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To illustrate the concept of internal stability we will look at an example where
there are several pole-zero cancellations between the controller and the plant. One
of them, on the jω-axis, will be an exact cancellation; and the other, in the
left-half plane, will be an inexact cancellation.

The control design illustrated here is a very bad idea and it leads to an unstable
closed-loop system. The fundamental observation is that jω-axis and right-half
plane pole-zero cancellations will lead to an unstable transfer function in the set of
transfer functions to be checked when testing internal stability.

1 Plant and controller

The plant is,

G(s) =
1

s(1− s/a)
, where a = −2.

This plant has an integrator and a pole at s = a.

The controller is given by,

K(s) =
200s(1− s/aK)

(1 + s/0.1)(1 + s/50)2
.

The controller as zeros at s = 0 and s = aK . The aK zero can be considered as an
attempt to cancel the plant pole at s = a. For this example we take,

aK = −2.1,

and so the cancellation is not exact.

∗modified: 26 April 2017: signal label for controller output changed from u to z to match other
figures in the lectures.
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2 Loopshape analysis

The loopshape, L(s) = G(s)K(s), is

L(s) =
(1− s/aK)

(1− s/a)

200

(1 + s/0.1)(1 + s/50)2
.

The inexact pole-zero cancellation at s = a changes the maximum frequency
domain response of the loopshape by approximately 5%. This is not a significant
problem as the pole in this term (at s = a) is stable.

The Bode plot of the loopshape, suggests that the closed-loop system will be stable
and have reasonable gain and phase margins. Note that the exactly cancelled pole
at s = 0 will not enter into the loopshape analysis.
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This gives sensitivity and complementary sensitivity functions, S(s) and T (s)
respectively, that are reasonable. Note that both would be better if we didn’t
cancel the pole at s = 0.
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If we calculate a minimal S(s), or T (s), and examine the closed-loop poles we find
that they are at,

pi = {−75.2,−12.4± j21.9,−2.11} .
The transmission zeros of the minimal S(s) are

zi =
{
−2,−10,−50± j1.4× 10−6

}
.

Note that there are only four poles and all are stable. The pole that has been
cancelled at s = 0 does not appear.

3 Internal stability analysis

A more complete internal stability analysis looks at the four transfer functions in
the interconnection shown below.

G(s)

K(s) +

+
y

−
rz

v

The input-output relationships shown are[
y
z

]
=

[
N11(s) N12(s)
N21(s) N22(s)

] [
v
r

]
=

[
So(s)G(s) To(s)
−Ti(s) Si(s)K(s)

] [
v
r

]
.

The Bode magnitude plots of each of these four transfer functions is shown. It is
clear that the integrator appears on the So(s)G(s) transfer function.
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We can calculate the two-input, two-output state-space realization for N(s), and
calculate it’s poles at,

pi = {−75.2,−12.4± j21.9,−2.11, 0} .

If we look at the N11(s) transfer function and calculate its zeros they are

zi = {−50,−50,−10} .

These zeros do not cancel any of the poles so all of the poles are evident in the
N11(s) transfer function illustrated on the Bode plot1.

To illustrate the instability we can simulate N(s) with the input,[
v(t)
r(t)

]
=

[
step(t− 0.5)

0

]
, where step(t) is the unit step function.

All four signals are illustrated below. It is clear that y(t) is unbounded.

1If we look at the transmission zeros for the entire N(s) transfer function we see that it has
zeros, zi = {−2.1, 0}. The fact that N(s) loses rank at s = 0 does not necessarily mean that all
of the input-output transfer functions in N(s) are zero and so the pole at s = 0 can appear in a
component transfer function—in this case N11(s).
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4 State-space viewpoint

Suppose we have minimal state-space realizations for the plant and controller in
our interconnection. The equations corresponding to this are,

dxG

dt
= AGxG + BG(v + u)

y = CGxG + DG(v + u)

and

dxK

dt
= AKxK + BK(r − y)

u = CKxK + DK(r − y).

For simplicity in the following define,

E = (I −DKDG)−1.

Note that if this inverse does not exist then the interconnection is not well-posed.
In other words the equations actually have an infinite number of solutions. If
either DK = 0 or DG = 0 then the inverse exists. As this is commonly the case
we’ll simply assume here that this inverse exists.

Somewhat involved algebra allows us to express the complete interconnection as a
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single state-space system.

d

dt

[
xG

xK

]
=

[
AG + BGEDKCG BGECK

−BKCG −BKDGEDKCG AK −BKDGECK

] [
xG

xK

]
+

[
BGE −BGEDK

−BKDGE BK + BKDGEDK

] [
v
r

]
[
y
u

]
=

[
CG + DGEDKCG DGECK

EDKCG ECK

] [
xG

xK

]
+

[
DGE −DGEDK

EDKDG −EDK

] [
v
r

]

By selecting specific columns of B and rows of C we can get a state-space
realization for each of the four individual transfer functions in N .

If we look at the controllability and observability conditions for each of these cases
we find the following:

N(s) Transfer # observable # controllable
function states states

N11(s) So(s)G(s) 5 5

N12(s) To(s) 5 4

N21(s) −Ti(s) 4 5

N12(s) Si(s)K(s) 4 4

Only the N11(s) has 5 observable and controllable states. In each of the other cases
the s = 0 state is either unobservable or uncontrollable or both. For the later three
cases a minimal realization would have only the 4 states strictly inside the left-half
plane.
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