Crash course – Verification of Finite Automata
CTL model-checking

Exercise session - 03.12.2015
Romain Jacob
Reminders

- **Objective:**

 Verify properties over DES models

 Formal method \Rightarrow Absolute guarantees!

- **Problem:**

 Combinatorial explosion

 \Rightarrow Huge amount of states, computationally intractable

- **Solution:**

 Work with sets of states

 \Rightarrow Symbolic Model-Checking

 \Rightarrow Tool: (O)BDDs
Reminders

Sets
- \(A \)
- \(s \in A \)

\[\sigma(s) = x_1 \overline{x}_0 = (1,0) \text{ and } \psi_A = x_1 + x_0 \Rightarrow s \models \psi_A ? \]

Boolean functions/Characteristic functions
- \(\psi_E = 1 \)
- \(\psi_A = f \)
- \(\psi_B = g \)
- \(\psi_{A \cap B} = f \cdot g \)

Example:
\[\sigma(s) = x_1 \overline{x}_0 = (1,0) \text{ and } \psi_A = x_1 + x_0 \Rightarrow s \models \psi_A ? \]

BBD representation of Boolean functions

Equivalence between sets and Boolean equations

\[f : x_1 + \overline{x}_1 x_2 + \overline{x}_2 \overline{x}_3 \]

Fall \(x_1 = 0 \)
\[f |_{x_1=0} : x_2 + \overline{x}_2 \overline{x}_3 \]
- Fall \(x_2 = 0 \)
 \[f |_{x_1=0, x_2=0} : \overline{x}_3 \]
- Fall \(x_2 = 1 \)
 \[f |_{x_1=0, x_2=1} : 1 \]

Fall \(x_1 = 1 \)
\[f |_{x_1=1} : 1 \]

\[f : x_1 \]

\[x_1 \]

\[x_2 \]

\[x_3 \]

\[0 \]

\[1 \]
Today’s menu

1. Reachability of states

2. Comparison of automata

3. Formulation and verification of CTL properties

Can be formulated as reachability problems
Reachability of states

- **Idea:** Fairly simple
 1. Start from the initial set of states,
 2. Compute all states you can transition to in one hop (one transition),
 \[\rightarrow \text{The successor states,} \]
 3. Join the two sets,
 4. Iterate from 2. until you reach a fix point.

Done!

- *Is this guarantee to terminate?*
Reachability of states

- **Idea:** Fairly simple
 1. Start from the initial set of states,
 2. Compute all states you can transition to in one hop (one transition),
 → The successor states,
 3. Join the two sets,
 4. Iterate from 2. until you reach a fix point.
 Done!

- *Is this guarantee to terminate?*
 → Only if you have a finite model!!

- *How do we formalize this?*
Formalization of reachable states

\[\delta : X \subseteq E \rightarrow X' \subseteq E \]

\[q \mapsto q' \]

\[q \in X \iff \exists q' \in X', \delta(q, q') \text{ is defined} \]

\[\psi_\delta(q, q') = 1 \]

\[\overline{q} \notin X \iff \forall q' \in X', \delta(q, q') \text{ is defined} \]

\[\forall q' \in X, \psi_\delta(q, q') = 0 \]
Formalization of reachable states

\[\delta : X \subseteq E \rightarrow X' \subseteq E \]

\[q \mapsto q' \]

What is \(Q' \)?

\[q' \in Q' \Rightarrow q' \in X' \Rightarrow \exists q \in X, \psi_\delta(q, q') = 1 \]

Not sufficient!

We also need that \(q \) belongs to \(Q \):

\[q' \in Q \Leftrightarrow \psi_Q(q) = 1 \]
Formalization of reachable states

\[\delta : X \subseteq E \rightarrow X' \subseteq E\]

\[q \mapsto q'\]

What is \(Q'\)?

\[q' \in Q' \iff \exists q \in X, \psi_Q(q) = 1 \text{ and } \psi_\delta(q, q') = 1\]

\[\iff \exists q \in X, \psi_Q(q) \cdot \psi_\delta(q, q') = 1\]

\[Q' = \text{Suc}(Q, \delta) = \{q' \mid \exists q \in X, \psi_Q(q) \cdot \psi_\delta(q, q') = 1\}\]
Formalization of reachable states

$\delta : X \subseteq E \rightarrow X' \subseteq E$

$q \mapsto q'$

$Q' = Suc(Q, \delta) = \{q' \mid \exists q \in X, \psi_Q(q) \cdot \psi_\delta(q, q') = 1\}$

$\iff \psi_{Q'} = \psi_Q \cdot \psi_\delta$

Q_R: set of reachable states

$Q_R = Q_0 \cup \bigcup_{i \geq 0} Suc(Q_i, \delta)$

$\iff \psi_{Q_R} = \psi_{Q_0} \sum_{i \geq 0} \psi_{Q_i} \cdot \psi_\delta$

Again, finite union if finite model
Comparison of automata

Two automata are equivalent if the following condition is true:

\[
\psi_Y(y_1, y_2) = (\exists q_1, q_2 : \psi_Q(q_1, q_2) \cdot \psi_{\omega_1}(q_1, y_1) \cdot \psi_{\omega_2}(q_2, y_2))
\]

\[
\psi_\delta(q_1, q_2, q_1', q_2') = (\exists u : \psi_{\omega_1}(u, q_1, q_1') \cdot \psi_{\omega_2}(u, q_2, q_2'))
\]

\[
\psi_Q(q_1, q_2)
\]

\[
\psi_Y(y_1, y_2) = (\exists q_1, q_2 : \psi_Q(q_1, q_2) \cdot \psi_{\omega_1}(q_1, y_1) \cdot \psi_{\omega_2}(q_2, y_2))
\]

The automata are not equivalent if the following term is true:

\[
\exists y_1, y_2 : \psi_Y(y_1, y_2) \cdot (y_1 \neq y_2)
\]

- Get rid of inputs
- Compute \(Q_R \)
- Deduce reachable outputs
- Test for equivalence

Don’t compare states!
Formulation of CTL properties

Based on atomic propositions (ϕ) and quantifiers

- $A\phi \rightarrow \text{"All } \phi\text{"}$, ϕ holds on all paths
- $E\phi \rightarrow \text{"Exists } \phi\text{"}$, ϕ holds on at least one path
- $X\phi \rightarrow \text{"NeXt } \phi\text{"}$, ϕ holds on the next state
- $F\phi \rightarrow \text{"Finally } \phi\text{"}$, ϕ holds at some state along the path
- $G\phi \rightarrow \text{"Globally } \phi\text{"}$, ϕ holds on all states along the path
- $\phi_1 U \phi_2 \rightarrow \text{"\phi_1 Until } \phi_2\text{"}$, ϕ_1 holds until ϕ_2 holds

Proper CTL formula: $\{A,E\} \{X,F,G,U\} \phi$

Quantifiers go by pair, you need one of each.
Formulation of CTL properties

$\text{EF } \phi : \text{“There exists a path along which at some state } \phi \text{ holds.”}$

$q \models \phi \quad q \models \text{EF } \phi$
Formulation of CTL properties

$AF \phi : \text{“On all paths, at some state } \phi \text{ holds .”}$

$q \models \phi \quad q \models AF \phi$
Formulation of CTL properties

AG ϕ : “On all paths, for all states ϕ holds.”
Formulation of CTL properties

$EG \phi$: “There exists a path along which for all states ϕ holds.”
Formulation of CTL properties

$E \phi U \Psi$: “There exists a path along which ϕ holds until Ψ holds.”
Formulation of CTL properties

$A\phi U \Psi$: “On all paths, ϕ holds until Ψ holds.”
Formulation of CTL properties

$AX \phi$: “On all paths, the next state satisfies ϕ.”

$EX \phi$: “There exists a path along which the next state satisfies ϕ.”
Formulation of CTL properties

$\text{AG EF } \phi$: “On all paths, for all states, there exists a path along which at some state ϕ holds.”

$q \models AG \ EF \phi$

$q \models \phi$

r
Formulation of CTL properties

\[\text{AG } \phi \equiv \neg \text{EF } \neg \phi \]
\[\text{AF } \phi \equiv \neg \text{EG } \neg \phi \]
\[\text{EF } \phi \equiv \neg \text{AG } \neg \phi \]
\[\text{EG } \phi \equiv \neg \text{AF } \neg \phi \]

“On all paths, for all states \(\phi \) holds.”
\[\equiv \]

“There exists no path along which at some state \(\phi \) doesn’t hold.”

\[\ldots \]

Remark: There exists other temporal logics

→ LTL (Linear Tree Logic)
→ CTL* = \{CTL,LTL\}
→ ...
Verification of CTL properties

- Convert the property into a reachability problem
 - Start from states in which the property holds;
 - Compute all predecessor states (same as for successors, but with reverse the transition function) for which the property still holds true;
 - If initial states set is a subset, the property is satisfied by the model.

- Computation specifics are described in the lecture slides.
So... what is Model-Checking exactly?

Algorithm

- **Input**
 - A DES model, \(M \)
 - Finite automata,
 - Petri nets,
 - Kripke machine, ...
 - A logic property, \(\phi \)
 - CTL,
 - LTL, ...

- **Output**
 - \(M \models \phi \) ?
 - A diagnosis trace showing that the property does not hold!!
Crash course – Verification of Finite Automata
CTL model-checking

Your turn to work!

Slides online on my webpage:
http://people.ee.ethz.ch/~jacobr/
Comparison of Finite Automata

a) Express the characteristic function of the transition relation for both automaton, $\psi_r(x, x', u)$.

$$\psi_A(x_A, x'_A, u) = x_A x'_A u + x_A x'_A \overline{u} + x_A x'_A u + x_A x'_A \overline{u}$$

$$\psi_B(x_B, x'_B, u) = x_B x'_B u + x_B x'_B \overline{u} + x_B x'_B u + x_B x'_B \overline{u}$$
Comparison of Finite Automata

b) Express the joint transition function, ψ_f.

$$\psi_f(x_A, x_A', x_B, x_B') = (\exists u : \psi_A(x_A, x_A', u) \cdot \psi_B(x_B, x_B', u))$$

$$\psi_f(x_A, x_A', x_B, x_B')$$

$$= (\overline{x_A}x_A' + x_Ax_A') \cdot (\overline{x_B}x_B' + x_Bx_B') +$$

$$= (\overline{x_A}x_A' + x_Ax_A') \cdot (\overline{x_B}x_B' + x_Bx_B')$$

$$= \overline{x_A}x'_A \overline{x_B}x'_B + \overline{x_A}x'_A x_Bx'_B + x_Ax'_A \overline{x_B}x'_B + x_Ax'_A x_Bx'_B +$$

$$= \frac{\overline{x_A}x'_A x_Bx'_B}{2} + \frac{x_Ax'_A x_Bx'_B}{2} + \frac{x_Ax'_A \overline{x_B}x'_B}{2} + \frac{x_Ax'_A x_B \overline{x_B}x'_B}{2} + \frac{x_Ax'_A \overline{x_B} \overline{x_B}x'_B}{2} + \frac{x_Ax'_A x_B \overline{x_B} \overline{x_B}x'_B}{2} + \frac{x_Ax'_A \overline{x_B} \overline{x_B} \overline{x_B}x'_B}{2} + \frac{x_Ax'_A x_B \overline{x_B} \overline{x_B} \overline{x_B}x'_B}{2} +$$
Comparison of Finite Automata

c) Express the characteristic function of the reachable states, $\psi_X(x_A, x_B)$.

$$\psi_X(x_A, x_B) = \overline{x_A}x_B$$

$$\psi_{X_1} = \overline{x_A}x_B + \overline{x_A}x_B + x_Ax_B$$

$$\psi_{X_2} = \overline{x_A}x_B + \overline{x_A}x_B + x_Ax_B$$

$$= \psi_{X_1}$$

\rightarrow the fix-point is reached!

$$\psi_X = \overline{x_A}x_B + \overline{x_A}x_B + x_Ax_B$$
d) Express the characteristic function of the reachable output, $\psi_Y(x_A, x_B)$.

$$\psi_{g_A} = \overline{x_A y_A} + x_A y_A$$
$$\psi_{g_B} = \overline{x_B y_B} + x_B y_B$$

and

$$\psi_X = \overline{x_A x_B} + x_A \overline{x_B} + x_A x_B$$

$$\psi_Y(y_A, y_B) = (\exists (x_A, x_B) : \psi_X \cdot \psi_{g_A} \cdot \psi_{g_B})$$
$$= y_A y_B + \overline{y_A y_B} + \overline{y_A y_B}$$
Comparison of Finite Automata

e) Are the automata equivalent? Justify with a simple calculus.

\[\psi_Y (y_A, y_B) = y_A y_B + \overline{y_A} \overline{y_B} + \overline{y_A} y_B \]

and \((y_A \neq y_B) = \overline{y_A} y_B + y_A \overline{y_B} \)

implies \(\psi_Y \cdot (y_A \neq y_B) \neq 0 \)

→ Automata are not equivalent.
Temporal Logic

i. $\text{EF } a$
 \[Q = \{0, 1, 2, 3\} \]

ii. $\text{EX AX } a$

iii. $\text{EF (} a \text{ AND EX NOT}(a) \text{)}$
Temporal Logic

i. EF a
 \[Q = \{0, 1, 2, 3\} \]

ii. EX AX a
 \[Q = \{1, 2\} \]

iii. EF (a AND EX NOT(a))
Temporal Logic

i. EF a
 \[Q = \{0, 1, 2, 3\} \]

ii. EX AX a
 \[Q = \{1, 2\} \]

iii. EF (a AND EX NOT(a))
 \[Q = \{0, 1, 2, 3\} \]
Temporal Logic

- Trick: \(\text{AF } Z \ \text{NOT}(\text{EG NOT}(Z)) \)

Require: \(\psi_Z, \psi_f \)

```plaintext
current = NOT(\( \psi_Z \))
next = current AND (EXISTS(\( \psi_f \) AND current))
while next != current do
    current = next;
    next = current AND (EXISTS(\( \psi_f \) AND current));
end while
return \( \psi_{AFZ} = \text{NOT}(current) \);
```

\(\triangleright \) Equivalence in term of sets:

\(\triangleright X_0 \)

\(\triangleright X_1 = X_0 \cap \text{Pre}(X_0, f) \)

\(\triangleright X_i
eq X_{i-1} \)

\(\triangleright X_i = X_{i-1} \cap \text{Pre}(X_{i-1}, f) \)

\(\triangleright X_f = \text{EG NOT}(Z) \)

\(\triangleright X_f \models \text{AF } Z = \text{NOT}(\text{EG NOT}(Z)) \)
Crash course – Verification of Finite Automata
CTL model-checking

See you next week!

Slides online on my webpage:
http://people.ee.ethz.ch/~jacobr/