Fire Sensor Network Demonstrator

Master’s Thesis

Roman Lim

Tutors: Andreas Meier, Dr. Jan Beutel
Professor: Dr. Lothar Thiele

Computer Engineering and Networks Lab, ETH Zurich
Overview

- **Context**
 - Motivation
 - Related Work

- **Tools/Hardware**
 - TinyOS2.0
 - Tmote Sky
 - DSN and Adapter for Tmote Sky (Bootloader)

- **Cluster heartbeat**
 - Concept
 - Implementation
 - Results
Motivation

- Implementation of a robust reporting system on a wireless sensor network
 - Requirements
 - Detection of node failures < 100 seconds
 - Robust against temporary loss of links
 - Low power consumption

- Developing using the JAWS Deployment Support Network
 - Testing
 - Optimisation
 - Profiling
Related Work, Positioning of this Thesis

- MAC Protocols for WSN (Lowpower)
 - Strategies for saving power
 - Avoid collisions
 - Avoid overhearing
 - Minimise idle listening
 - Minimise protocol overhead
 - Contention based (random access)
 - B-MAC, S-MAC, WiseMAC ..
 - Schedule based
 - Sink based, Clusters [Arisha]
 - Rotating duties, Clusters [PACT, BMA (LEACH)]
 - Static scheduling, regular topologies [SS-TDMA]
 - Partitioned scheduling [EMACs, LMAC]
Related Work, Positioning of this Thesis

- Failure Detection in WSN

 - **General**
 - [Szu-Chi Wang, Sy-Yen Kuo, DSN‘03]
 - Heartbeat, Gossipping (Random, Coordinated)
 - Local broadcast
 - Simulation
 - No linklayer lowpower considerations

 - **Cluster based**
 - [Ann T. Tai, Kam S. Tso, William H. Sanders]
 - Cluster = 1-hop neighbourhood
 - Heartbeat
 - Relies on inherent redundancy of radio transmissions
 - No implementation
 - No linklayer lowpower considerations

(a) Intra-cluster

(b) Inter-cluster
Tools/Hardware

-Hardware: Tmote Sky
 -TI MSP430 microcontroller
 -250kbps 2.4GHz wireless transceiver (CC2420)
 -Ultra low power
 -Fast wakeup from sleep (<6μs)
 -Commercial

-Software: TinyOS 2.0
 -Framework for wireless sensor network applications
 -Modular composition
 -NesC-Language
 -Final release pending
 -By default no lowpower MAC protocol implementation
DSN Connection for Tmote Sky

Interfaces of the Tmote

USB Interface
- Convenient way for programming
- Communication for logs is simple
 - Needs a USB master circuit

JTAG Interface
- Standard programming interface
- Needs additional implementation of the JTAG protocol for the BTnode
- No normal communication possible (logs)

Pins of UART0
- Easy communication
 - Not standard port for bootstrap loader
 - Requires a new bootstrap loader
DSN Connection for Tmote Sky

Hardware

Software (Based on TinyOS)

- Bootstrap Loader
 TI MSP Bootstraploader protocol over UART0

- DSN Component
 Communication with DSN
 Logmessage buffering
 Generates target command events

User Program
Cluster Heartbeat: Operation Concept

- **Approach**
 - Coordinated heartbeat
 - Crosslayer optimisation (TDMA, special slot assignment)
 - Redundancy through mesh topology
 - Local broadcasts
 - Local aggregation of alive-information (Bitmask)
 - Acknowledged messaging on application layer
 - Bounded network size (Cluster)

1. Reporting Wave to sink
2. Acknowledge Wave from sink
Information Flow in the Cluster, Reporting Wave

- Reporting wave towards clusterhead
 - Nodes
 - Wake up
 - Aggregate bitmask
 - Broadcast bitmask in their slot
 - Only one packet sent by each node
 - Promiscuous listening increases robustness

Flow of alive-information
- Clusterhead
- 1-hop node
- 2-hop node
Information Flow in the Cluster, Acknowledge Wave

- Initiated from the clusterhead
 - Send order is reversed
 - Node action when receiving packet
 - Synchronize to clusterhead
 - Update schedule
 - Rebroadcast ACK-wave in their slot
 - Only one packet sent by each node
 - Promiscuous listening increases robustness

Flow of alive-information:
- Clusterhead
- 1-hop node
- 2-hop node
Retransmissions, Short Wave Rounds

Faultless case

Shortwaves in error cases
Nodes missing

Schedule missing
TDMA Scheme

- Report wave
- Acknowledge wave
- Sleep

Slot

- TLOAD
- TRXTX
- TTRANSMIT
- TXRX

Guardtime \(\geq T_{LOAD} + T_{RXTX} \)

Processing time \(\geq T_{TXRX} \)
Guardtime for Reporting Wave

Slot synchronisation

Interval for transmission start

Maximal clock drift over one period

Slot ..

1 2 3 4 5

Node 1
Node 2
Node 3
Node 4
Node 5

Guardtime avoids overlapping slots

Slot synchronisation
Clock drift (20ppm)

Interval for transmission start

Maximal clock drift over one period

Guardtime avoids overlapping slots

Slot ..

1 2 3 4 5

Node 1
Node 2
Node 3
Node 4
Node 5

Guardtime avoids overlapping slots
Slot Calculations and Measurements

<table>
<thead>
<tr>
<th>Description</th>
<th>Calculated based on datasheet</th>
<th>measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_{LOAD})</td>
<td>-</td>
<td>1.1 ms</td>
</tr>
<tr>
<td>(T_{RXTX} + T_{SFD})</td>
<td>352(\mu)s</td>
<td>360(\mu)s</td>
</tr>
<tr>
<td>(T_{TXRX})</td>
<td>192(\mu)s</td>
<td>-</td>
</tr>
<tr>
<td>(T_{TX}) (29 Bytes)</td>
<td>928(\mu)s</td>
<td>1020(\mu)s</td>
</tr>
<tr>
<td>(T_{TX}) (n Bytes)</td>
<td>n * 32(\mu)s</td>
<td>-</td>
</tr>
<tr>
<td>(T_{GUARD_REPORT}) (100s period)</td>
<td>4 ms</td>
<td>-</td>
</tr>
<tr>
<td>(T_{PROCCESS_GUARD,MAX})</td>
<td>-</td>
<td>224(\mu)s</td>
</tr>
<tr>
<td>(T_{PROCCESS_ACK,MAX})</td>
<td>-</td>
<td>264(\mu)s</td>
</tr>
</tbody>
</table>
Slot Calculations and Measurements (cont.)

\[T_{\text{GUARD REPORT}} = 4\text{ms} \geq T_{\text{LOAD}} + T_{\text{RXTX}} \]
\[T_{\text{PROCESS REPORT}} = 224\mu\text{s} \geq T_{\text{TXRX}} \]
\[T_{\text{SLOT REPORT,MIN}} = T_{\text{GUARD REPORT}} + T_{\text{TRANSMIT}} + T_{\text{PROCESS REPORT}} = 5.120\text{ms} \]

\[T_{\text{GUARD ACK}} = T_{\text{LOAD}} + T_{\text{RXTX}} \]
\[T_{\text{PROCESS ACK}} = 264\mu\text{s} \geq T_{\text{TXRX}} \]
\[T_{\text{SLOT ACK,MIN}} = T_{\text{GUARD ACK}} + T_{\text{TRANSMIT}} + T_{\text{PROCESS ACK}} = 2.940\text{ms} \]

Guardtime is negligible

Minimal active Time:

\[16 \times (T_{\text{SLOT REPORT,MIN}} + T_{\text{SLOT ACK,MIN}}) = 128.96\text{ms} \]

At a period of 100 seconds

Dutycycle of 1.3 %
Robustness Analysis for Communication Faults

- Total Communication fault
- Link failures
- Channel fault
Robustness Analysis for Communication Faults

- Total Communication fault
 - Duration < Wave round
 - Separation > T_{PERIOD}
 - 3 cases

- Part of reporting wave fails
 - Sink recognises missing nodes and initiates a retry wave

- Part of reporting wave and start of ACK wave fails
 - Sink recognises missing nodes
 - First retry wave does not succeed
 - A second one is started

- Part of ACK wave fails
 - In next report wave Sink recognises missing nodes
 - For this reason a second wave round is started then
Contribution (Summary)

- DSN-Adapter for Tmote Sky
- Implementation of a reliable heartbeat-style failure detector
- Testing Implementation, Profiling with DSN
End of the Presentation

Questions?