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IfA Fachpraktikum - Experiment 2.4 :

Speed Control

Solutions Manual

Speed controlled drives play a central role in the industry as actuators, e.g. in machine tools
and most other process and energy engineering facilities. Nowadays, more and more dc motors
are being replaced by asynchronous motors with variable-frequency drives. In a first approxi-
mation these two control systems behave similarly.

In this experiment the effects of a P-, PI- and PID-controller will be presented and analysed
with the help of a lab model.

• In the preparation phase (so before the lab session) you will analyse the plant with
a MATLAB simulation and design a P-, PI- and PID-controller using the Ziegler-Nichols
method.

• During the lab session the closed loop response is to be analysed systematically using
a reference and a step response and the controller designed at home is evaluated. The
control-platform is already implemented, you just have to parametrise it. To fulfill the
specifications you may have to retune your controller.

For the experiment preparation you will need the following files which you can download
from the IfA Fachpraktikum webpage: http://people.ee.ethz.ch/~ifa-fp/wikimedia/

images/6/6e/IfA_2-4_template.zip

ifa24ol.m Open loop simulation
ifa24cl.m Closed loop simulation

During the lab session you will need this additional file which is already saved on the lab
computer:

ifa24 get data.m Download the measurement data from the control platform
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Chapter 1

Problem Setup and Notation

1.1 Experimental Setup

Figure 1.1: The experimental setup for fast speed control

Figure 1.1 shows the setup of the experiment. On the right, there is the DC motor which is
supplied by a voltage source. On the left there is the brake motor, which creates a load torque due
to the applied current. The shaft in the middle is composed of a rigid coupling and ventilation
rotor screwed on. Furthermore a tachometer on the shaft provides us with information for the
angular velocity.
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Below the test rig is the controller which performs the measurement of the angular velocity,
the steering of the motors and the actual control. The controller is configured over an ethernet
port and consists of multiple modules (from left to right):

• Steering module (X20 CP 1484) for communication and control

• Analog input module (X20 AI 2622) for measuring the tachometer signal

• Motor bridge module (X20 MM 2436) for the motor power supply

The motor bridge module has two outputs which can be configured as either voltage- or
current sources. The load motor is driven by a current source. This causes a load moment
proportional to the anchor current. The main rotor is driven by a voltage source of ±24V . In
table 1.1 the most important parameters of the motor bridge module are summarised.

amplification factor 1
output voltage (drive motor) ±24V
output current (load motor) ±1.4A

Table 1.1: Controller Data

The digital motor controller provides a pulse-width modulated (PWM) signal of amplitude
± 24 V to both motors. A PWM-signal is a digital, clocked signal whose amplitude is either
±24V (high) or 0 V (low). The duty cycle D (0 ≤ D ≤ 1) defines the fraction of one period
during which a signal is in the high state. For D = 1, the full voltage is always applied, for
D = 0 no voltage is present across the motor. Due to the low pass characteristic of the motor
the digital signal is smoothed and can approximately be seen as an analog signal of a voltage
D ∗ ±24 V .

1.2 Open Loop Plant Model

T
.

LPK   G    (s)
UR

SU

A

AR

L
1 + s

1

RA
UR US Ud MA

ML

1

sΘ
KM

KG

iA
Uω−

−

ω

Figure 1.2: Plant Model P (s)

Figure 1.2 shows the block diagram of the open loop of the plant. The control input UR is
limited to ±24V due to the limited operational range of the motor controller. This results in
the following saturation characteristic:

US =


−24V, for UR < −24V

UR for − 24 ≤ UR ≤ 24V

+24V, for UR > 24V

(1.1)
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From DC motor theory we get the following differential equation for the anchor current iA:

LA
d iA
dt

= Ud −RA iA. (1.2)

Here LA is the anchor inductivity and RA the anchor resistance. Ud is the differential voltage be-
tween the motor input voltage US and the induced voltage KG ω (counter EMF). Equation (1.2)
leads to the structure depicted in figure 1.2 .

The anchor current generates a driving torque

MA = KM · iA, (1.3)

which counteracts the external load moment ML. The resulting moment leads to an acceleration
of the shaft:

Θ
dω

dt
= MA −ML. (1.4)

Where Θ is the moment of inertia of the shaft. The angular velocity ω of the shaft follows
through integration and is measured by the tachometer generator (generator constant KT ). The
resulting voltage signal shows a considerable ripple and is therefore smoothed with the second
order low pass filter GLP (s):

GLP (s) =
ωF

2

s2 + 2DF ωF s+ ωF
2

(1.5)

Here s is the laplace–variable, ωF the cutoff frequency and 2DF the damping factor of the low
pass filter.

The model of the plant results in a fourth order system. The differential equation for the
state variable iA results from equation (1.2), the one for the state variable ω from equation (1.4).
Since the low pass filter is of order two, two additional state variables are introduced: The output
voltage Uω of the filter and another auxiliary variable without a significant physical meaning.
Thus we get the following state space representation:


i̇A
ω̇
ẋ3

U̇ω

 =


−RA

LA
−KG

LA
0 0

KM

Θ 0 0 0
0 KT ωF −2DF ωF −ωF

0 0 ωF 0




iA
ω
x3

Uω

+


1

LA
0

0 −1
Θ

0 0
0 0

[
US

ML

]

Uω =
[
0 0 0 1

] 
iA
ω
x3

Uω

+
[
0 0

] [ US

ML

] (1.6)

Remarks:

• The actual output (i.e. the signal we wish to track) of the plant is the shaft angular velocity
(ω). As the output signal is corrupted with ripples and is therefore smoothed with a filter,
the (filtered) Uω is used as the output variable. In this experiment the dynamics of the
filter do not play an important role for the control dynamics. This does not always have
to be the case!

• The nonlinear saturation characteristic US = f(UR) (eq. 1.1) is represented as a separate
block in the plant model (see fig. 1.2).

• For the purposes of this experiment we assume an operation in the linear part of the
saturation characteristic, where the transfer function from UR to Uω is denoted by P (s)
(the plant). Note that the voltage might get saturated for certain experiments during the
lab session and the occurring nonlinearity can make the control accuracy differ from a lot
as compared to the simulation in MATLAB.
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Chapter 2

Theoretical Exercises -
Preparation at Home

The goal of the controller is to stabilise the output signal Uω around a generally non-zero
operating point. For this experiment the operating point is the angular velocity ω = 200 rad/s.
The constant load moment induced by the load/brake motor should be 30 mNM . For this
operating point, calculate the steady state values. Use the parameters from table 2.1 and the
italic parameters in appendix A.1. Remember that in equilibrium all time derivatives are zero.
With these parameters you can get the steady state values for US and Uω from the linear system
in equation (1.6).

Remark: The load moment of the ventilator increases quadratically with rotational speed.
As a simplification you can assume a constant load moment of 6 mNm for an angular velocity
of 200 rad/s

angular velocity ω 200 rad/s
moment of inertia Θ of the shaft with ventilator 125 · 10−6 kgm2

load moment ML (30 + 6) mNm

Table 2.1: Operating Point Data

Task 1: Equilibrium Point

Calculate the steady state values for Uω and iA as well as the control input US using
equation (1.6) and fill in the table 2.2.

Operating Point Value

ω 200 rad/s

Uω

iA

US

Table 2.2: Steady State Values at the Operating Point
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Solution to Task 1

By setting all time derivatives to zero one gets the steady state. Thus we get the
following equations:

0 = −RA

LA
iA − KG

LA
ω +

1

LA
US (2.1)

0 =
KM

Θ
iA − 1

Θ
ML (2.2)

0 = KT ωF ω − 2DF ωF x3 − ωF Uω (2.3)

0 = ωF x3 (2.4)

From equation (2.4) it immediately follows:

x3 = 0 (2.5)

Therefore using equation (2.3) and the data from the appendix we get:

Uω = KT · ω = 45.82
mV

rad/sec
· 200rad/sec = 9.16V (2.6)

From equation (2.2) we get the anchor current:

iA =
ML

KM
=

36mNm

51.2mNm/A
= 0.703A (2.7)

Therefore US results in:

US = RA iA +KG ω = 8.5V/A · 0.703A + 52.5mV/(rad/sec) · 200rad/sec = 16.47V
(2.8)

Remark: In steady state the moment of inertia is not relevant (!), only the load
moment is.

Filling the just calculated values into table 2.3:

Operating Point Ventilator

ω 200 rad/s ≈
1909 rpm

Uω 9.16 V

iA 0.703 A

US 16.47 V

Table 2.3: Steady State Values

In this experiment we use P-, PI- and PID controllers which are an industry standard.
Figure 2.1 shows the closed loop PID controller. Here, P (s) is the plant shown in Figure 1.2

Besides a normal feedback we also use a feedforward term to increase the control accuracy,
namely we add an additional voltage UFF at the input of the plant. This corresponds to the
steady-state voltage US calculated in Task 1. The PID controller is then used to control (correct
for) deviations from the steady state values, this includes disturbances and modelling errors.
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Figure 2.1: Closed-Loop PID Controller

The closed loop state space equations are:
i̇A
ω̇
ẋ3

U̇ω

ẋ5

ẋ6

 =


−RA

LA
−KG

LA
0 − 1

LA
(KP + k) 1

TILA
− k

LA
KM

Θ 0 0 0 0 0
0 KT ωF −2DF ωF −ωF 0 0
0 0 ωF 0 0 0
0 0 0 −1 0 0
0 0 0 − 1

T 0 − 1
T

 ·


iA
ω
x3

Uω

x5

x6



+



1
LA

0 1
LA

(KP + k)

0 − 1
Θ 0

0 0 0
0 0 0
0 0 1
0 0 1

T

 ·

 UFF

ML

Uref



[
Uω

UR

]
=

[
0 0 0 1 0 0
0 0 0 −KP − k 1

TI
−k

]
·


iA
ω
x3

Uω

x5

x6

+

[
0 0 0
1 0 KP + k

]
·

 UFF

ML

Uref



KP is the gain of the P-controller. Additionally, the output voltage of the integrator has
been introduced as the new state variable x5. TI is the integral time constant of the I-part
of the PI-controller. Since a pure D-part is not realisable (the transfer function of a pure D
has a numerator of higher order than the denominator i.e. a non causal transfer function), a
so called “Dirty-D” is implemented, a realisable differentiator with a limited gain. We get this

implementation by adding a time delay T
(

L→ e−Ts
)
approximated to first order, to a normal

D-controller. The output of this element is the state variable x6 and its transfer function is
G(s) = k · Ts

Ts+1 . The derivative time constant TD is given by the delay T and the gain k:

T = TD

k where k ≈ 10 . . . 20.
Remark:

• For the plant simulation in the MATLAB-files ifa24ol.m and ifa24cl.m the nonlinear
characteristic of the voltage amplifier, see definition (1.1), is replaced by a proportional
unity gain.
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• In Figure 2.1, for convenience only, a pure D-element is displayed instead of a Dirty-D.

2.1 The Ziegler–Nichols Methods

In 1943, on the basis of a lot of experiments, Ziegler and Nichols developed adjustment standards
in a tabular form for PID-controllers, which are still widely used even today. These empirical
methods are designed to tune PID-controllers for unknown plants. If the plant is known, often
higher quality methods are used. In this experiment you will get to know these empirical methods
even though the plant model is known. To get a feeling for the mode of action of a P-, PI- and
PID-controller you will apply the Ziegler-Nichols method to a simulation.

The unknown plant is approximated with a dominantly first order model of average relative
time delay with a transfer function of:

Gue
(s) = e−sTte

kse
1 + sT1e

. (2.9)

Index e indicates a substitute model (german:”’Ersatz’”) for the actual transfer function of the
plant. For these methods Ziegler and Nichols set the following range of validity:

0.1 ≲ Tte/T1e ≲ 1.0, (2.10)

where, from experience, results in the range 0.167 ≲ Tte/T1e ≲ 0.33 are good. Outside of
that range manual corrections are required. Note that the range with a ’small’ relative delay
0 ≤ Tte/T1e ≲ 0.10 are not part of this method!

2.1.1 The Closed Loop Tuning Method

For the closed loop tuning method the control loop is closed with a P-controller (i.e. I- and
D-controllers are deactivated by setting TI = ∞ (or 1/TI = 0) and TD = 0). Then KP is incre-
mentally increased until the control loop becomes marginally unstable (i.e. reaches oscillation).
The corresponding KP is noted down as ultimate gain Ku. Additionally one measures the
oscillation period Pu. From these 2 measured values, gains for the P-, PI- and PID-controller
can be set according to table 2.4.

Method Controller KP 1/TI TD

Oscillation
P 0.5Ku – –
PI 0.45Ku 1.2/Pu –
PID 0.6Ku 2/Pu (1/8)Pu

Step Response
P T1e/(TtekSe

) – –
PI 0.9T1e/(TtekSe

) 0.3/Tte –
PID 1.2T1e/(TtekSe

) 0.5/Tte 0.5Tte

Table 2.4: Derivation of parameters according to Ziegler-Nichols

Task 2: Closed Loop Tuning Method

Determine control parameters using the closed loop tuning method and fill in the
Table 2.5. To setup the controller use the MATLAB function ifa24cl(KP,1/TI,TD)

and analyse the closed loop stability margin with a step response of 5 V. Both
parameters 1/TI and TD are to be set to 0.

Remark: Note that for the closed loop tuning method in MATLAB the voltage UR

occasionally exceeds the saturation limit. This does not pose a problem though as
we do not have such a saturation limit for the simulation.
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Method Controller KP 1/TI TD

Oscillation
P – –
PI –
PID

Step Response
P – –
PI –
PID

Table 2.5: Control parameters according to Ziegler-Nichols (model)

Method Controller KP 1/TI TD

Oscillation (Ku = 15.25, Pu = 0.29)

P 7.6 – –

PI 6.9 4.1 –

PID 9.2 6.9 0.036

Step Response
(Tte = 0.0667, T1e = 0.495, kSe = 0.872)

P 8.6 – –

PI 7.7 4.5 –

PID 10.3 7.5 0.033

Table 2.6: Control parameters according to Ziegler-Nichols (model)

Solution to Task 2

See Table 2.6.

2.1.2 The Open Loop Tuning Method

Not all control circuits are allowed to be brought to oscillation. That is why Ziegler-Nichols
developed a second method. For this a unit step input is applied to the plant and the step
response is analysed as in Figure 2.2. By drawing a tangent through the inflection point (point
where the sign of the curvature changes) of the step response one gets the auxiliary latency
Tte , the plant gain kSe

and the auxiliary rise time T1e . If a non-unit step input is applied the
measured factor kSe

has to be corrected by dividing it by the height of the step.

Task 3: Open Loop Tuning Method

Determine the control parameters using the open loop tuning method and fill in the
Table 2.5. Use the MATLAB-function ifa24ol to simulate the step response of the
open loop for a step input of 5 V. From the step response and its first derivative you
should be able to extract the parameters Tte , T1e and kSe

:

As in Figure 2.2, the plant gain corresponds to the final value of the step response
divided by the step input height (here: 5 V), the auxiliary latency is the intersection
of the tangent through the inflection point and the time axis and the auxiliary rise
time is the time between the previously mentioned intersection and the intersection
of this tangent with the final steady state value. By looking at the derivative graph
of the input response one gets and slope of the tangent and can then calculate where
the tangent intersects with other lines. Then calculate the values for KP ,

1
TI

and TD

according to Table 2.4.
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Figure 2.2: Open loop tuning method according to Ziegler-Nichols. The tangent is to be put
through the inflection point of the step response. In this example Tte = 0.75, T1e = 1.4 and
kSe

= 4.5, where a unit step was used as an input.

Solution to Task 3

Plant gain kSe = 0.872, Inflection point of step response at t = 0.165s. Slope at
inflection point: kSe

= 8.813. From this one gets a auxiliary latency of Tte = 0.0667s
and a auxiliary rise time of T1e = 0.495s.

The control parameters are in table 2.6.

Task 4: Comparison of Both Methods

Compare the control parameters you got for both methods. How do you justify the
differences? Are the conditions (validity ranges) set by Ziegler-Nichols fulfilled?

Solution to Task 4

The conditions set by Ziegler-Nichols are fulfilled, Tte/T1 ≈ 0.133. The values of
both methods are close but since we are dealing with empirical methods they are not
identical.

The step response of the controller should fulfill the following specifications (see appendix B) :

• rise time (german:Anregelzeit) ≤ 0.3s for 90% of the steady state value.

• settling time (german:Ausregelzeit) ≤ 1.5s for a tolerance band of ±5% of the steady state
value.

• overshoot (max. peak value, german:Überschwingen) ≤ 20% of the steady state value.
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Figure 2.3: Open loop step responses for a step of 5 V

If these specifications are not met with the control parameters of Ziegler-Nichols you have to
manually tune the parameters a bit. Table 2.7 indicates how an increase in control parameter
affects the other values.

parameter rise time overshoot settling time steady state error
KP ↑ ↓ ↑ small influence ↓
1/TI ↑ ↓ ↑ ↑ → 0
TD ↑ small influence ↓ ↓ no influence

Table 2.7: Effect of increasing the individual control parameters
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Task 5: Compliance with Specifications

• Use the MATLAB script ifa24cl(KP,1/TI,TD) in order to simulate the closed
loop step response of a 5V step, a UFF step of 5V, and a load moment of 10mNm.
Fill in the Table 2.8 by using either the parameters from the oscillation or the
open loop tuning method.

• Which of the above specifications are fulfilled by the P-, PI-, and PID-controllers?

• Tune the PID-controller as to keep the overshoot within the given boundary.
The effect of each individual control parameter is given in Table 2.7

Controller P-controller PI-controller PID-controller PID-controller
retrimmed

KP

1
TI

TD

Reference Response (Uref)

rise time [s]

settling time [s]

overshoot emax(t) [%]

steady state error e∞ [%]

Disturbance Response of UFF

settling time [s]

overshoot emax(t) [%]

Disturbance Response of ML

settling time [s]

overshoot emax(t) [%]

Table 2.8: Results of controller tuning using simulation

Remark: Keep an eye on the saturation limit: The working range for the voltage amplifier
is ± 24 V, afterwards it saturates.

Solution to Task 5

• The specification regarding the rise and settling time are fulfilled by all con-
trollers. However the overshoot is more than twice as high as it is allowed to
be.

• See Table 2.9. One gets slightly different values for the open loop tuning method.
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Figure 2.4: Step response of closed loop and controlled variables, KP = 7.63, 1/TI = 0 1/sec,
TD = 0 sec
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Figure 2.5: Step response of closed loop and controlled variables, KP = 6.87, 1/TI = 4.14 1/sec,
TD = 0 sec
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Figure 2.6: Step response of closed loop and controlled variables, KP = 9.15, 1/TI = 6.90 1/sec,
TD = 0.036 sec
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Figure 2.7: Step response of closed loop and controlled variables, KP = 7.4, 1/TI = 4.5 1/sec,
TD = 0.1 sec
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Controller P-controller PI-controller PID-controller PID-controller
retrimmed

KP 7.63 6.87 9.15 7.4

1
TI

– 4.14 6.90 4.5

TD – – 0.036 0.1

Reference Response (USoll)

rise time [s] 0.14 0.16 0.13 0.14

settling time [s] 0.82 1.63 1.13 1.46

overshoot emax(t) [%] 44.4 % 25.5 % 39.1 % 20.0 %

steady state error e∞ [%] 13 % 0 % 0 % 0 %

Disturbance Response of UFF

settling time [s] 0.82 2.43 1.77 2.27

overshoot emax(t) [%] 44.4 % 40.3 % 63 % 32.3 %

Disturbance Response of ML

settling time [s] 0.82 0.49 0.75 0.45

overshoot emax(t) [%] 44.3 % 8.9 % 13.6 % 7.0 %

Table 2.9: Results of controller tuning using simulation and the control parameters from the
closed loop tuning method
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Chapter 3

Lab Session Tasks

During the lab afternoon you will examine if the model corresponds to the actual plant and test
the controller that you’ve designed at home on the real physical system.

Start the script IfA 2.4 on the desktop to copy the required files into the directory
C:\Scratch\Speed Control.

The experiment apparatus is managed through a GUI (see Fig. 3.1) where you can enter
the control parameters. Since the graphical displaying of the different voltage curves over time
is coarse you can also record the values and process them further with MATLAB. Open the
VNC-viewer and use the following login to start the GUI:

Server: autx20-01

Passwort: control

Click on the button Start to begin the experiment. With the big button on the top left you
can (de)activate the controller. The P-, I- and D-branches can be switched on/off separately. If
all branches are switched off we have the open loop system. The numbers inside the black boxes
can be changed, the ones in grey are only there for display. With the Record button you can
start and stop the recording of the voltage signals. With a temporal resolution of 1 ms you can
record maximum for 30 seconds, with a coarser temporal resolution a longer time span can be
recorded. During the recording certain functions are locked. After the completion of a recording
the data has to be written to memory and therefore you cannot start a new recording during
that time. Note that the control parameters in the GUI are KP , KI and KD , where KI := 1

TI

and KD := TD.

3.1 Model Validation

Before you close the control circuit, you have to make sure the your model is close enough to
the real plant. For this you will validate your model i.e. your simulation results on the physical
plant.
Performance in the low frequency regime, i.e. the plant gain and the dominant time constant
can be most easily determined from the step response. The better the measured step response
corresponds to the simulation, the more reliable the previously calculated control parameters
are and the lower the risk for the plant when the control loop is closed is.
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Figure 3.1: GUI for the Controller

Task 6: Validation of the Equilibrium Point and the Model

Check if the equilibrium point calculated in Task 1 is correct. Adapt the feed forward
voltage UFF until the shaft rotates with 200 rad/s (don’t forget to convert rad/s to
rpm). The voltages UR and Uω can be read of directly. The anchor current iA does
not need to be calculated. Since you are analysing the open loop behaviour the
controller obviously has to be shut off. You, however, have to set the load moment
ML. This is done through the load motor whose load moment is proportional to the
current of the current source. With the data from appendix A.1 you can calculate
the required current for a load moment of 30 mNm:

ML = KM · iL =⇒ iL = 0.91A. (3.1)

state value

ω
Uω

UR

Table 3.1: Measured steady state values at the operating point

Next, plot the open loop step response using the MATLAB-function ifa24ol. As
a comparison to the real system set the load moment to 0 and start the record-
ing. Change the feed forward voltage from 0 V to 5 V to simulate an open loop
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step input. Stop the recording and retrieve the data using the MATLAB Function
ifa24 get data. Adapt the MATLAB-script if necessary in order to set the step
input to time 0. Compare both step responses. Does the model correspond to the
real system?

Solution to Task 6

• For a load current of 0.91 A the calculated value differs from the real one. See
table 3.2

Operating Point Rotor

ω ∼ 200 rad/s ≈ 1909 rpm

Uω 9.2 V

UR (= UFF since OL) 14.0 V

Table 3.2: Measured steady state values at the operating point

• The measured step response, on the other hand, deviates significantly from the
simulated response. This deviation is due to the neglected friction in the model
and the breaking moment of the ventilation rotor which has not been taken into
account in the MATLAB simulation, see Fig. 3.2.
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Figure 3.2: Simulated (solid line) and measured (dashed line) open loop step responses for a
step of 5 V
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3.2 Closed Loop System

Task 7: Closed Loop Tuning Method on the Real System

Since the simulated input response does not match well enough with the measured
one you will perform the closed loop tuning method on the real system. In order to
get good results with regards to PID-control parameters we will perform the closed
loop tuning method at the operating point. The load moment will be set to 0 just
like for the open loop tuning method, the feed forward voltage UFF is thus reduced
compared to the one calculated in task 6. Determine this voltage just like in Task 6.

In contrast to the simulation Task 2 the step input should have an amplitude of 3 V
in order to avoid nonlinear effects due to saturation. If you still see them reduce the
amplitude further to 2 V. Instead of a step you can also use a rectangle signal with
a sufficiently large period. For this set Uω as offset and an amplitude of 1.5 V (1 V).
This will also result in a step of 3 V (2 V). To measure the critical period Pu you have
to record the data and evaluate it with MATLAB. Determine the control parameters
according to Ziegler-Nichols, fill in the Table 3.3 and compare the parameters to
those from your simulation of the closed loop tuning method (Table 2.5).

Method Controller KP 1/TI TD

Oscillation
P – –
PI –
PID

Table 3.3: Control parameters according to the Ziegler-Nichols method (real system)

Solution to Task 7

For a load current of 0A we now get UFF = 13.5 V . For the resulting Ziegler-Nichols
parameters see Table 3.4

Task 8: Testing the Controller

Method Controller KP 1/TI TD

Oscillation (simulated)
(Ku = 15.25, Pu = 0.29)

P 7.6 – –

PI 6.9 4.1 –

PID 9.2 6.9 0.036

Oscillation (real system)
(Ku = 15.7, Pu = 0.32)

P 7.85 – –

PI 7.07 3.75 –

PID 9.42 6.25 0.04

Table 3.4: Control parameters according to Ziegler-Nichols (real system)
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Controller PID-controller retrimmed
KP
1
TI

TD

Reference Response (Uref)
rise time [s]
settling time [s]
overshoot emax(t) [%]
steady state error e∞ [%]
Disturbance Response of UFF

settling time [s]
overshoot emax(t) [%]
Disturbance Response of ML

settling time [s]
overshoot emax(t) [%]

Table 3.5: Performance of the retrimmed controller

Now you can close the loop. First set the feed forward voltage UFF back to the
voltage UR determined without a load moment in the previous exercise. This will
allow us to work at the operating point. Use Uω from the previous exercise as a
reference value (set point) or offset (for a sine or rectangle signal).

Test the closed loop system with the parameters that you got from the closed loop
tuning method of the real system. Start with a P-controller and also test the PI-
and PID-controllers. Investigate the behaviour for different reference signals (sine,
rectangle). Is the control loop stable? Tune the controller as in Task 5 and fill in the
Table 3.5 for a reference step of 2 V around the operating point, a UFF step of 2 V
and a load moment of 10 mNm (corresponds to iload = 0.3 A).

Remark: Mind the nonlinear effects due to saturation of the input voltage when
steps bigger than the set ones are carried out. Which part (P, I, or D) is especially
sensitive towards saturation.

Solution to Task 8

The closed loop system is stable. Since the parameters of the closed loop tuning
method in the simulation don’t deviate much from the ones in the real system one
can use the values from Task 5 for retuning. Especially the I-part is sensitive towards
an input saturation. In this case, by reducing the factor 1/TI the control accuracy
can be improved. One could also think of implementing an anti-windup in the PID-
controller.

See Table 3.6
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Controller PID-controller retrimmed
KP 7.4
1
TI

4.5 1/sec

TD 0.1 sec
Reference Response (USoll)
rise time [s] 0.21
settling time [s] 2.73
overshoot emax(t) [%] 4.1 %
steady state error e∞ [%] 0 %
Disturbance Response of UFF for a 5 V step
settling time [s] 0.4
overshoot emax(t) [%] 3 %
Disturbance Response of ML

settling time [s] 0 / not measurable
overshoot emax(t) [%] 0 % / not measurable

Table 3.6: Control parameters according to Ziegler-Nichols (closed loop tuning method on a real
system)
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Chapter 4

Lessons Learned

This chapter summarises the most important learning objectives of this experiment through
questions. Think about the questions and discuss your answers with the supervisor.

Lesson Learned 1: Modelling

For the modelling and the open loop simulation certain influences have been neglected
(sometimes implicitly), which lead to differences between the simulation and the
measurement. Which influences could these be and could you model them?

Answer to Lesson Learned 1

The bearing friction (implicitly), the braking torque of the fan (implicitly) and the
input variable limitation (explicitly) have been neglected. The neglect of friction
and the braking torque of the fan lead to the different steady state step response
values, the motor itself corresponds well with the model. The friction corresponds
to a ω-proportional breaking moment (linear) and the breaking moment of the fan
is proportional to ω2. So the system is actually nonlinear. A further nonlinearity
arises due to limited actuation.

Lesson Learned 2: The Ziegler-Nichols Methods

The Ziegler-Nichols methods are empirical procedures to tune a PID-controller for an
unknown plant. What assumptions about the unknown plant have to be made and
what criteria have to be fulfilled in order to see a good result from Ziegler-Nichols?

Answer to Lesson Learned 2

See Section 2.1.
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Lesson Learned 3: PID-controller

• Overshoot is increased by both a higher P-, and I-part of the controller. Does
one of the parts have a higher influence on the overshoot than the other (based
on your observations this afternoon)?

• Which part eliminates a steady state error?

• The analog tachometer signal of the shaft has a ripple and therefore also passes
through a low pass filter. How would you have to adapt the control parameters
if there wasn’t a filter (which control parameters should increase/decrease or
not change)?

Answer to Lesson Learned 3

• The P-, and I-part have an equal influence on the overshoot.

• An integral part eliminates steady state errors. (But can build up an error
resulting in a high overshoot!)

• A noisy measurement signal has a lot of small, fast changing signals. These fast
changes affect the D-part a lot. Therefore the D-part has to be decreased.

Lesson Learned 4: Task Completion

We hope that you had fun with the experiment and could learn something new.
Please fill out the online feedback form on the registration website under MyExperiments.
Each student has to fill out his/her own feedback. This helps us to further improve
our experiments. Thank you very much for your inputs. Now discuss the experiment
with your supervisor.

Answer to Lesson Learned 4

No solution needed.
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Appendix A

Technical Data Sheet

A.1 Data for the Controlled System

Voltage source for the drive motor
Output Range ± 24 V
max. Continuous Output Current ± 3.0 A

Drive Motor
Rated Voltage ± 24 V
Idle Speed (4400 rpm) 461 rad

s
Initial Torque 149 mNm
max. Continuous Output 37 W
Average no-load Current 50 mA
max. Continuous Current 1.2 A
max. Speed (9000 rpm) 942 rad

s
Back-EMF =̂ Generator Const. KG

5.5 mV/rpm
52.5 mV

rad/s

Anchor Inductivity 1.3 mH
Anchor Resistance RA 8.5 Ω
Torque Constant =̂ Motor Const. KM 51.2 mNm

A

Rotor Moment of Inertia 5.2 10−6 kgm2

Shaft with Fans

Moment of inertia ca. 125 10−6 kgm2

Braking Torque at nominal rotational
speed of 200 rad/s

ca. 10 mNm

Current Source for the Load Motor
Output Range ± 3 A
Limits imposed by Software ± 1.4 A

Load Motor
Rated Voltage ±24 V
Idle Speed (6750 rpm) 707 rad

s
Initial Torque 128 mNm
Continuous Output (max.) 27 W
Average no-load Current 110 mA
max. Continuous Current 1.4 A
max. Speed (9000 Upm) 942 rad

s
Back-EMF =̂ Generator Const. KG

3.4 mV/Upm
32.5 mV

rad/s

Anchor Inductivity 0.75 mH
Anchor Resistance 6.2 Ω
Torque Constant (Motor Const. KM ) 33 mNm

A

Rotor Moment of Inertia 2 10−6 kgm2

Tachometer with Amplifier

Amplification Factor KT 24 V with 5000 rpm 45.82 mV
rad/s

Voltage Ripple 300 mV pp

Low Pass Filter
Input Voltage ± 24 V
Output Range ± 24 V
Nominal Cutoff Frequency ωF 20 rad

s
Damping Factor 2DF (max. flat) 1.414

Note: KG and KM have the same SI-units.
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Appendix B

Performance Parameters in the
Time Domain

To describe the reference response of a closed loop control system one uses parameters depicted
in Figure B.1. The plot represents a closed loop step response for a unit step input.

90% des Endwerts

Endwert

Sollwert

Überschwingen

bleibender Regelfehler

Anregelzeit
Ausregelzeit

+5%

−5%

Figure B.1: Performance Parameters in the Time Domain

• Rise Time [s] (german:Anregelzeit): The time until the steady state value is achieved
for the first time. This steady state value does not necessarily have to be the input step
height (steady state error). Additionally the steady state value is often reached only
asymptotically. Then we can define the rise time as the time until 90% of the steady state
value is reached.

• Settling Time [s] (german:Ausregelzeit): The time starting from which the deviations
from the steady value stay inside the tolerance band.

• Tolerance Band describes the deviation from the steady state value. Usually the toler-
ance band has values between ±1% and ±5%

• max. control error (overshoot, german:Überschwingen): Usually values between
5% and 20% of the steady state value.
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