

Optimization in the Wasserstein Space

TH zürich

Nicolas Lanzetti, Saverio Bolognani, Florian Dörfler Automatic Control Laboratory, ETH Zürich

Introduction

We are interested in rigorous methods for **optimization** in the space of **probability measures** for...

decision making in **uncertain** environments via **distributionally robust optimization**:

Methods

Wasserstein distance - How to compute distances?

$$W_{2}(\mu,\nu) := \left(\min_{\gamma \in \Gamma(\mu,\nu)} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} ||x-y||^{2} d\gamma(x,y)\right)^{1}$$

/2

Wasserstein geodesics – How to "move around"?

$$\mu_t = \left((1-t) \cdot \mathsf{Id} + t \cdot T^{\mu_1}_{\mu_0} \right)_{\#} \mu_0 \qquad t \in [0, 1]$$

Preliminary Result: Multipliers

Consider the optimization problem of finding a probability measure μ^* minimizing a functional J subject to an equality constraint:

SNF

SWISS NATIONAL SCIENCE FOUNDATION

$$\min_{\mu \in \mathcal{P}_2(\mathbb{R}^d)} J(\mu)$$

Assume that J and G are differentiable at μ^* . Then, there exists $\lambda \in \mathbb{R}$ so that

$$abla_{\mu}J(\mu^{*}) = \lambda \cdot \nabla_{\mu}G(\mu^{*}) \quad \mu^{*} - a.e.$$

$$\Leftrightarrow$$
Wasserstein gradients are "aligned"

Application DRO with nonlinear risk measure

Let $\rho > 0$ and $w \in \mathbb{R}^d$. Consider the optimization problem

$$\begin{split} \max_{\mu \in \mathcal{P}_2(\mathbb{R}^d)} & \mathbb{E}^{\mu} \left[\boldsymbol{w}^{\top} \boldsymbol{x} \right] + \rho \cdot \mathsf{Var}^{\mu} \left[\boldsymbol{w}^{\top} \boldsymbol{x} \right] \\ \text{s.t. } & \mathcal{W}_2(\mu, \hat{\mu}) \leq \varepsilon. \end{split}$$

Assume $\hat{\mu}$ and μ^* are absolutely continuous with respect to the Lebesgue measure. Then, the optimal μ^* results from the solution of a real fourth-order polynomial.

Conclusions

Methodology

We can rigorously reason with probability measures, and study optimality conditions.

Applications

We get new methods to study and efficiently solve DRO problems. We can deploy similar tools to *control* of probability measures; e.g., how to steer a stochastic system from an initial distribution to a prescribed terminal distribution in minimal cost?

Wasserstein gradients - How to perturb?

 $abla_{\mu}J(x) \text{ Wasserstein gradient of } J: \mathcal{P}(\mathbb{R}^d) \to \mathbb{R}$ \Leftrightarrow $J(\nu) - J(\mu) = \int_{\mathbb{R}^d} \nabla_{\mu}J(x)^{\top}(T^{\nu}_{\mu}(x) - x) \, \mathrm{d}\mu(x)$ + higher order terms

References

Lots of references! The "bible" is: Ambrosio, L., Gigli, N., and Savaré, G. (2008). *Gradient flows: in metric spaces and in the space of probability measures.*

Please reach out if interested!

lnicolas@ethz.ch
http://people.ee.ethz.ch/lnicolas

