mailto:lnicolas@stanford.edu


Introduction Problem Setting Methodology Results Conclusions

Motivation

Challenges

90 hours per year
in congestion

Data from: INRIX, International Parking Institute,
Statistical Pocketbook 2018, Aptiv, World Economic Forum, BCG.

30% of congestion caused by drivers
circling and struggling for parking

25% CO2

30% Particulate matter
60% NOx

Autonomous Mobility-on-Demand Systems

• Ride-hailing fleet of (electric) self-driving cars.

• Controlled by a central operator that

• assigns customer requests to vehicles;
• decides on vehicle routes;

• rebalances the fleet.

-30% travel
time

-44% parking
places

-66%
emissions

Data from: Aptiv, World Economic Forum, BCG.

Do Self-driving Cars Swallow Public Transport?
22nd October, 2019 | Nicolas Lanzetti | lnicolas@stanford.edu 2 of 25

mailto:lnicolas@stanford.edu


Introduction Problem Setting Methodology Results Conclusions

Motivation

Challenges

90 hours per year
in congestion

Data from: INRIX, International Parking Institute,
Statistical Pocketbook 2018, Aptiv, World Economic Forum, BCG.

30% of congestion caused by drivers
circling and struggling for parking

25% CO2

30% Particulate matter
60% NOx

Autonomous Mobility-on-Demand Systems

• Ride-hailing fleet of (electric) self-driving cars.

• Controlled by a central operator that

• assigns customer requests to vehicles;
• decides on vehicle routes;
• rebalances the fleet.

-30% travel
time

-44% parking
places

-66%
emissions

Data from: Aptiv, World Economic Forum, BCG.

Do Self-driving Cars Swallow Public Transport?
22nd October, 2019 | Nicolas Lanzetti | lnicolas@stanford.edu 2 of 25

mailto:lnicolas@stanford.edu


Introduction Problem Setting Methodology Results Conclusions

Motivation

Challenges

90 hours per year
in congestion

Data from: INRIX, International Parking Institute,
Statistical Pocketbook 2018, Aptiv, World Economic Forum, BCG.

30% of congestion caused by drivers
circling and struggling for parking

25% CO2

30% Particulate matter
60% NOx

Autonomous Mobility-on-Demand Systems

• Ride-hailing fleet of (electric) self-driving cars.

• Controlled by a central operator that

• assigns customer requests to vehicles;
• decides on vehicle routes;
• rebalances the fleet.

-30% travel
time

-44% parking
places

-66%
emissions

Data from: Aptiv, World Economic Forum, BCG.

Do Self-driving Cars Swallow Public Transport?
22nd October, 2019 | Nicolas Lanzetti | lnicolas@stanford.edu 2 of 25

mailto:lnicolas@stanford.edu


Introduction Problem Setting Methodology Results Conclusions

Motivation

Optimists

• fewer, better utilized vehicles;

• improved pooling, fair matching;

• less congestion, balanced routing.

Pessimists

• increased traffic;

• worsened modal split;

• cannibalization of public transport.

Can autonomous mobility-on-demand (AMoD) systems
cannibalize public transport?
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Aims & Scope

Contribution

We present the first algorithmic framework that

• captures the dynamics between multiple mobility service providers and customers;

• considers constraints of a complex real-world transportation network; and

• allows for multimodal customer decisions.
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Problem Setting – Who is playing?

Stakeholder Role Goal

Mobility Service Providers Offer mobility services Profit

Municipalities Offer mobility services Social welfare

Customers Request mobility services Individual benefit

vs.
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Problem Setting – A Two-level System

Customers

PTAMSP
Game Theory

Transportation Market Place

Transportation Research
Transportation Network
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Modeling – Customers

Customers may move:

1. on the “free subgraph” G0, and

2. on the fully-connected operators’ subgraphs G1, . . . ,GNo .
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Modeling – Customers

Customers’ Route Decision

Select a reaction curve φi :

φi (p) = α ≡
α customers per unit

time on path p

with related cost Ji (φi , pr1, . . . , prNo
).

Remark (Requirements for φi )

1. Demand conservation: φi ∈ Φ(di ).

2. Feasibility: φi ∈ Ac,i .
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Modeling – Operators

1. Select a pricing strategy pr ∈ Pr:

pr : Vj × Vj → R≥0 ∪ {+∞}
(o, d) 7→ price.

2. Serve each demand i with some flows
Fi = {f1

i , . . . , f
Li

i }.
3. Rebalance the system with some flows

F0 = {f1
0, . . . , f

L0
0 }.

Remark (Requirements for the flows)

1. Demand satisfaction: Fi ∈ Hi (φi ).

2. Feasibility: (F1, . . . ,FM ,F0) ∈ Ao,i .

2

4

1
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Modeling – Operators

Operators’ Profit Maximization

Revenuej :=
M∑
i=1

∑
p∈S(di )

∑
a∈p,

a∈Āj

φi (p) · prj(s̄j(a), t̄j(a))

Costj :=

min
Fi∈Hi (φi ),

F0∈2F(Gj ),

({Fi}Mi=1,F0)∈Ao,j

M∑
i=1

cj(Fi ) + cj(F0)

Hence
Uj(prj , {φi}Mi=1) := Revenuej − Costj

Rate Price

Cost serving

demand i

Cost rebalancing
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Customers Equilibrium

Definition (Customer Equilibrium)

The reaction curve φ?i is an equilibrium for the demand di if

Ji (φ
?
i , pr1, . . . , prNo

) ≤ Ji (φi , pr1, . . . , prNo
) ∀φi ∈ Φ(di ) ∩ Ac,i

The set of equilibria is Ei (pr1, . . . , prNo
).
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AMoD Framework – Settings

Players:

• M demands

• Two operators:

Name Graph Pricing Strategies Set

Operator 1 AMoD System G1 Pr1 = R̄V1×V1

≥0 ≡ All nonnegative functions

Operator 2 PTA/Municipality G2 Pr2 = {pr2}

Assumptions

• Time-invariant setting.

• The time from o to d through path p is known a priori.

• Multimodal route selection.

Do Self-driving Cars Swallow Public Transport?
22nd October, 2019 | Nicolas Lanzetti | lnicolas@stanford.edu 14 of 25

mailto:lnicolas@stanford.edu


Introduction Problem Setting Methodology Results Conclusions

AMoD Framework – Settings

Players:

• M demands

• Two operators:

Name Graph Pricing Strategies Set

Operator 1 AMoD System G1 Pr1 = R̄V1×V1

≥0 ≡ All nonnegative functions

Operator 2 PTA/Municipality G2 Pr2 = {pr2}

Assumptions

• Time-invariant setting.

• The time from o to d through path p is known a priori.

• Multimodal route selection.

Do Self-driving Cars Swallow Public Transport?
22nd October, 2019 | Nicolas Lanzetti | lnicolas@stanford.edu 14 of 25

mailto:lnicolas@stanford.edu


Introduction Problem Setting Methodology Results Conclusions

AMoD Framework – Settings

Players:

• M demands

• Two operators:

Name Graph Pricing Strategies Set

Operator 1 AMoD System G1 Pr1 = R̄V1×V1

≥0 ≡ All nonnegative functions

Operator 2 PTA/Municipality G2 Pr2 = {pr2}

Assumptions

• Time-invariant setting.

• The time from o to d through path p is known a priori.

• Multimodal route selection.

Do Self-driving Cars Swallow Public Transport?
22nd October, 2019 | Nicolas Lanzetti | lnicolas@stanford.edu 14 of 25

mailto:lnicolas@stanford.edu


Introduction Problem Setting Methodology Results Conclusions

AMoD Framework – Settings

Players:

• M demands

• Two operators:

Name Graph Pricing Strategies Set

Operator 1 AMoD System G1 Pr1 = R̄V1×V1

≥0 ≡ All nonnegative functions

Operator 2 PTA/Municipality G2 Pr2 = {pr2}

Assumptions

• Time-invariant setting.

• The time from o to d through path p is known a priori.

• Multimodal route selection.

Do Self-driving Cars Swallow Public Transport?
22nd October, 2019 | Nicolas Lanzetti | lnicolas@stanford.edu 14 of 25

mailto:lnicolas@stanford.edu


Introduction Problem Setting Methodology Results Conclusions

AMoD Framework – Settings

Players:

• M demands

• Two operators:

Name Graph Pricing Strategies Set

Operator 1 AMoD System G1 Pr1 = R̄V1×V1

≥0 ≡ All nonnegative functions

Operator 2 PTA/Municipality G2 Pr2 = {pr2}

Assumptions

• Time-invariant setting.

• The time from o to d through path p is known a priori.

• Multimodal route selection.

Do Self-driving Cars Swallow Public Transport?
22nd October, 2019 | Nicolas Lanzetti | lnicolas@stanford.edu 14 of 25

mailto:lnicolas@stanford.edu


Introduction Problem Setting Methodology Results Conclusions

AMoD Framework – Settings

Players:

• M demands

• Two operators:

Name Graph Pricing Strategies Set

Operator 1 AMoD System G1 Pr1 = R̄V1×V1

≥0 ≡ All nonnegative functions

Operator 2 PTA/Municipality G2 Pr2 = {pr2}

Assumptions

• Time-invariant setting.

• The time from o to d through path p is known a priori.

• Multimodal route selection.

Do Self-driving Cars Swallow Public Transport?
22nd October, 2019 | Nicolas Lanzetti | lnicolas@stanford.edu 14 of 25

mailto:lnicolas@stanford.edu


Introduction Problem Setting Methodology Results Conclusions

AMoD Framework – Customers

• Multimodal choice:

pAMoD,i : AMoD path
⇒ Ac,i = {φ |φ(p) = 0 ∀ p 6= pAMoD,i , pPT,i}

pPT,i : public transport and walking path

• Monetary costs of fares and time:

Ji (φ, pr1, pr2) = (pr1(o, d) + VT · tAMoD,i ) · φ(pAMoD,i ) + (prPT,i + VT · tPT,i ) · φ(pPT,i ).

Equilibrium

φi =

EVT

[

arg min
φ∈Φ(di )∩Ac,i

Ji (φ, pr1, pr2)

]
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AMoD Framework – AMoD Operator

• She assigns requests to vehicles (selecting flows).

• Vehicles must be conserved and are limited:

Ao,1 =
{

(F1, . . . ,FM ,F0)
∣∣∣ (F1, . . . ,FM ,F0) is balanced ∧ number of cars ≤ Nveh

}
.

• Vehicles flow F = {f1, . . . , fN} cost:

co,1(F) =
∑
f∈F

χrate(f )
∑

a∈χpath(f )

cd,1(a)
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Equilibrium

Theorem (Equilibrium)

If customers have a uniformly distributed value of time, then:

• The game has a (possibly non-unique) equilibrium.

• Consider the reaction curves {φ?i }Mi=1 and the pricing strategies pr?1 and pr?2 such that

1. pr?1 (o, d) = 0 if there is no demand from o to d ;
2. pr?1 (o, d) = p? where p? is the solution of a convex quadratic program;
3. pr?2 (o, d) = pr2(o, d);
4. φ?

i ∈ Ei (pr?1 , pr?2 ).

Then, ({φ?i }Mi=1, pr?1 , pr?2) is an equilibrium.

• All equilibria result in the same profit and customers’ reaction curves.
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Case Study – Berlin, Germany (∼ 9,000 requests, evening peak)
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Results – Base Case (fleet of ∼ 8,000 vehicles)
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Approx. equal modal split
among AMoD and public transport.

Most AMoD trips yield a high profit.
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Results – Base Case (fleet of ∼ 8,000 vehicles)
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At microscopic level,
the modal split appears

to be less balanced.
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Results – Sensitivity of the Equilibrium

AMoD Operator

1. Different vehicles

2. Larger fleet size

3. Heterogenous prices

Municipality

1. Lower public transport prices

2. More efficient public transport
infrastructure

3. AMoD service tax
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Results – Vehicles

Modal share
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Data from:

Cost-based analysis of autonomous mobility services [Bösch et al., 2017]
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Results – Public Transport Price
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Results – AMoD Service Tax
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Only significant
taxes decrease

the modal share.
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Conclusions

Summary

• General game-theoretical framework for transportation systems.

• Specific framework for an AMoD system competing with the public transport.

• In our case study, the AMoD system attracts 42% of the customers.

Managerial Insights

• Vehicles autonomy significantly affects the equilibrium.

• A free public transportation service counteracts the AMoD operator.

• Imposing high taxes on an AMoD system can impact the modal split.

Outlook

• Competition between multiple AMoD operators.

• Intermodal route selection.
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Case Study – Data

Road Network: OpenStreetMap.

Public Transit Network: GTFS (topology and travel time).

Origin-destination pairs: MatSim scenario Berlin (scaled with a factor 10).

Considered area: We have:

• 16 km× 16 km,
• 9052 travel requests (12.8 travel demands per second).
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Case Study – Parameters

Parameter Value

Public transit price 3.12 USD

Value of time minimum 10 USD/h

Value of time maximum 17 USD/h

Operation cost 0.34 USD/km

Walking velocity 1.4 m/s

Average wait S-Bahn/U-Bahn 2.5 min

Average wait tram 3.5 min

Average wait bus 5 min
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Case Study – Fleet Size

City Number of registered cars Number of taxi licenses Percentage

Berlin 1,344,000 8,373 0.6%

New York City 3,000,000 13,237 0.4%

San Francisco 494,000 1,800 0.4%
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Results – Fleet Size
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Results – Customers Heterogenity

Change

Profit AMoD +0.3%

AMoD modal share −0.4%

Revenue Municipality +0.1%
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Results – Public Transit Infrastructure
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Results – AMoD Service Tax
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Results – AMoD Service Tax
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