Introduction 000	Problem Setting OO	Methodology 0000000000	Results 0000000	Conclusions O
	Do Self-driving	Cars Swallow Publi	c Transport?	

A Game-theoretical Perspective on Transportation Systems

Nicolas Lanzetti^{1,2} Gioele Zardini^{1,2} Maximilian Schiffer^{1,3} Michael Ostrovsky⁴ Marco Pavone¹

¹Autonomous Systems Lab (ASL), Stanford University

²Automatic Control Laboratory (IfA) & Institute for Dynamic Systems and Control (IDSC), ETH Zürich

³TUM School of Management, Technische Universität München

⁴Stanford Graduate School of Business, Stanford University

INFORMS Annual Meeting

22nd October, 2019

Introduction				
000	00	0000000000	000000	0

Challenges

Data from: INRIX, International Parking Institute, Statistical Pocketbook 2018, Aptiv, World Economic Forum, BCG.

Introduction				
•00	00	0000000000	000000	0

Data from: INRIX, International Parking Institute, Statistical Pocketbook 2018, Aptiv, World Economic Forum, BCG.

Introduction		
● 00		

Data from: INRIX, International Parking Institute, Statistical Pocketbook 2018, Aptiv, World Economic Forum, BCG.

Introduction		
000		

Autonomous Mobility-on-Demand Systems

Introduction		
•oo		

ASĽ

Stanford

University

Autonomous Mobility-on-Demand Systems

• Ride-hailing fleet of (electric) self-driving cars.

Introduction		
000		

Data from: INRIX, International Parking Institute, Statistical Pocketbook 2018, Aptiv, World Economic Forum, BCG.

Stanford

University

Autonomous Mobility-on-Demand Systems

- Ride-hailing fleet of (electric) self-driving cars.
- Controlled by a central operator that

Introduction		
000		

Data from: INRIX, International Parking Institute, Statistical Pocketbook 2018, Aptiv, World Economic Forum, BCG.

Stanford

Autonomous Mobility-on-Demand Systems

- Ride-hailing fleet of (electric) self-driving cars.
- Controlled by a central operator that
 - assigns customer requests to vehicles;

Introduction		
000		

Data from: INRIX, International Parking Institute, Statistical Pocketbook 2018, Aptiv, World Economic Forum, BCG.

Autonomous Mobility-on-Demand Systems

- Ride-hailing fleet of (electric) self-driving cars.
- Controlled by a central operator that
 - assigns customer requests to vehicles;
 - decides on vehicle routes;

Introduction		
000		

Autonomous Mobility-on-Demand Systems

- Ride-hailing fleet of (electric) self-driving cars.
- Controlled by a central operator that
 - assigns customer requests to vehicles;
 - decides on vehicle routes;
 - rebalances the fleet.

Introduction		
000		

Autonomous Mobility-on-Demand Systems

- Ride-hailing fleet of (electric) self-driving cars.
- Controlled by a central operator that
 - assigns customer requests to vehicles;
 - decides on vehicle routes;
 - rebalances the fleet.

Introduction		
000		

Optimists

- fewer, better utilized vehicles;
- improved pooling, fair matching;
- less congestion, balanced routing.

10,603 views | Feb 8, 2016, 01:08pm

The Virtuous Cycle Between Driverless Cars, Electric Vehicles Car-Sharing Services

Introduction ○●○		

Optimists

- fewer, better utilized vehicles;
- improved pooling, fair matching;
- less congestion, balanced routing.

10,603 views | Feb 8, 2016, 01:08pm

The Virtuous Cycle Between Driverless Cars, Electric Vehicles Car-Sharing Services

Pessimists

- increased traffic;
- worsened modal split;
- cannibalization of public transport.
- July 20, 2018 Pave Over the Subway? Cities Face Tough Bets on Driverless Cars

Introduction ○●○	Methodology 0000000000	

Optimists

- fewer, better utilized vehicles;
- improved pooling, fair matching;
- less congestion, balanced routing.

10,603 views | Feb 8, 2016, 01:08pm

The Virtuous Cycle Between Driverless Cars, Electric Vehicles Car-Sharing Services

Pessimists

- increased traffic;
- worsened modal split;
- cannibalization of public transport.
- July 20, 2018 Pave Over the Subway? Cities Face Tough Bets on Driverless Cars

Can AMoD systems cannibalize public transport?

Introduction		
000		

Aims & Scope

Contribution

We present the first algorithmic framework that

• captures the dynamics between multiple mobility service providers and customers;

Introduction		
000		

Aims & Scope

Contribution

We present the first algorithmic framework that

- captures the dynamics between multiple mobility service providers and customers;
- considers constraints of a complex real-world transportation network; and

Introduction		
000		

Aims & Scope

Contribution

We present the first algorithmic framework that

- captures the dynamics between multiple mobility service providers and customers;
- considers constraints of a complex real-world transportation network; and
- allows for multimodal customer decisions.

	Problem Setting ●O		
Problem Se	tting – Who is pla	aying?	

Stakeholder

Role

Goal

Problem Setting – Who is playing?

 Stakeholder
 Role
 Goal

 Mobility Service Providers
 Offer mobility services
 Profit

Problem Setting – Who is playing?

StakeholderRoleGoalMobility Service ProvidersOffer mobility servicesProfit

Municipalities

Offer mobility services Social welfare

Problem Setting – A Two-level System

Problem Setting – A Two-level System

	Methodology	
	•000000000	

	Methodology	
	•000000000	

	Methodology	
	●000000000	

\mathcal{G}_0 : Free Subgraph

 \mathcal{G}_1 : Subgraph controlled by operator 1

 \mathcal{G}_2 : Subgraph controlled by operator 2

	Methodology	
	●000000000	

\mathcal{G}_0 : Free Subgraph

 $\mathcal{G}_1:$ Subgraph controlled by operator 1

 \mathcal{G}_2 : Subgraph controlled by operator 2

	Methodology	
	●000000000	

 \mathcal{G}_0 : Free Subgraph

 \mathcal{G}_1 : Subgraph controlled by operator 1

 \mathcal{G}_2 : Subgraph controlled by operator 2

	Methodology	
	●000000000	

- \mathcal{G}_0 : Free Subgraph
- $\mathcal{G}_1:$ Subgraph controlled by operator 1
- \mathcal{G}_2 : Subgraph controlled by operator 2

	Methodology	
	000000000	

Customers may move:

	Methodology	
	000000000	

Customers may move:

1. on the "free subgraph" \mathcal{G}_0 , and

	Methodology ○●○○○○○○○○	

Customers may move:

- 1. on the "free subgraph" \mathcal{G}_0 , and
- 2. on the **fully-connected** operators' subgraphs $\mathcal{G}_1, \ldots, \mathcal{G}_{N_o}$.

	Methodology ○●○○○○○○○○	

Customers may move:

- 1. on the "free subgraph" \mathcal{G}_0 , and
- 2. on the **fully-connected** operators' subgraphs $\mathcal{G}_1, \ldots, \mathcal{G}_{N_o}$.

	Methodology	
	000000000	

	Methodology	
	000000000	

	Methodology	
	000000000	

Modeling – Customers

	Methodology	
	000000000	

Modeling – Customers

Customers' Route Decision

Select a **reaction curve** ϕ_i :

 $\phi_i(\mathbf{p}) = \alpha \equiv \frac{\alpha \text{ customers per unit}}{\text{time on path p}}$

with related cost $J_i(\phi_i, pr_1, \ldots, pr_{N_o})$.

	Methodology	
	000000000	

Modeling – Customers

Customers' Route Decision

Select a **reaction curve** ϕ_i :

 $\phi_i(p) = \alpha \equiv \frac{\alpha \text{ customers per unit}}{\text{time on path p}}$

with related cost $J_i(\phi_i, pr_1, \ldots, pr_{N_o})$.

Remark (Requirements for ϕ_i)

- 1. Demand conservation: $\phi_i \in \Phi(d_i)$.
- 2. Feasibility: $\phi_i \in A_{c,i}$.

	Methodology	
	000000000	

	Methodology 000●0000000	
 ~		

1. Select a pricing strategy $pr \in Pr$:

$$\mathsf{pr}: \mathcal{V}_j \times \mathcal{V}_j \quad o \quad \mathbb{R}_{\geq 0} \cup \{+\infty\}$$

 $(o, d) \quad \mapsto \quad \mathsf{price.}$

	Methodology 000●0000000	
 ~		

1. Select a pricing strategy $pr \in Pr$:

$$\begin{array}{rccc} \mathsf{pr}:\mathcal{V}_j\times\mathcal{V}_j&\to&\mathbb{R}_{\geq 0}\cup\{+\infty\}\\ (o,d)&\mapsto&\mathsf{price}. \end{array}$$

	Methodology ○○○●○○○○○○	

1. Select a pricing strategy pr $\in \mathsf{Pr}$:

$$\begin{array}{rccc} \mathsf{pr}:\mathcal{V}_j\times\mathcal{V}_j&\to&\mathbb{R}_{\geq 0}\cup\{+\infty\}\\ (o,d)&\mapsto&\mathsf{price}. \end{array}$$

2. Serve each demand *i* with some flows $F_i = \{f_i^1, \dots, f_i^{L_i}\}.$

	Methodology ○○○●○○○○○○	
 •		

1. Select a pricing strategy pr $\in \mathsf{Pr}$:

$$\mathsf{pr}: \mathcal{V}_j imes \mathcal{V}_j o \mathbb{R}_{\geq 0} \cup \{+\infty\}$$

 $(o, d) \mapsto \mathsf{price.}$

- 2. Serve each demand *i* with some flows $F_i = \{f_i^1, \dots, f_i^{L_i}\}.$
- 3. Rebalance the system with some flows $F_0 = \{f_0^1, \dots, f_0^{L_0}\}.$

	Methodology ○○○●○○○○○○	

1. Select a pricing strategy pr $\in \mathsf{Pr}$:

- 2. Serve each demand *i* with some flows $F_i = \{f_i^1, \dots, f_i^{L_i}\}.$
- 3. Rebalance the system with some flows $F_0 = \{f_0^1, \dots, f_0^{L_0}\}.$

Remark (Requirements for the flows)

- 1. Demand satisfaction: $F_i \in \mathcal{H}_i(\phi_i)$.
- 2. Feasibility: $(F_1, \ldots, F_M, F_0) \in A_{o,i}$.

	Methodology	
	000000000	

Operators' Profit Maximization

$$\mathsf{Revenue}_{j} := \sum_{i=1}^{M} \sum_{\mathsf{p} \in \mathcal{S}(\mathsf{d}_{i})} \sum_{\substack{a \in \mathsf{p}, \\ a \in \bar{\mathcal{A}}_{j}}} \phi_{i}(\mathsf{p}) \cdot \frac{\mathsf{Price}}{\mathsf{pr}_{j}(\bar{s}_{j}(a), \bar{t}_{j}(a))}$$

	Methodology	
	000000000	

Operators' Profit Maximization

	Methodology	
	000000000	

Operators' Profit Maximization

	Methodology	
	000000000	

Operators' Profit Maximization

Hence

$$U_j(\operatorname{pr}_j, \{\phi_i\}_{i=1}^M) \coloneqq \operatorname{Revenue}_j - \operatorname{Cost}_j$$

	Methodology	
	000000000	

Customers Equilibrium

Definition (Customer Equilibrium)

The reaction curve ϕ_i^{\star} is an equilibrium for the demand d_i if

$$J_i(\phi_i^{\star},\mathsf{pr}_1,\ldots,\mathsf{pr}_{N_o}) \leq J_i(\phi_i,\mathsf{pr}_1,\ldots,\mathsf{pr}_{N_o}) \quad \forall \, \phi_i \in \Phi(\mathsf{d}_i) \cap \mathsf{A}_{c,i}$$

The set of equilibria is $\mathcal{E}_i(\text{pr}_1, \ldots, \text{pr}_{N_o})$.

	Methodology	
	0000000000	

Definition (Game equilibrium)

The reaction curves and the pricing strategies $(\{\phi_i^{\star}\}_{i=1}^{M}, \{pr_j^{\star}\}_{j=1}^{N_o}) \in \prod_{i=1}^{M} \Phi(d_i) \cap A_{c,i} \times \prod_{i=1}^{N_o} Pr_j$ are an equilibrium if

1. the customers are at equilibrium, and

2. no operator can increase her profit by unilaterally deviating from her pricing strategy.

	Methodology	
	0000000000	

Definition (Game equilibrium)

The reaction curves and the pricing strategies $(\{\phi_i^{\star}\}_{i=1}^{M}, \{pr_j^{\star}\}_{j=1}^{N_o}) \in \prod_{i=1}^{M} \Phi(d_i) \cap A_{c,i} \times \prod_{i=1}^{N_o} Pr_j$ are an equilibrium if

- 1. the customers are at equilibrium, and
- 2. no operator can increase her profit by unilaterally deviating from her pricing strategy.

	Methodology	
	0000000000	

Definition (Game equilibrium)

The reaction curves and the pricing strategies $(\{\phi_i^{\star}\}_{i=1}^{M}, \{pr_j^{\star}\}_{j=1}^{N_o}) \in \prod_{i=1}^{M} \Phi(d_i) \cap A_{c,i} \times \prod_{i=1}^{N_o} Pr_j$ are an equilibrium if

- 1. the customers are at equilibrium, and
- 2. no operator can increase her profit by unilaterally deviating from her pricing strategy.

	Methodology	
	0000000000	

Definition (Game equilibrium)

The reaction curves and the pricing strategies $(\{\phi_i^{\star}\}_{i=1}^{M}, \{pr_j^{\star}\}_{j=1}^{N_o}) \in \prod_{i=1}^{M} \Phi(d_i) \cap A_{c,i} \times \prod_{i=1}^{N_o} \Pr_j$ are an equilibrium if

- 1. the customers are at equilibrium, and
- 2. no operator can increase her profit by unilaterally deviating from her pricing strategy.

Formally,
$$(\{\phi_i^*\}_{i=1}^M, \{\operatorname{pr}_j^*\}_{j=1}^{N_o})$$
 is a equilibrium if
1. for all $i \in \{1, \dots, M\}$
 $\phi_i^* \in \mathcal{E}_i(\operatorname{pr}_1^*, \dots, \operatorname{pr}_{N_o}^*).$
2. for all $j \in \{1, \dots, N_o\}$
 $U_j(\operatorname{pr}_j^*, \{\mathcal{E}_i(\operatorname{pr}_1^*, \dots, \operatorname{pr}_{N_o}^*)\}_{i=1}^M) \ge U_j(\operatorname{pr}_j, \{\mathcal{E}_i(\operatorname{pr}_1^*, \dots, \operatorname{pr}_{N_o}^*)\}_{i=1}^M), \quad \forall \operatorname{pr}_j \in \operatorname{Pr}_j.$

	Methodology	
	0000000000	

Players:

	Methodology	
	0000000000	

Players:

• *M* demands

	Methodology 00000000000	

Players:

_

- *M* demands
- Two operators:

Name	Graph	Pricing Strategies Set

	Methodology 00000000000	

Players:

- *M* demands
- Two operators:

	Name	Graph	Pricing Strategies Set
Operator 1	AMoD System	\mathcal{G}_1	$Pr_1 = \bar{\mathbb{R}}_{\geq 0}^{\mathcal{V}_1 \times \mathcal{V}_1} \equiv All$ nonnegative functions

	Methodology	
	0000000000	

Players:

- *M* demands
- Two operators:

	Name	Graph	Pricing Strategies Set
Operator 1	AMoD System	\mathcal{G}_1	$Pr_1 = \bar{\mathbb{R}}_{\geq 0}^{\mathcal{V}_1 \times \mathcal{V}_1} \equiv All$ nonnegative functions
Operator 2	PTA/Municipality	\mathcal{G}_2	$Pr_2 = \{pr_2\}$

	Methodology	
	0000000000	

Players:

- *M* demands
- Two operators:

	Name	Graph	Pricing Strategies Set
Operator 1	AMoD System	\mathcal{G}_1	$Pr_1 = \bar{\mathbb{R}}_{\geq 0}^{\mathcal{V}_1 \times \mathcal{V}_1} \equiv All$ nonnegative functions
Operator 2	PTA/Municipality	\mathcal{G}_2	$Pr_2 = \{pr_2\}$

Assumptions

- Time-invariant setting.
- The time from o to d through path p is known a priori.
- Multimodal route selection.

	Methodology	
	00000000000	

• Multimodal choice:

	Methodology	
	00000000000	

• Multimodal choice:

p_{AMoD,i}: AMoD path

	Methodology 00000000000	

- Multimodal choice:
 - p_{AMoD,i}: AMoD path
 - p_{PT,i}: public transport and walking path

	Methodology 00000000000	

- Multimodal choice:
 - p_{AMoD,i}: AMoD path
 - p_{PT,i}: public transport and walking path

$$\Rightarrow \mathsf{A}_{\mathsf{c},i} = \{ \phi \, | \, \phi(\mathsf{p}) = \mathsf{0} \, \forall \, \mathsf{p} \neq \mathsf{p}_{\mathsf{AMoD},i}, \mathsf{p}_{\mathsf{PT},i} \}$$

	Methodology 00000000●00	

- Multimodal choice:
 - p_{AMoD,i}: AMoD path

 $\Rightarrow \mathsf{A}_{\mathsf{c},i} = \{ \phi \, | \, \phi(\mathsf{p}) = \mathsf{0} \, \forall \, \mathsf{p} \neq \mathsf{p}_{\mathsf{AMoD},i}, \mathsf{p}_{\mathsf{PT},i} \}$

p_{PT,i}: public transport and walking path

• Monetary costs of fares and time:

 $J_i(\phi, \mathsf{pr}_1, \mathsf{pr}_2) = (\mathsf{pr}_1(o, d) + V_{\mathsf{T}} \cdot t_{\mathsf{AMoD}, i}) \cdot \phi(\mathsf{p}_{\mathsf{AMoD}, i}) + (\mathsf{pr}_{\mathsf{PT}, i} + V_{\mathsf{T}} \cdot t_{\mathsf{PT}, i}) \cdot \phi(\mathsf{p}_{\mathsf{PT}, i}).$

	Methodology 000000000000	

- Multimodal choice:
 - p_{AMoD,i}: AMoD path

 $\Rightarrow \mathsf{A}_{\mathsf{c},i} = \{ \phi \, | \, \phi(\mathsf{p}) = \mathsf{0} \, \forall \, \mathsf{p} \neq \mathsf{p}_{\mathsf{AMoD},i}, \mathsf{p}_{\mathsf{PT},i} \}$

- p_{PT,i}: public transport and walking path
- Monetary costs of fares and time:

 $J_i(\phi, \mathsf{pr}_1, \mathsf{pr}_2) = (\mathsf{pr}_1(o, d) + V_{\mathsf{T}} \cdot t_{\mathsf{AMoD}, i}) \cdot \phi(\mathsf{p}_{\mathsf{AMoD}, i}) + (\mathsf{pr}_{\mathsf{PT}, i} + V_{\mathsf{T}} \cdot t_{\mathsf{PT}, i}) \cdot \phi(\mathsf{p}_{\mathsf{PT}, i}).$

Equilibrium

$$\phi_i = \underset{\phi \in \Phi(\mathsf{d}_i) \cap \mathsf{A}_{\mathsf{c},i}}{\arg\min} J_i(\phi, \mathsf{pr}_1, \mathsf{pr}_2)$$

	Methodology 000000000000	

- Multimodal choice:
 - p_{AMoD,i}: AMoD path

 $\Rightarrow \mathsf{A}_{\mathsf{c},i} = \{ \phi \, | \, \phi(\mathsf{p}) = \mathsf{0} \, \forall \, \mathsf{p} \neq \mathsf{p}_{\mathsf{AMoD},i}, \mathsf{p}_{\mathsf{PT},i} \}$

p_{PT,i}: public transport and walking path

• Monetary costs of fares and time:

 $J_i(\phi, \mathsf{pr}_1, \mathsf{pr}_2) = (\mathsf{pr}_1(o, d) + V_{\mathsf{T}} \cdot t_{\mathsf{AMoD}, i}) \cdot \phi(\mathsf{p}_{\mathsf{AMoD}, i}) + (\mathsf{pr}_{\mathsf{PT}, i} + V_{\mathsf{T}} \cdot t_{\mathsf{PT}, i}) \cdot \phi(\mathsf{p}_{\mathsf{PT}, i}).$

Equilibrium

$$\phi_i = \mathbb{E}_{V_{\mathsf{T}}} \left[\arg\min_{\phi \in \Phi(\mathsf{d}_i) \cap \mathsf{A}_{\mathsf{c},i}} J_i(\phi, \mathsf{pr}_1, \mathsf{pr}_2) \right]$$

		Methodology ○○○○○○○○●○	
AMoD Fra	mework – AMoD (Operator	

• She assigns requests to vehicles (selecting flows).

			Methodology 000000000●0		
AMoD Framework - AMoD Operator					

AMoD Framework – AMoD Operator

- She assigns requests to vehicles (selecting flows).
- Vehicles must be conserved and are limited:

$$\mathsf{A}_{\mathsf{o},1} = \Big\{ (\mathsf{F}_1,\ldots,\mathsf{F}_M,\mathsf{F}_0) \, \big| \, (\mathsf{F}_1,\ldots,\mathsf{F}_M,\mathsf{F}_0) \text{ is balanced} \land \mathsf{number of cars} \leq \mathit{N_{\mathsf{veh}}} \Big\}.$$

Introduction	Problem Setting	Methodology	Results	Conclusions
000	00	0000000000	0000000	O
		1		

AMoD Framework – AMoD Operator

- She assigns requests to vehicles (selecting flows).
- Vehicles must be conserved and are limited:

$$\mathsf{A}_{\mathsf{o},1} = \Big\{ (\mathsf{F}_1,\ldots,\mathsf{F}_M,\mathsf{F}_0) \, \big| \, (\mathsf{F}_1,\ldots,\mathsf{F}_M,\mathsf{F}_0) \text{ is balanced} \land \mathsf{number of cars} \leq \textit{N}_{\mathsf{veh}} \Big\}.$$

• Vehicles flow $\mathsf{F} = \{f_1, \ldots, f_N\}$ cost:

$$c_{\mathsf{o},1}(\mathsf{F}) = \sum_{\mathsf{f} \in \mathsf{F}} \chi_{\mathsf{rate}}(\mathsf{f}) \sum_{\mathsf{a} \in \chi_{\mathsf{path}}(\mathsf{f})} c_{\mathsf{d},1}(\mathsf{a})$$

	Methodology 0000000000	
Fauilibrium		

Theorem (Equilibrium)

If customers have a uniformly distributed value of time, then:

	Methodology 000000000●	
Equilibrium		

Theorem (Equilibrium)

If customers have a uniformly distributed value of time, then:

• The game has a (possibly non-unique) equilibrium.

	Methodology 000000000●	

Equilibrium

Theorem (Equilibrium)

If customers have a uniformly distributed value of time, then:

- The game has a (possibly non-unique) equilibrium.
- Consider the reaction curves $\{\phi_i^{\star}\}_{i=1}^M$ and the pricing strategies pr_1^{\star} and pr_2^{\star} such that
 - 1. $pr_1^*(o, d) = 0$ if there is no demand from o to d;
 - 2. $pr_1^*(o, d) = p^*$ where p^* is the solution of a convex quadratic program;

3.
$$\operatorname{pr}_{2}^{\star}(o,d) = \operatorname{pr}_{2}(o,d);$$

4.
$$\phi_i^\star \in \mathcal{E}_i(\mathsf{pr}_1^\star,\mathsf{pr}_2^\star).$$

Then, $(\{\phi_i^{\star}\}_{i=1}^M, \operatorname{pr}_1^{\star}, \operatorname{pr}_2^{\star})$ is an equilibrium.

	Methodology 000000000●	

Equilibrium

Theorem (Equilibrium)

If customers have a uniformly distributed value of time, then:

- The game has a (possibly non-unique) equilibrium.
- Consider the reaction curves $\{\phi_i^*\}_{i=1}^M$ and the pricing strategies pr_1^* and pr_2^* such that
 - 1. $pr_1^*(o, d) = 0$ if there is no demand from o to d;
 - 2. $pr_1^*(o, d) = p^*$ where p^* is the solution of a convex quadratic program;

3.
$$\operatorname{pr}_{2}^{\star}(o,d) = \operatorname{pr}_{2}(o,d);$$

4.
$$\phi_i^\star \in \mathcal{E}_i(\mathsf{pr}_1^\star,\mathsf{pr}_2^\star).$$

Then, $(\{\phi_i^{\star}\}_{i=1}^M, \operatorname{pr}_1^{\star}, \operatorname{pr}_2^{\star})$ is an equilibrium.

• All equilibria result in the same profit and customers' reaction curves.

Case Study – Berlin, Germany (\sim 9,000 requests, evening peak)

	Results	
	000000	

Results – Base Case (fleet of \sim 8,000 vehicles)

Approx. equal modal split among AMoD and public transport.

	Results	
	000000	

Results – Base Case (fleet of \sim 8,000 vehicles)

	Results	
	000000	

Results – Base Case (fleet of \sim 8,000 vehicles)

At microscopic level, the modal split appears to be less balanced.

	Results	
	000000	

Results - Sensitivity of the Equilibrium

AMoD Operator

- 1. Different vehicles
- 2. Larger fleet size
- 3. Heterogenous prices

Municipality

- 1. Lower public transport prices
- 2. More efficient public transport infrastructure
- 3. AMoD service tax

	Results	
	000000	

Results - Sensitivity of the Equilibrium

AMoD Operator

- 1. Different vehicles
- 2. Larger fleet size
- 3. Heterogenous prices

Municipality

- 1. Lower public transport prices
- 2. More efficient public transport infrastructure
- 3. AMoD service tax

	Results	
	000000	

Results - Sensitivity of the Equilibrium

AMoD Operator

- 1. Different vehicles
- 2. Larger fleet size
- 3. Heterogenous prices

Municipality

- 1. Lower public transport prices
- 2. More efficient public transport infrastructure
- 3. AMoD service tax

Results – Vehicles

Data from:

Cost-based analysis of autonomous mobility services [Bösch et al., 2017]

	Results	
	0000000	

Results - Public Transport Price

	Results ○00000●	

Results – AMoD Service Tax

		Conclusions
		•

Conclusions

Summary

- General game-theoretical framework for transportation systems.
- Specific framework for an AMoD system competing with the public transport.
- In our case study, the AMoD system attracts 42% of the customers.

		Conclusions
		•

Conclusions

Summary

- General game-theoretical framework for transportation systems.
- Specific framework for an AMoD system competing with the public transport.
- In our case study, the AMoD system attracts 42% of the customers.

Managerial Insights

- Vehicles autonomy significantly affects the equilibrium.
- A free public transportation service counteracts the AMoD operator.
- Imposing high taxes on an AMoD system can impact the modal split.

		Conclusions
		•

Conclusions

Summary

- General game-theoretical framework for transportation systems.
- Specific framework for an AMoD system competing with the public transport.
- In our case study, the AMoD system attracts 42% of the customers.

Managerial Insights

- Vehicles autonomy significantly affects the equilibrium.
- A free public transportation service counteracts the AMoD operator.
- Imposing high taxes on an AMoD system can impact the modal split.

Outlook

- Competition between multiple AMoD operators.
- Intermodal route selection.

References

- Time in traffic: INRIX.
- Congestion: International Parking Institute (IPI) 2012 Emerging Trends in Parking Study.
- Emissions: Statistical pocketbook 2018.
- Benefits autonomous vehicles: Aptiv, World Economic Forum, and BCG.

Case Study – Data

Road Network: OpenStreetMap.

Public Transit Network: GTFS (topology and travel time).

Origin-destination pairs: MatSim scenario Berlin (scaled with a factor 10).

Considered area: We have:

- $16 \text{ km} \times 16 \text{ km}$,
- 9052 travel requests (12.8 travel demands per second).

Case Study – Parameters

Parameter	Value
Public transit price	3.12 USD
Value of time minimum	10USD/h
Value of time maximum	17USD/h
Operation cost	0.34 USD/km
Walking velocity	$1.4\mathrm{m/s}$
Average wait S-Bahn/U-Bahn	2.5 min
Average wait tram	3.5 min
Average wait bus	5 min

Case Study – Fleet Size

City	Number of registered cars	Number of taxi licenses	Percentage
Berlin	1,344,000	8,373	0.6%
New York City	3,000,000	13,237	0.4%
San Francisco	494,000	1,800	0.4%

Results – Fleet Size

Results – Customers Heterogenity

	Change
Profit AMoD	+0.3%
AMoD modal share	-0.4%
Revenue Municipality	+0.1%

Backup Slides

Results – Public Transit Infrastructure

Backup Slides

Results – AMoD Service Tax

Backup Slides

Results – AMoD Service Tax

