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IfA Fachpraktikum - Experiment 2.6 :

Control of a Helicopter Model

Solutions

Helicopters have six degrees of freedom (DoF), which makes them very hard to control. The
IfA laboratory contains a helicopter model that stands on a stick, which is a lot easier to control
as it only has two DoFs. The objective of this experiment is to design a controller that can
stabilize both states of the helicopter model. The latter can be described as a non-linear MIMO
system, since the two DoFs are coupled by the reaction movements of the propellers. In order
to design a controller for this system, using the notions learned in the lecture Control Systems,
the system’s equations must first be linearized. Also, a closer look at the model will reveal that
the system can be easily controlled by means of two SISO-controllers. A closer inspection of the
model also reveals that the system can be properly controlled by means of two SISO controllers,
constructed by means of compensation methods. The implementation of the controller is done
by means of an Ethernet-based control system made by ”B&R”.

The aim of this experiment is to design and implement the notions learned during the lecture
Control Systems.

Part of this experiment has to be carried out at home. If further clarifications are required,
please do not hesitate to contact the supervisor.

The Simulink models and Matlab files to conduct the experiment can be downloaded
at http://people.ee.ethz.ch/~ifa-fp/wikimedia/images/b/b9/IfA_2-6_matlab.zip.
These are:

Helipar.m Contains all helicopter parameters
Heli Sim.mdl Non-linear helicopter Simulink model
HeliTest.m Test of non-linear helicopter model
reduce.m Helper script for simplification of transfer functions.

The following files will only be used during the lab:

Heli data log.m Uploads the designed controller to the Matlab workspace

http://people.ee.ethz.ch/~ifa-fp/wikimedia/images/b/b9/IfA_2-6_matlab.zip


Contents

1 Problem Presentation and Modelling 4
1.1 Task Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Experiment Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 The Helicopter Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 The Control System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Sensors and Actuators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Differential Equations of the Model . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Theoretical Tasks 8
2.1 Linearisation of the Differential Equations . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Controller Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Task 1: Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Solution 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Task 2: Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Solution 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Task 3: Non-linear Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Solution 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Task 4: Study of the Linearized Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Solution 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Task 5: Controllability and Observability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Solution 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Task 6: Lead Compensator for the Vertical Axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Solution 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Task 7: Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Solution 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Task 8: Lead Compensator for the Horizontal Axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Solution 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Task 9: Simulink Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Solution 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Lab Session Tasks 22
3.1 Setup of Lab Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Task 10: Setup of the Control System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Solution 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Task 11: GUI Accustomization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Solution 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Task 12: Manual Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Solution 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Implementation and Fine Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Task 13: Automatic Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Solution 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Task 14: Controller Fine Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Solution 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2



3.3 System Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Task 15: System Evaluation and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Solution 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Lessons Learned 26
Lessons Learned 1: Decoupled Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Answer to Lessons Learned 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Lessons Learned 2: Input Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Answer to Lessons Learned 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Lessons Learned 3: Lead Compensation applied to Helicopter Model . . . . . . . . . . . . . . . . 27
Answer to Lessons Learned 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Lessons Learned 4: Completion of the Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Answer to Lessons Learned 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

A Parameter 28
A.1 Motor Bridge Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
A.2 Propeller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
A.3 Moment of Inertia of the Main Rotor . . . . . . . . . . . . . . . . . . . . . . . . . 28
A.4 Moment of Inertia of the Rear Rotor . . . . . . . . . . . . . . . . . . . . . . . . . 29
A.5 The Motors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
A.6 Moment of Inertia of the Fuselage . . . . . . . . . . . . . . . . . . . . . . . . . . 30
A.7 Centre of Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
A.8 Moment of Inertia of the Fuselage . . . . . . . . . . . . . . . . . . . . . . . . . . 31
A.9 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
A.10 List of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

B Modelling 34
B.1 Spin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
B.2 Centripetal and Coriolis Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
B.3 Aerodynamic Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
B.4 Equations derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
B.5 Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

C Matlab m-Files 39
C.1 Helipar.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
C.2 HeliTest.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
C.3 reduce.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
C.4 Heli data log.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
C.5 theoaufg.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
C.6 steady state calc.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
C.7 ss residuals.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
C.8 linear control loop run.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
C.9 nonlinear control loop run.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3



Chapter 1

Problem Presentation and
Modelling

1.1 Task Description

Figure 1.1: Helicopter Model.

During the experiment the following angle definitions are adopted:

ϕH = ϕ Angle w.r.t. the horizontal axis (positive direction clockwise (see fig. 1.1)
ϕV = ψ Angle w.r.t. the vertical axis (positive direction counter-clockwise (see fig. 1.1)

The equipment used in this experiment consists of a mechanical part, the base of which
contains the system to actuate the two motors, and a PC needed to design the controller and
communicate with the actuator.

The cage is there for your safety, do not operate the model without it !

1.2 Experiment Layout

This chapter lists the experiment layout, including a description of the model and a list of sensors
and actuators, including their properties and limitations.
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1.2.1 The Helicopter Model

The objective of this experiment is the design of a controller for the horizontal and vertical
positions of the fuselage (see Figure 1.1). The Helicopter model is a MIMO system with two
inputs and two outputs. The control variables are the voltages of the main and rear rotors. The
output, the we measure, are the angles ϕ and ψ. A mathematical model of the system is first
required to design a controller. Said description can be obtained by means of two methods:

1. Analyzing physical laws (modelling).

2. Fitting a system description through experimental measurements (identification).

This experiment makes use of the first method. Appendix A and B present a detailed description
of the parameters and the modelling. The most important parameters used by the sensors and
actuators can be found in tables 1.1 and 1.2.

1.2.2 The Control System

The angle measurement and the control of the motors are both carried out via a compact control
system, configured via an ethernet interface. The control system (X20 CP1484) consists of an
Intel Celeron based CPU with different interfaces and the following module (listed from left to
right of the control system):

• Analog input module (AI2622) for recording the movements of manual control.

• Motor bridge module (MM4456) for the actuation of both motors via PWM-Signals.

• Analog input module (Ai2622) for angle measurement.

• Module (PS4951) for potentiometer actuation.

1.2.3 Sensors and Actuators

The main and rear motors are actuated via the motor bridge module through PWM signals.
The module can be operated with a maximum current of 6A, however it can deliver short bursts
of 10A for short periods of time (2 s).

Gain ±1
Output voltage (main motor) ±16V
Output voltage (rear motor) ±8V
Current limit ±6A
Current limit (short time < 2 s) ±10A

Table 1.1: Parameters of the motor bridge module

Note these are relatively small amounts and that they should be taken into account during
the control design. Other restrictions are listed in Table 1.1. Under the assumption that the
period of the PWM-signal is chosen very small, the motor bridge module can be modelled as a
dynamic-free, saturating amplifier with ±16V (main motor) resp. ±8V (rear motor) and ±6A
(short time ±10A).

Angles are measured on both axis by means of a potentiometer. The angles also have
constraints, for instance the helicopter cannot freely rotate around the vertical axis. Table 1.2
shows sensor specifications and angle constraints.
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Horizontal Axis: −60◦ < ϕ < 60◦

Uϕ = kϕϕ
kϕ = 3.29V/rad

Vertical Axis: −170◦ < ψ < 170◦

Uψ = kψψ
kψ = 3.36V/rad

Table 1.2: Sensor parameters

1.3 Differential Equations of the Model

In the course of this experiment, we use the following definitions:
ωR Angular velocity of the main rotor
ϕH Angle of the fuselage wrt horizontal axis
ωH Angular velocity of the fuselage wrt horizontal plane
ωS Angular velocity of the rear rotor
ϕV Angle of the fuselage wrt vertical axis
ωV Angular velocity of the fuselage wrt vertical plane

The input values are defined as follows:
UR Voltage of main rotor
US Voltage of rear rotor

The meaning and the approximate numerical values of the above parameters are defined in table
A.3. The modelling in Appendix B derives the following differential equations for the helicopter
model:

dωR
dt

=
1

ΘR

(
cMR

RR
ŨR − cMRcGR

RR
ωR − kMRsign(ωR)ω

2
R − cµRωR

)
(1.1)

dϕH
dt

= ωH (1.2)

dωH
dt

=
1

ΘH

[
−kFRsign(ωR)ω2

RrR +
cMS

RS
ŨS − cMScGS

RS
ωS

+mGg(rH cosϕH + rV sinϕH)− cµHωH

−mGω
2
V (rH cosϕH + rV sinϕH)(rV cosϕH − rH sinϕH)

+ωRωVΘR sinϕH ] (1.3)

dωS
dt

=
1

ΘS

(
cMS

RS
ŨS − cMScGS

RS
ωS − kMSsign(ωS)ω

2
S − cµSωS

)
(1.4)

dϕV
dt

= ωV (1.5)

dωV
dt

=
1

ΘV

[
kFSsign(ωS)ω

2
S(rS cosϕH − rV sinϕH)

−cMR

RR
ŨR cosϕH +

cMRcGR
RR

ωR cosϕH − cµV ωV + ωHωRΘR sinϕH

+2mGωV ωH(rH cosϕH + rV sinϕH)(rV cosϕH − rH sinϕH)] (1.6)

where

ΘV = Θzyl +ΘV1 cos
2 ϕH +ΘV2 sin

2 ϕH +mG (rH cosϕH + rV sinϕH)
2

(1.7)

ŨS = sat(US) (1.8)

ŨR = sat(UR) , (1.9)

and

sat(x) =

{
x |x| ≤ umax
umax · sign(x) |x| > umax

(1.10)
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These equations are coded in the Simulink model Heli Sim.mdl and are available in electronic
form.
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Chapter 2

Theoretical Tasks

This chapter serves as preparation for the experiment and must be completed thoroughly. The
following exercises will be needed on the day of the experiment and must be solved before coming
to the lab.

2.1 Linearisation of the Differential Equations

Please note that the following bar ( . ) defines a parameter at its equilibrium point. Any devia-
tion from said equilibrium is noted with a ∆.
The equilibrium point ϕH = ϕV = 0 is found by means of Equations (1.1), (1.3), (1.4) and (1.6):

0 = cMR
RR

UR − cMRcGR
RR

ωR − kMRsign(ωR)ωR
2 − cµRωR

0 = −kFRsign(ωR)ωR2rR + cMS
RS

US − cMScGS
RS

ωS +mGgrH

0 = cMS
RS

US − cMScGS
RS

ωS − kMSsign(ωS)ωS
2 − cµSωS

0 = kFSsign(ωS)ωS
2rS − cMR

RR
UR + cMRcGR

RR
ωR

(2.1)

The equilibrium values found by solving equations (2.1) are:

UR = 7.033V

US = 4.343V

ωR = 202 rad/s

ωS = 301.7 rad/s .

(2.2)

The following voltage and current values are measured when the helicopter is in a stationary
horizontal position:

UR = 6.8V

US = 3.6V

iR = 1.5A

iS = 0.8A

(2.3)

These values slightly differ to the calculated ones, since only approximate system parameters
are known. The other equilibrium values are:
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ωR = 195 rad/s

ϕH = 0

ωH = 0

ωS = 290 rad/s

ϕV = 0

ωV = 0

(2.4)

where:

UR = UR +∆UR

US = US +∆US

ωR = ωR +∆ωR

ωS = ωS +∆ωS

(2.5)

The system is then linearized using the following state-space representation:

ẋ = Ax+Bu

y = Cx
(2.6)

The state and input vectors are as follows:

x =


∆ωR
ϕH
ωH
∆ωS
ϕV
ωV

 u =

[
∆UR
∆US

]
. (2.7)

The physical description of the states is as follows:

x1 = ∆ωR Angular velocity deviation of main rotor from calculated equilibrium
x2 = ϕH Angle between fuselage and horizontal axis
x3 = ωH Angular velocity of the fuselage on the horizontal axis
x4 = ∆ωS Angular velocity deviation of rear rotor from calculated equilibrium
x5 = ϕV Angle between fuselage and vertical axis
x6 = ωV Angular velocity of the fuselage on the vertical axis

The physical description of the inputs is as follows:

u1 = ∆UR Voltage deviation of the main rotor motor from calculated equilibrium
u2 = ∆US Voltage deviation of rear rotor motor from calculated equilibrium
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Firstly, the linearization of the matrices is carried out:

A0 =



− cMRcGR
RR

− 2kMRωR − cµR 0 0 0 0 0

0 0 1 0 0 0
−2kFRrRωR mGgrV −cµH − cMScGS

RS
0 0

0 0 0 − cMScGS
RS

− 2kMSωS − cµS 0 0

0 0 0 0 0 1
cMRcGR
RR

−kFSωS2rV 0 2kFSrSωS 0 −cµV



B0 =



cMR
RR

0

0 0
0 cMS

RS
0 cMS

RS
0 0

− cMR
RR

0

 ,

which are then multiplied by the diagonal matrix of the moments of inertia,

Θ =


ΘR 0 0 0 0 0
0 1 0 0 0 0
0 0 ΘH 0 0 0
0 0 0 ΘS 0 0
0 0 0 0 1 0
0 0 0 0 0 Θzyl +ΘV 1 +mGr

2
H


so as to obtain the dynamics and input matrices:

A = Θ−1A0

B = Θ−1B0 .

The output matrix is the following,

C =

[
0 kmessH 0 0 0 0
0 0 0 0 kmessV 0

]
,

where the outputs have the following physical meaning:

y1 Voltage for horizontal angle sensor ϕH
y2 Voltage for vertical angle sensor ϕV

2.2 Controller Design

The following exercises lead to the design of a stable controller, designed by means of the
compensation principle. Since the program files will be modified during this exercise, we kindly
ask students to bring their own files to the lab.

Task 1: Modelling

Study the modelling process and summarize the simplifications made.

Solution 1

• Ground effect not considered

• Cage effect not considered

• Helicopter axis and propeller considered homogeneous models
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Task 2: Linearization

Verify the expressions of the linear model from page 10, which makes use of the
differential equations from page 6, linearized around the equilibrium points ϕH = 0
and ϕV = 0.

Solution 2

As given in text.

Task 3: Non-linear Model

In the non-linear helicopter model Heli Sim.mdl apply first an input of 10V to the
rear rotor. Then, after 4 seconds, apply an input of 8V to the rear rotor.

3.1) Explain the behavior of the response graph along the horizontal and vertical
axis. What influence do the inputs to the main and rear rotors have?

3.2) Try other step sizes and study the behavior of the helicopter. Please note what
influcence the movement of the horizontal axis has on the vertical one and
vice-versa.

Suggestion: Initialize the helicopter parameters using the file Helipar.m and use
the file HeliTest.m to start the simulation after configuring the steps in the model
Heli Sim.mdl.

Solution 3

3.1) the graph of both angles is seen in Figure 2.1. First the helicopter falls down-
wards due to the force of gravity. At t = 1 s the main rotor starts and the
helicopter moves upwards. The main rotor also causes the fuselage to move
around clockwise along the vertical axis. The helicopter reaches the horizontal
limit at approximately (t ≈ 2.9 s), causing the angular velocity and the spin
around the horizontal axis to be zero. As a result, the change in the spin and
thus the torque (see B.8 in Appendix B.1) becomes briefly very large and accel-
erates the helicopter counter-clockwise along the vertical axis. The rear rotor is
started at t = 5 s, making the helicopter spin in the counter-clockwise direction,
thus breaking free from the reaction moment of the main rotor.

3.2) The angular rotation around the vertical axis doesn’t cause any movement
around the horizontal axis. Instead, when forcing a rotation around the hori-
zontal axes we also observe a rotation around the vertical axis.

Warning: The model parameters are only known approximately. As a
consequence, the main rotor may have a significantly larger effect on the
vertical axis than expected.
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Figure 2.1: Solution of task 3; At time t = 1 a step of 10V is given to the main rotor, at t = 5
a step of 8V is given to the rear rotor.

Task 4: Study of the Linearized Model

Examine the linearized model by using Matlab to solve the following points. Please
note that the system matrices on page 10 are defined in the file helipar.m.

4.1) Find the eigenvalues of the linearized system.

4.2) Find the transfer function matrix G(s) of the linearized system.[
Y1(s)
Y2(s)

]
=

[
G11(s) G12(s)
G21(s) G22(s)

]
︸ ︷︷ ︸

G(s)

·
[
U1(s)
U2(s)

]

Suggestions:

• All 4 blocks should contain transfer functions of the 3. order. For this
purpose, use the Built-In Matlab functions ss2tf and minreal, as well as
the function reduce contained in the zip-file downloaded on the Fachprak-
tikums website.

• Use the command minreal. Increase the tolerance until you get a 3. order
transfer functions.

• The controller implementation makes use of the transfer functionsG11(s), G22(s),
which always have positive gain. Therefore, you may have to multiply these
transfer functions by a factor of −1 for some calculations. This factor must
be removed towards the end of the experiment.

Warning: It’s important to reduce the transfer functions G11(s) and G22(s) to
the third order, so as to remove the unstable pole in G22(s), which arose from
simplified modeling assumptions.

12



Solution 4

For the calculations look at the Matlab m-File theoaufg.m.

4.1) 0 -1.83 -3.68 3.50 -2.68 -4.35

4.2) After pole-zero cancellations, the upgraded transfer functions, calculated in the
Matlab m-File theoaufg.m, are noted with the subscript r G12r (reduced). The
reduced transfer functions are as follows:

G11(s) =
−15.28

s3 + 2.86s2 − 12.39s− 34.5

G12(s) =
−3.83s− 3.65

s3 + 4.51s2 + 4.90s

G21(s) =
0.92s+ 2.03

s3 + 4.54s2 − 12.1s− 56.11

G22(s) =
8.28

s3 + 6.19s2 + 7.97s

Suggestion: G11(s) must be multiplied by a factor of −1 in order for the gain
to be positive, which is necessary for controller design. This factor must be
taken away at the end of the experiment in the final controller implementation

Task 5: Controllability and Observability

5.1) Is the linearized system controllable?

5.2) Is the linearized system observable?

Solution 5

The following Matlab commands are used to compute controllability and observabil-
ity:

5.1) rank(ctrb(A,B)) = 6, the controllability matrix is full-rank
→ system is controllable.

5.2) rank(ctrb(A’,C’)) = 6, the observability matrix is full rank
→ system is observable.

Task 6: Lead Compensator for the Vertical Axis

Put a lead compensator on the ψ axis to limit the overshoot (high phase margin)
whilst increasing the rise time (lower crossover frequency). Proceed as follows:

6.1) Plot the bode diagram of G22(s).

6.2) Design a lead compensator

Grψ =
kRψ(

1
ωEψ

s+ 1)

(
αψ
ωEψ

s+ 1)
(2.8)

with the following specifications:

13
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• Crossover frequency ≤ 5 rad
s

• Phase margin ≥ 40◦

• αψ ≥ 0.1

Plot the Bode diagram of the compensator.

Tip: Write a Matlab m-file with all the compensator parameters and iterate
over all possible combinations. The phase margin can be read via the command
margin.

6.3) Calculate the pole of the compensator.

6.4) Plot the step response of the compensator.

Solution 6

For the calculations use the m-file theoaufg.m.

6.1) The Bode diagram of G22(s) is found in Fig 2.2.

6.2) A possible lead compensator is:

Grψ =
1( 13s+ 1)

( 0.13 s+ 1)

The bode diagram of the compensator can be found in Figure 2.3.

6.3) By using the above compensator the closed loop transfer function is as follows:

G22cl =
2.76s+ 8.28

0.03s4 + 1.21s3 + 6.45s2 + 10.73s+ 8.28

The closed loop poles locations are: -30.10 -3.99 -1.05 + 0.99i -1.05 - 0.99i
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6.4) The step response is given in Figure 2.4.

Task 7: Robustness

A stable system is defined robust if small variations in the plant do not affect its
stability. Evaluate the robustness of the closed loop system computed in the previous
point by considering the Bode diagram of the open loop system.

Solution 7

The closed loop system has a phase margin of 66.1◦ and is therefore very robust.
Choosing a too high filter gain (kRψ ≥ 20) leads to a very small phase margin. This
increases the sensitivity of the system to uncertainties and unmodeled dynamics.

Task 8: Lead Compensator for the Horizontal Axis

Place a double lead compensator for the ϕ axis. Please go through the following
steps:

8.1) Plot the Nyquist diagram of G11(s), which shows unit feedback. Is the closed
loop system stable?
Suggestion: Since G11(s) is unstable, the control design must not be carried
out on the Bode diagram.

8.2) Find the parameters of the double lead compensator

Grϕ =
kRϕ(

1
ωEϕ

s+ 1)2

(
αϕ
ωEϕ

s+ 1)2
, (2.9)

leading to the following UTF specifications:

• Crossover frequency between 2 rad
s and 15 rad

s

• Phase margin between 20◦ and 40◦

• αϕ ≥ 0.1

Tips:

• Please note that the current and voltages of the motor bridge module are
limited. This must be considered when choosing the gain parameter kRϕ.
(Remember: kRϕ ≤ 30)

8.3) Calculate the pole of the closed loop system.

8.4) Plot the step response of the closed loop system.
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Solution 8

The calculations can be found in the Matlab m-file theoaufg.m.

8.1) Since the open loop system is unstable, the Bode criterion must be used with
caution. It’s therefore better to work with the Nyquist diagram in order to
assess the stability of the closed loop system with the Nyquist criterion.

With unit feedback we have the same Nyquist diagram as for G11(s) (see Figure
2.5). It can be seen that the graph never encircles the point −1. In order to
ensure stability of the system, the point −1 must be encircled once in counter-
clockwise direction (once for every unstable pole - see Nyquist Criterion). It
can therefore be concluded that the system with unit feedback is unstable.

Nyquist Criterion:
The closed loop curve T (s) is asymptotically stable for γ = ρ + σ/2.
ρ: Number of poles of the open loop function L(s) with

positive real part
σ: Number of poles of the open loop function L(s) that are

purely imaginary
γ: Number of times the open loop transfer function

L(jω) encircles the point −1
for ω ∈ [−∞,∞].

8.2) A possible double lead compensator is:

Grϕ =
8( 14s+ 1)2

( 0.14 s+ 1)2

The Nyquist diagram of the open loop system is seen in Figure 2.6. Now the
point −1 is encircled once in the CCW direction leading to stability of the closed
loop system.
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8.3) The closed loop transfer function using the above lead compensator is:

G22cl =
7.64s2 + 61.11s+ 122.2

0.00063s5 + 0.052s4 + 1.14s3 + 9.86s2 + 47s+ 87.73

Leading to the following closed loop poles:

-54.31 -17.03 -3.89 + 5.03i -3.89 - 5.03i -3.75

8.4) The step response can be seen in Figure 2.7. Please note that there is a control
error on the vertical axis step response (Figure 2.7), due to the fact that G11(s)
doesn’t have an integrator.

Task 9: Simulink Simulation

Simulate both controllers in Simulink and plot the angles ϕ and ψ.

Suggestion: Do not forget to re-insert the factor −1, which was taken away from
UTF G11(s) (see Point 4) which was then added to Grϕ.

9.1) Simulate the controller on the linear helicopter model. Use a block “state
space” from the library “linear” making use of the system matrices defined in
Helipar.m and close the control loop. Simulate the behavior of the closed loop
system for a reference 0 and a small initial deflection (i.e. ϕ0 = 10◦). How does
the system behavior change when considering the real system’s constraints?

9.2) Simulate the controller on the nonlinear helicopter model. The nonlinear model
can be found in the file Heli Sim.mdl. You can find this file on the link stated
on the first page of this manual. Simulate the system behavior for 0 reference
value and initial condition ϕ0 = 10◦.

Suggestion: Please note the outputs of the controller ∆UR,∆US must be sub-
stituted with the equilibrium points UR, US found in (2.5).

Warning: The equilibrium points in (2.3) are the values measured on the
helicopter. The equilibrium points found by solving equation (2.1) are critical
for the simulation with the non-linear helicopter model in Heli Sim.mdl, since
they slightly deviate from the measured ones given on Page 8.
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Figure 2.7: Step response of the closed loop system G11cl(s)

Solution 9

9.1) The system behavior can be seen in Figure 2.8. The simulation is carried out us-
ing file linear control loop.mdl and the plot is from linear control loop run.m.
Due to the limits of the real system, even a small deviation of the initial values
causes a significant worsening of the system’s behavior, as seen in Figure 2.9.

9.2) The simulation is carried out by means of the file nonlinear control loop.mdl,
while the results are plotted with nonlinear control loop run.m. The system
behavior is worse compared to the linear one, as seen in Figure 2.10.
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Chapter 3

Lab Session Tasks

3.1 Setup of Lab Equipment

The following tasks must be solved during the lab. The control system can be configured via
VNC from the host PC.

Task 10: Setup of the Control System

Follow the next points for system start up.

10.1) Start the host PC and turn on the helicopter model (the switch is behind the
helicopter structure).

10.2) Open the VNC-Viewer and use the following credentials for login:

Server: autx20-02

Password: control

10.3) Click on the button START to start the experiment.

Solution 10

No solutions necessary.

Important: The experiment can be stopped at any time by means of the button STOP or by
pressing the spacebar on the keyboard.

Task 11: GUI Accustomization

Get familiar with the GUI.

11.1) Navigate through the different pages by means of the dark blue buttons Run,
Controller and Settings. By using the file Run you always return to the exit
page.
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11.2) Go to the page Settings. Here the motor bridge module can be reset by using
the button Clear Error. This must be kept in mind when a motor outputs
the message Over Current Error. The other buttons in this page are not
important for this experiment.

11.3) You will later configure your controller in the page Controller.

11.4) Press Run to switch to the exit page. In the page Control Mode you can find
buttons Automatic and Manual. Here you can choose whether to control the he-
licopter model manually (by means of the joystick) or automatically (by means
of the control system). Since none of the modes are active, the helicopter is in
idle state. Please note that pressing the STOP button or the spacebar automat-
ically sets the helicopter to idle.

Solution 11

No solutions necessary.

Task 12: Manual Mode

12.1) Please note the controller parameters K Phi, K Psi, U FF,Phi and U FF,Psi

are all set to zero. Press the button Automatic and go to the page Controller,
where you can set the motor voltages by changing the parameters U FF,Phi

and U FF,Psi. Check the effects this has on the helicopter. Finally set all the
values to zero and press the button STOP.

12.2) Change to manual mode by pressing the button Manual in the page Run. Try
stabilizing the helicopter on the horizontal axis manual.

12.3) Finish by pressing STOP or the spacebar.

Solution 12

No solutions necessary.

3.2 Implementation and Fine Tuning

In the next part of the experiment you will implement and fine tune your controller.

Task 13: Automatic Mode

Implement the controller you designed at home.

13.1) Put your controller parameters in the required fields.

Suggestion: The factor -1 must be taken into account.

13.2) Put the equilibrium voltages (from page 8) in the fields U FF,Phi and U FF,Psi.

13.3) Test your controller by activating automatic mode. If the system doesn’t behave
as expected stop the execution by means of the spacebar or the button STOP.

13.4) Note down eventual observations.
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Solution 13

Possible controller parameters:
Kϕ = 8 ωϕ = 4 αϕ = 0.1 UFF,ϕ = 6.8
Kψ = 1 ωψ = 3 αψ = 0.1 UFF,ψ = 3.6

Important: One of the motors may cut out because it reached the maximum available current.
In this eventuality the message Over Current Error is outputted. To solve this issue go to the
Settings page and click on the button Clear Error.

Task 14: Controller Fine Tuning

As you have seen in the previous task, the system behavior is slightly different com-
pared to the model’s. The reason for this is the use of approximated parameters.
Try manually fine tuning your controller to account for these approximations.

14.1) Change the controller parameters slightly and see what happens.

14.2) Tune your controller until it can stay in horizontal equilibrium without issues.

Tips:

• Use the input fields Phi and Psi in the block Reference Tracking on the
page Run to change the reference tracking behavior.

• You can also change the control outputs (system inputs) in the block
Control Variables. The use of too large voltages can cause a too high
gain, leading to an Over Current Error.

Solution 14

No solutions necessary.

3.3 System Evaluation

A final study of the system behavior with the implemented controller will now be carried out.

Task 15: System Evaluation and Conclusion

Trace a helicopter trajectory with the joystick and plot it in Matlab. In order to do
so, follow the next instructions:

15.1) Place the helicopter in the idle position and press the button Record on the
page Run.

15.2) Press both Joystick buttons in the block Reference Tracking and trace a
reference signal with the joystick.

15.3) Open Matlab and run the code Heli data log.m . The trajectories of Φsoll,Φmess,Ψsoll
and Ψmess will be uploaded to the control system directly via FTP from Matlab.

Suggestion: Before running the code, wait until the control system has finished
uploading the data. The latter occurs when the button Record gets released.

15.4) Plot the trajectories.

Suggestions:
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• Data is sampled with a TS = 1ms time step.

• The reference signal of the joystick is filtered with a low-pass filter to prevent
a too aggressive system response, which would lead to an Over Current

Error and general instabilities of the system.

Solution 15

No solutions necessary.

We kindly ask you, once finished with the tasks in this part of the experiment, to shut off
the lab equipment used and to put your working space in order. You can then proceed to the
chapter 4 of the assignment.
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Chapter 4

Lessons Learned

This chapter summarizes the most important learning objectives of the experiment. Note down
your thoughts and discuss the results obtained with the TA.

Lessons Learned 1: Decoupled Control

1.1) What did you understand about decoupled control?

1.2) How did this strategy work to control the helicopter?

1.3) When did it not work? What other control methods can you suggest?

Answer 1

1.1) Decoupled control is a special strategy used to control MIMO-systems with
the same amount m of inputs and outputs, where each input is associated to
the output on which it has the biggest influence. A SISO control strategy is
associated to each I/O pair, resulting in a system of m SISO controllers. This
strategy works well when the cross-couplings in the system are small. The latter
can be evaluated with several tools, one example of which is the RGA-matrix.

1.2) In the helicopter model the cross couplings G12(s) and G21(s) are small and
both inputs UR and US have a very strong influence on the horizontal response
of the vertical axis.

1.3) Decoupled control fails when cross-couplings cannot be neglected when they are
large and their influence is as strong as the main couplings. In this situation
other control strategies must be implemented, examples of which are LQR, H∞,
H2 or MPC. Another possibility is using a decoupling compensator.

Lessons Learned 2: Input Limitations

2.1) What effect do the voltage and current limitations have on the helicopter? What
needs to be modified to improve the system?

2.2) How are the input limitations considered in other control strategies (i.e. PID,
Lead, Lag, etc.)?
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Answer 2

2.1) The voltage constraints limit the angular velocity of both motors and therefore
the lift forces of the rotors. The current is proportional to the torque which in
turn is proportional to the acceleration of the motor. This means that a current
constraint limits the motor acceleration.

A possible solution to improve the system would be increasing the current limit,
enlarging rotor acceleration. Increasing the voltage limit would instead increase
the maximum rotor speed.

2.2) When implementing other control strategies the input limitations aren’t con-
sidered. Since the gain K leads to an output proportional to the input, it can
be tuned so the control inputs do not reach the limitations.

Lessons Learned 3: Lead Compensation applied to Helicopter Model

3.1) What influence do the parameters K,ω and α have on the control behavior?

3.2) Why is there a constant control error when controlling the horizontal axis but
not when controlling the vertical axis?

Answer 3

3.1) See slides from Control Systems I.

3.2) The control errors on the horizontal axis can be seen in Figure 2.7. This shows
that the open loop transfer function G11(s) also requires an integrator and not
just the lead compensator Grϕ(s). The open loop system G22(s) contains an
integrator and no steady-state error is observed on the vertical axis (see Figure
2.4).

Lessons Learned 4: Completion of the Experiment

15.1) Please, fill out the online feedback form on the registration page under MyExperiments.
Each student/participant has to fill out his/her own feedback form. This will
help us to improve the experiment.

15.2) Thank you for your help. You can now discuss the lab session with the TA to
get your testate.

Answer 4

15.1) No solution necessary.

15.2) No solution necessary.
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Appendix A

Parameter

This chapter presents how the helicopter parameters were derived. In the end you can find a
list of all the parameters used in the equations. The full understanding of this chapter is not
necessary for the completion of the experiment. You can continue reading chapter B and come
back to this section for a deeper explanation regarding the unclear parameters. The parameters
in this list have been coded in the file Helipar.m.

A.1 Motor Bridge Module

The parameters of the motor bridge module are listed in Table 1.1 on page 5. Under the
assumption that the PWM-signal of the motor bridge module is very small, it can be modeled
as a dynamic-free model with voltage limit of ±16V (main rotor) and ±8V (rear rotor) and
current limit ±10A (bursts of 2 s).

A.2 Propeller

Main Rotor (Index R) Rear Rotor (Index S)
Mass 0.0592 kg 0.0159 kg
Diameter 0.30m 0.15m
Pitch 4.5◦ 4.5◦

Table A.1: Propeller Parameters

A.3 Moment of Inertia of the Main Rotor

The moment of inertia of the rotor was obtained by dividing the system in simpler parts, cal-
culating the moments of inertia of the single pieces and subsequently summing them up. The
formulas for the simplified moments of inertia are as follows. The moment of inertia of a rod on
its transverse axis is:

Θ =
1

12
ml2 . (A.1)

Moment of Inertia of cylinder along axis of symmetry:

Θ =
1

2
mr2 . (A.2)

Density of the rod:
ρStahl = 7900 kg/m3 (A.3)
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The dimensions of the rotor R according to A.1 are

m1 = 0.0592 kg

l1 = 0.30m

r2 = 0.016m

l2 = 0.045m

r3 = 0.002m

l3 = 0.09m .

(A.4)

The value of m1 hasn’t been proven by the authors; the values were measured without actually
disassembling the rotors, which means they are only approximate values. The moment of inertia
of the main rotor ΘR is obtained via

ΘR =
1

12
m1l

2
1︸ ︷︷ ︸

Propeller

+
1

2
ρπl2r

4
2︸ ︷︷ ︸

Rotor angle

+
1

2
ρπ(l3 − l2)r

4
3︸ ︷︷ ︸

Rotor axis

= 4.8 · 10−4 kgm2 . (A.5)

A.4 Moment of Inertia of the Rear Rotor

The procedure for finding the moment of inertia of the rear rotor is similar to the one used
for the main rotor, found in A.3. The necessary formulas can also be found there. With the
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parameters listed in Appendix A.1 the rear rotor is specified as follows

m1 = 0.0159 kg

l1 = 0.150m

r2 = 0.010m

l2 = 0.020m

r3 = 0.0015m

l3 = 0.070m .

(A.6)

The value of m1 hasn’t been proven by the authors; the values were measured without actually
disassembling the rotor, which means they are only approximate values. The moment of inertia
of the main rotor ΘS is obtained via

ΘS =
1

12
m1l

2
1 +

1

2
ρπl2r

4
2 +

1

2
ρπ(l3 − l2)r

4
3 = 3.2 · 10−5 kgm2 . (A.7)

A.5 The Motors

The rotors make use of DC-motors, described in App. A.10. The values considered come from
similar models and shouldn’t be considered precise.

A.6 Moment of Inertia of the Fuselage on the Horizontal
Axis (ϕ-Axis)

The moment of inertia of the fuselage ΘH is calculated by disassembling the fuselage in geo-
metrically simpler pieces. The dimensions and weights of the fuselage pieces can be found in
App. A.2.
Values are given in Table A.2. The moment of inertia of the rod is

ΘbeamH =
1

12
m1(rR + rS)

2 +m1

(
rR − rS

2

)2

. (A.8)

The second term of the sum is due to the translation of the rotation axis from the middle
point. The motor and propeller assembly is approximated as a point mass and the value of rV
is neglected, leading to

ΘH = ΘbeamH + (m2 +m3)r
2
R + (m4 +m5)r

2
S +m6r

2
G = 0.027 kgm2 . (A.9)
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Mass of the bar m1 = 0.280 kg
Mass of the main rotor m2 = 0.330 kg
Mass of the main propeller m3 = 0.0592 kg
Mass of the rear rotor m4 = 0.158 kg
Mass of the rear propeller m5 = 0.0159 kg
Mass of the balance m6 = 0.339 kg
Distance of the main motor rR = 0.1995m
Distance of the rear motor rS = 0.1743m
Distance of the balance rG = 0.0953m
Height of the rod rV = 0.0298m

Table A.2: Fuselage parameters

A.7 Centre of Gravity

The next equations make use of the following total mass:

mG =

6∑
i=1

mi = 1.182 kg . (A.10)

The centre of gravity is considered the same as the pivot point (On the main rotor side). The
horizontal difference from the pivot point is given by

rH =
1

mG

(
m1

rR − rS
2

+ (m2 +m3)rR − (m4 +m5)rS −m6rG

)
= 1.57 · 10−2 m . (A.11)

A.8 Moment of Inertia of the Fuselage on the Vertical Axis
(ψ-Achse)

The moment of inertia of the fuselage ΘV is calculated by disassembling the fuselage in geo-
metrically simpler pieces. The dimensions and weights of the fuselage pieces can be found in
App. A.2. This moment of inertia is calculated from the position ϕ.

ΘV = Θzyl +ΘV1
cos2 ϕ+ΘV2

sin2 ϕ+mG (rH cosϕ+ rV sinϕ)
2
, (A.12)

where
ΘV1

≈ ΘH = 0.027 kgm2 (A.13)

is the moment of inertia on the perpendicular axis, and

ΘV2 ≈ 2.0 · 10−4 kgm2 (A.14)

is the moment of inertia of the rod. The cylindrical stand can be approximated to

Θzyl ≈ 10−5 kgm2. (A.15)

The final component of the sum comes from shifting the rotation point from the centre of mass.
The values ΘV2

and Θzyl were approximated from those of similar objects.

A.9 Sensors

Every axis is equipped with a potentiometer to measure the angle of rotation. The angles have
constraints, since for instance the helicopter cannot move freely around the vertical axis. The
sensors with relative constraints can be found in table 1.2 from page 6.
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A.10 List of Parameters

The following is a list of all the parameters that can be found in the differential equations in
chapter B, which are already initialized in the matlab file Helipar.m.
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Model Parameters
rV = 0.0298 m Pivot point – Horizontal axis
rH = 0.0157 m Pivot point – Centre of gravity
rG = 0.0953 m Pivot point – Balance
rR = 0.1995 m Pivot point – Main rotor
rS = 0.1743 m Pivot point – Rear rotor
mG = 1.19 kg Total weight of the helicopter
g = 9.81 m/s2

Parameters of the Main Rotor
ΘR = 4.8 · 10−4 kgm2 Moment of inertia
cµR = 10−5 Nms/rad Friction coefficient

kMR = 10−6 Ns2/rad2 Propeller coefficient (torque)
cMR = 0.028 Nm/A Motor constant
cGR = 0.028 V s/rad Generator constant
RR = 0.9 Ω Motor friction
imax = 10 A Maximum rotor current
umax = 16 V Maximum rotor voltage

Parameters of the Main Rotor
ΘS = 3.2 · 10−5 kgm2 Moment of inertia
cµS = 10−5 Nms/rad Friction coefficient

kMS = 10−7 Ns2/rad2 Propeller coefficient (torque)
cMS = 0.0091 Nm/A Motor constant
cGS = 0.0091 V s/rad Generator constant
RS = 1.2 Ω Motor friction
imax = 10 A Maximum rotor current
umax = 8 V Maximum rotor voltage

Horizontal Axis Parameters
ΘH = 0.027 kgm2 Moment of inertia
cµH = 5 · 10−3 Nms/rad Friction coefficient (bearing)

kFR = 2.4 · 10−5 Ns2/rad2 Propeller constant (power)
ϕmaxH = 60◦ · π/180◦ rad Maximum angle horizontal axis
ϕminH = −ϕmaxH rad Minimum angle horizontal axis

Vertical Axis Parameters
ΘV 1 = 0.027 kgm2 Moment of inertia
ΘV 2 = 2.0 · 10−4 kgm2 Moment of inertia
Θzyl = 10−5 kgm2 Moment of inertia
cµV = 5 · 10−2 Nms/rad Friction coefficient (bearing)

kFS = 2.7 · 10−6 Ns2/rad2 Propeller constant (power)
ϕmaxV = 170 · π/180 rad Maximum angle vertical axis
ϕminV = −ϕmaxV rad Minimum angle vertical axis

Sensor Parameters
kmessH = 3.29 V/rad
kmessV = 3.36 V/rad

Table A.3: Model parameters used in equations
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Appendix B

Modelling

This chapter explains the helicopter model. We encourage you to read the following chapter to
understand the explanations, even if the full comprehension of this section isn’t necessary for
the completion of the experiment.

From App. B.1 to B.3 the less obvious effects are explained, while App. B.4 and B.5 show
the derivation of the differential equations of motion.

B.1 Spin

This section shows what effects the change in rotation direction of the propeller has. It can be
easily shown that the rear rotor doesn’t have any influence on the movable axis. It is a lot more
complicated to understand the influence of the main rotor. As shown in App. B.1, the spin L of
the main rotor is

L⃗abs = ΨΦL⃗rel =

 cosψ − sinψ 0
sinψ cosψ 0
0 0 1

 1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ

 0
0
L

 , (B.1)

where

L = ΘRωR . (B.2)

From
d

dt
L⃗abs = ΨΦ

d

dt
L⃗rel +

dΨ

dt
ΦL⃗rel +Ψ

dΦ

dt
L⃗rel (B.3)

we can highlight the first term (spin change), shown in (B.34), and the second term can be
expressed as

M⃗Dabs =
dΨ

dt
ΦL⃗rel +Ψ

dΦ

dt
L⃗rel (B.4)

where

d

dt
Ψ = ωψ

− sinψ − cosψ 0
cosψ − sinψ 0
0 0 0

 (B.5)

and

d

dt
Φ = ωϕ

 0 0 0
0 − sinϕ cosϕ
0 − cosϕ − sinϕ

 (B.6)
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Figure B.1: Spin vector

follow (with the abbreviation sα := sin(α) und cα := cos(α))

M⃗Dabs = ωψ


−sψ −cψcϕ −cψsϕ
cψ −sψcϕ −sψcϕ
0 0 0



0

0

L

+ ωϕ


0 sψsϕ −sψcϕ
0 −cψsϕ cψcϕ

0 −cϕ −sϕ



0

0

L


= ωψ


−cψsϕ
−sψsϕ

0

L+ ωϕ


−sψcϕ
cψcϕ

−sϕ

L .

(B.7)

The equation for the spin moment on the vertical axis is as folows:

MDV =
[
0 0 1

]
M⃗Dabs = −ΘRωRωϕ sinϕ . (B.8)

The torque on the horizontal axis is

Ψ−1M⃗Dabs = Ψ−1ωψ


−cψsϕ
−sψsϕ

0

L+Ψ−1ωϕ


−sψcϕ
cψcϕ

−sϕ

L

=


cψ sψ 0

−sψ cψ 0

0 0 1

ωψ

−cψsϕ
−sψsϕ

0

L+Ψ−1Ψωϕ


0

cϕ

−sϕ

L

=


−sϕ
0

0

ωψL+


0

cϕ

−sϕ

ωϕL

(B.9)

MDH =
[
1 0 0

]
Ψ−1M⃗Dabs = −ΘRωRωψ sinϕ . (B.10)

B.2 Centripetal and Coriolis Forces

When considering speed ωV on the vertical axis we must also take into account the rotation on
the horizontal axis, since it introduces centripetal and Coriolis forces on the fuselage. App. B.2
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Figure B.2: Centripetal and Coriolis forces

presents the centripetal and Coriolis forces. Considering rotation around the center of gravity,
calculations are as follows:

FZH = mGω
2
V (rH cosϕH + rV sinϕH) , (B.11)

resp.

FZV = 2mGωV ωH (rH cosϕH + rV sinϕH) . (B.12)

B.3 Aerodynamic Effects

The air resistance on the propeller can be given as

ML = kM sign(ω)ω2 (B.13)

while the lift is

F = kF sign(ω)ω
2 . (B.14)

These quadratic formulas are simplifications of the actual equations. In this experiment we also
neglect ground effects.

B.4 Equations derivation

The helicopter can move around two axis of rotation, meaning we have to construct torque
equations around both axis. Next we will state what the torque equations for the rotors are.
Since we are dealing with four second order equations, we expect to have 8 possible solutions.
Since only the rotor speed affects the system, we can ignore the rotor position, leading to a
system of the 6th order.

1. Motor:

iR =
UR − cGRωR

RR
(B.15)

iS =
US − cGSωS

RS
(B.16)
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2. Torque of the main rotor (Index R):∑
i

MiR = MRR︸ ︷︷ ︸
Mainrotor

− MLR︸ ︷︷ ︸
Airresistance

− MµR︸ ︷︷ ︸
Friction

(B.17)

MRR = cMRiR = cMR
UR − cGRωR

RR
(B.18)

MLR = kMRsign(ωR)ω
2
R (B.19)

MµR = cµRωR (B.20)

3. Torque on the horizontal axis (Index H):∑
i

MiH = − MRH︸ ︷︷ ︸
Mainrotor

+ MSH︸ ︷︷ ︸
rearrotor

− MµH︸ ︷︷ ︸
Friction

+MGH︸ ︷︷ ︸
Speed

+ MZH︸ ︷︷ ︸
centripetal

−MDH︸ ︷︷ ︸
Spin

(B.21)

MRH = kFRsign(ωR)ω
2
RrR (B.22)

MSH = cMSiS (B.23)

MµH = cµHωH (B.24)

MGH = mGg(rH cosϕH + rV sinϕH) (B.25)

MZH = mGω
2
V (rH cosϕH + rV sinϕH)

(rV cosϕH − rH sinϕH) (B.26)

MDH = −ωRωVΘR sinϕH (B.27)

4. Torque of the rear rotor (Index S):∑
i

MiS = MSS︸ ︷︷ ︸
Rearrotor

− MLS︸ ︷︷ ︸
Airresistance

− MµS︸︷︷︸
Friction

(B.28)

MSS = cMSiS = cMS
US − cGSωS

RS
(B.29)

MLS = kMSsign(ωS)ω
2
S (B.30)

MµS = cµSωS (B.31)

5. Torque on the vertical axis (Index V):∑
i

MiV = MSV︸ ︷︷ ︸
Rearrotor

− MRV︸ ︷︷ ︸
Mainrotor

− MµV︸ ︷︷ ︸
Friction

+ MZV︸ ︷︷ ︸
Coriolis

+MDV︸ ︷︷ ︸
Spin

(B.32)

MSV = kFSsign(ωS)ω
2
S(rS cosϕH − rV sinϕH) (B.33)

MRV = cMRiR cosϕH (B.34)

MµV = cµV ωV (B.35)

MZV = 2mGωV ωH(rH cosϕH + rV sinϕH)

(rV cosϕH − rH sinϕH) (B.36)

MDV = ωHωRΘR sinϕR (B.37)

B.5 Differential Equations

The following part lists all equations of the system. The torque equations are as follows:

Θ
dω

dt
=

∑
i

Mi (B.38)

dϕ

dt
= ω (B.39)
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Full system:

dωR
dt

=
1

ΘR

(
cMR

RR
ŨR − cMRcGR

RR
ωR − kMRsign(ωR)ω

2
R − cµRωR

)
(B.40)

dϕH
dt

= ωH (B.41)

dωH
dt

=
1

ΘH

[
−kFRsign(ωR)ω2

RrR +
cMS

RS
ŨS − cMScGS

RS
ωS

+mGg(rH cosϕH + rV sinϕH)− cµHωH

−mGω
2
V (rH cosϕH + rV sinϕH)(rV cosϕH − rH sinϕH)

+ωRωVΘR sinϕH ] (B.42)

dωS
dt

=
1

ΘS

(
cMS

RS
ŨS − cMScGS

RS
ωS − kMSsign(ωS)ω

2
S − cµSωS

)
(B.43)

dϕV
dt

= ωV (B.44)

dωV
dt

=
1

ΘV

[
kFSsign(ωS)ω

2
S(rS cosϕH − rV sinϕH)

−cMR

RR
ŨR cosϕH +

cMRcGR
RR

ωR cosϕH − cµV ωV + ωHωRΘR sinϕH

+2mGωV ωH(rH cosϕH + rV sinϕH)(rV cosϕH − rH sinϕH)] (B.45)

where

ΘV = Θzyl +ΘV1 cos
2 ϕH +ΘV2 sin

2 ϕH +mG (rH cosϕH + rV sinϕH)
2

(B.46)

ŨS = sat(US) (B.47)

ŨR = sat(UR) , (B.48)

and

sat(x) =

{
x |x| ≤ umax
umax · sign(x) |x| > umax

(B.49)

These equations are coded in the Simulink model Heli Sim.mdl, where they can be viewed.
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Appendix C

Matlab m-Files

C.1 Helipar.m
% Allgemeine Modellparameter
r_V = 0.0298; % Abstand zur horizontalen Achse
r_H = 0.0157; % Abstand zum Schwerpunkt
r_G = 0.0953; % Abstand des Gegengewichts
r_R = 0.1995; % Abstand zum Tragrotor
r_S = 0.1743; % Abstand zum Heckrotor
m_G = 1.19; % Gesamtgewicht des Helikopters
g = 9.81;

% Parameter des Tragrotors
theta_R = 4.8e-4; % Traegheitsmoment
c_muR = 1e-5; % Reibungskonstante
k_MR = 1e-6; % Propellerkonstante
c_MR = 0.028; % Motorkonstante
c_GR = 0.028; % Generatorkonstante
R_R = 0.9; % Motorwiderstand
i_max = 10; % Maximaler Rotorstrom
u_max_phi = 16; % Maximale Rotorspannung

% Parameter des Heckrotors
theta_S = 3.2e-5; % Traegheitsmoment
c_muS = 1e-5; % Reibungskonstante
k_MS = 1e-7; % Propellerkonstante
c_MS = 0.0091; % Motorkonstante
c_GS = 0.0091; % Generatorkonstante
R_S = 1.2; % Motorwiderstand
i_max = 10; % Maximaler Rotorstrom
u_max_psi = 8; % Maximale Rotorspannung

% Parameter der horizontalen Achse
theta_H = 0.027; % Traegheitsmoment
c_muH = 5e-3; % Reibungskonstante (Lagerreibung und Kabel)
k_FR = 2.4e-5; % Propellerkonstante
phi_maxH= 60*pi/180; % Maximaler Winkel der horizontalen Achse
phi_minH= -phi_maxH; % Minimaler Winkel der horizontalen Achse

% Parameter der vertikalen Achse
theta_V1 = 0.027; % Traegheitsmoment
theta_V2 = 2.0e-4; % Traegheitsmoment
theta_zyl= 1e-5; % Traegheitsmoment
c_muV = 5e-2; % Reibungskonstante (Lagerreibung und Kabel)
k_FS = 2.7e-6; % Propellerkonstante
phi_maxV = 170*pi/180;% Maximaler Winkel der vertikalen Achse
phi_minV = -phi_maxV; % Minimaler Winkel der vertikalen Achse

% Sensoren
k_messH = 3.29;
k_messV = 3.36;

% Gleichgewichtslage
omega_R_b = 202.0147;
omega_S_b = 301.6782;
phi_FF = 7.0331;
psi_FF = 4.3432;
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% Lineares Modell
a11 = -c_MR*c_GR/R_R - 2*k_MR*omega_R_b-c_muR;
a31 = -2*k_FR*r_R*omega_R_b;
a32 = m_G*g*r_V;
a33 = -c_muH;
a34 = -c_MS*c_GS/R_S;
a44 = -c_MS*c_GS/R_S - 2*k_MS*omega_S_b - c_muS;
a61 = c_MR*c_GR/R_R;
a62 = -k_FS*omega_S_b^2*r_V;
a64 = 2*k_FS*r_S*omega_S_b;
a66 = -c_muV;

A0 = [ a11 0 0 0 0 0 ;
0 0 1 0 0 0 ;

a31 a32 a33 a34 0 0 ;
0 0 0 a44 0 0 ;
0 0 0 0 0 1 ;

a61 a62 0 a64 0 a66 ];

B0 = [c_MR/R_R 0 ;
0 0 ;
0 c_MS/R_S ;
0 c_MS/R_S ;
0 0 ;

-c_MR/R_R 0 ];

THETA = diag([theta_R, 1, theta_H, theta_S, 1, theta_zyl+theta_V1+m_G*r_H^2]);

A = inv(THETA)*A0;
B = inv(THETA)*B0;
C = [0 k_messH 0 0 0 0;

0 0 0 0 k_messV 0];
D = [0 0;

0 0];

% -----------------
% Simulation Parameters
% -----------------

phistart_H = 0;
phistart_V = 0;

C.2 HeliTest.m
%Run the helicopter simulation
if(~exist(’phistart_H’) | ~exist(’phistart_V’) )

error(’Please specify phistart_H and phistart_V before running HeliTest’);
return;

end

disp(’Simulation wird gestartet!’);
figure(1);
sim(’Heli_Sim’);

plot(t,Usphi, ’-.’, t, Uspsi,’-.’, t, Uphi, ’-’, t, Upsi, ’-’);
xlabel(’Zeit t’);
ylabel(’Amplitude’);
title(’Sprünge auf beide Rotoren’);
legend(’Sprung auf U_{\phi}’,’Sprung auf U_{\psi}’,...

’Winkel \phi in [V]’,’Winkel \psi in [V]’,1);

C.3 reduce.m
function [out] = reduce(in)
% cuts away entries in the vector that are smaller than some relative
% accuracy.
n = length(in);
maxin = max(abs(in));
epsilon = 1e-8;
for i=1:n

if (abs(in(i)) < epsilon*maxin)
in(i) = 0;

end
end
out = in;
return;
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C.4 Heli data log.m
% Heli_data_log.m
% Lädt die Messungen auf den Host-PC via FTP.
%
% (c) Marc Osswald, Sept 2009

file = ’heli_record.csv’; % define file name
ftp_object = ftp(’autx20-02’); % set ftp server address
mget(ftp_object,file); % get the data
data = csvread(file,1,0); % read the data
PHI_desired = data(:,1); % desired phi
PHI_actual = data(:,2); % actual phi
PSI_desired = data(:,3); % desired psi
PSI_actual = data(:,4); % actual psi

% TODO: Add your code here

C.5 theoaufg.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% theoaufg.m
% Lösungen zu den theoretischen Aufgaben (Versuch 2.6).
%
% Revision (after adding new hardware): Marc Osswald, Aug. 2009
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

format compact

s= tf(’s’);

% Kompensator fuer phi Achse: Grphi
% ---------------------------------

kRphi = 8;
w_phi = 4;
alpha_phi = 0.1;

Grphi = kRphi*(1/w_phi*s+1)^2/(alpha_phi/w_phi*s+1)^2;

% Kompensator fuer psi Achse: Grpsi
% ---------------------------------

kRpsi = 1;
w_psi = 3;
alpha_psi = 0.1;

Grpsi = kRpsi*(1/w_psi*s+1)/(alpha_psi/w_psi*s+1);

% Modell
%-------

Helipar
eps = 1e-1;

% Anfangsbedingungen
%-------------------
phistart_H = phi_maxH;
phistart_V = 0;
x0 = [0 phistart_H 0 0 phistart_V 0];

disp(’Eigenvalues of the System’)
disp(’-------------------------’)
ewA = eig(A)
P = ss(A,B,C,D);

[n1,d1] = ss2tf(A,B,C,D,1);
[n2,d2] = ss2tf(A,B,C,D,2);

n11 = n1(1,:)*(-1); % NOTE: sign considered here
n12 = n1(2,:);

n21 = n2(1,:);
n22 = n2(2,:);

d11 = d1;
d12 = d1;
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d21 = d2;
d22 = d2;

% Cancels common pole/zeros
G11m = minreal(tf(n11,d11),eps);
G12m = minreal(tf(n12,d12),eps);
G21m = minreal(tf(n21,d21),eps);
G22m = minreal(tf(n22,d22),eps);

[n11m,d11m] = tfdata( G11m,’v’);
[n12m,d12m] = tfdata( G12m,’v’);
[n21m,d21m] = tfdata( G21m,’v’);
[n22m,d22m] = tfdata( G22m,’v’);

n11r = reduce(n11m);
n12r = reduce(n12m);
n21r = reduce(n21m);
n22r = reduce(n22m);

G11r = tf(n11r,d11m);
G12r = tf(n12r,d12m);
G21r = tf(n21r,d21m);
G22r = tf(n22r,d22m);

% Bode Plots der Strecken
%------------------------

figure(1)
margin(G11r)
%title(’G11’)

figure(2)
margin(G22r)
%title(’G22’)

% Offene Kreise
% -------------

G11o = series(Grphi,G11r);
G22o = series(Grpsi,G22r);

figure(3)
margin(G11o);
%title(’G11o’);

figure(4)
margin(G22o);
%title(’G22o’);

% Geschlossene Kreise
%--------------------

Gphi2 = feedback(G11o,1);
Gpsi2 = feedback(G22o,1);

poles_Gphi2 = pole(Gphi2);
poles_Gpsi2 = pole(Gpsi2);

% Schrittantworten
%-----------------

figure(5)
step(Gphi2)
title(’closed loop \phi: Step response’)

figure(6)
step(Gpsi2)
title(’closed loop \psi: Step response’)

format loose

C.6 steady state calc.m
% solving the nonlinear system of equations in 3.1, i.e. computing the steady
% state values of the heli
%
% (c) by Stefan Richter, Sept 08
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clear all

global c_MR R_R c_GR R_R k_MR c_muR
global k_FR r_R c_MS R_S c_GS m_G g r_H
global k_MS c_muS
global k_FS r_S

% load model parameters
Helipar

% do fminsearch
start_point = [6 200 3 300]; % from measurements in the lab
options.TolFun = 1e-10;
opt_sol = fminsearch(@ss_residuals, start_point, options)

ss_residuals(opt_sol)

C.7 ss residuals.m
function res = ss_residuals(x)

global c_MR R_R c_GR R_R k_MR c_muR
global k_FR r_R c_MS R_S c_GS m_G g r_H
global k_MS c_muS
global k_FS r_S

U_R = x(1);
w_R = x(2);
U_S = x(3);
w_S = x(4);

f1 = c_MR*U_R/R_R - c_MR*c_GR*w_R/R_R - k_MR * sign(w_R) * w_R^2 - c_muR * w_R;
f2 = -k_FR * sign(w_R) * w_R^2 * r_R + c_MS * U_S / R_S - c_MS * c_GS / R_S * w_S + m_G * g * r_H;
f3 = c_MS * U_S / R_S - c_MS * c_GS * w_S/R_S - k_MS * sign(w_S) * w_S^2 - c_muS * w_S;
f4 = k_FS * sign(w_S) * w_S^2 * r_S - c_MR * U_R / R_R + c_MR * c_GR * w_R / R_R;

res = f1^2 + f2^2 + f3^2 + f4^2;

C.8 linear control loop run.m
% run-file for linear_control_loop.mdl
% Uses the linearized model of the helicopter and controls with
% Lead/Double-Lead Compensator
%
% (c) by Stefan Richter, modified by Marc Osswald in September 2009

%% 1st case: Everything linear, i.e. no actuator saturations, no output
% saturations
clear all
close all

% load heli parameters from helipar.m
Helipar

% compute the controllers from theoaufg.m
theoaufg
close all

% used config
act_sat = 0;
output_sat = 0;
x0 = [0; 10*pi/180; 0; 0; 0; 0]; % initial state of plant

sim_time_span = 5;

[T,X,Y] = sim(’linear_control_loop’,sim_time_span,[])
plot(T,Y(:,1),’k-’, T,Y(:,2),’k--’)
grid on
legend({’Horizontalwinkel \phi’,’Vertikalwinkel \psi’})
% title([’Eigenverhalten des geschlossenen Kreises für Anfangszustand ’, mat2str(x0 .* 180/pi), ’ des Helis’])
ylabel(’Winkel [deg]’)
xlabel(’t [s]’)
print(gcf, ’-deps2’, ’eigen_geschl_kreis.eps’)

%% 2nd case: Everything linear, BUT actuator saturations, output
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% saturations
clear all
close all

% load heli parameters from helipar.m
helipar

% compute the controllers from theoaufg.m
theoaufg
close all

% used config
act_sat = 1;
output_sat = 1;
x0 = [0; 10*pi/180; 0; 0; 0; 0]; % initial state of plant

sim_time_span = 5;

[T,X,Y] = sim(’linear_control_loop’,sim_time_span,[])
plot(T,Y(:,1),’k-’, T,Y(:,2),’k--’)
grid on
legend({’Horizontalwinkel \phi’,’Vertikalwinkel \psi’})
% title([’Eigenverhalten des geschlossenen Kreises für Anfangszustand ’, mat2str(x0 .* 180/pi), ’ des Helis ’])
ylabel(’Winkel [deg]’)
xlabel(’t [s]’)
print(gcf, ’-deps2’, ’eigen_geschl_kreis_sat.eps’)

C.9 nonlinear control loop run.m
% run-file for non_linear_control_loop.mdl
% Uses the nonlinear model of the helicopter and controls with
% Lead/Double-Lead Compensator around the setpoint
%
% (c) by Stefan Richter, modified by Marc Osswald in September 2009

%% 1st case: Nonlinear with actuator saturations
% saturations
clear all
close all

% load heli parameters from helipar.m
Helipar

% compute the controllers from theoaufg.m
theoaufg
close all

% used config
phistart_H = 10*pi/180; % initial state of plant (horizontal axis)
phistart_V = 0; % initial state of plant (vertical axis)

sim_time_span = 10;

[T,X,Y] = sim(’nonlinear_control_loop’,sim_time_span,[]);
plot(T,Y(:,1),’k-’, T,Y(:,2),’k--’)
grid on
legend({’Horizontalwinkel \phi’,’Vertikalwinkel \psi’})
ylabel(’Winkel [deg]’)
xlabel(’t [s]’)
print(gcf, ’-deps2’, ’eigen_geschl_kreis_nonlinear.eps’)
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