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IfA Fachpraktikum - Experiment 1.2 :

MAN IN THE LOOP

The Man-in-the-loop 1 2 exercise is a graphical user interface (GUI) based Matlab simulation
that interactively teaches the user some of the basic concepts of feedback control. You will:

• review transfer functions, Bode diagrams, and stability theory.

• use a joystick to follow a moving dot (a reference), and your controller transfer function
will be estimated and analyzed.

• control an inverted pendulum and balancing board with the joystick.

Figure 1: “Man in the loop” simulation exercise framework. Source: [1].

1Simulation written by René Waldvogel.
2Code Maintenance: Kimberly Chung.
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Chapter 1

Simulation Overview

This chapter has an overview of the “Man in the loop” simulation exercise with sample exer-
cises. There are three classes of exercises: control theory review, human controller analysis, and
unstable system control.

1.1 Control Theory

The user completes exercises on transfer functions, Bode diagrams, and stability theory. Fig-
ure 1.1 shows an example.

Figure 1.1: Theory review exercise sample.
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1.2 Human controller

The user follows a moving dot, representing a plant, with a joystick. Then the controller transfer
function of the user is estimated and analysis performed. Figure 1.2 shows an example.

Figure 1.2: Human controller exercise sample.

1.3 Fun with inverted pendulum and balancing board

The user controls two classic unstable systems with a joystick. The inverted pendulum GUI is
shown in Fig. 1.3.

Figure 1.3: Inverted pendulum exercise.
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Chapter 2

Lab Session Tasks

This chapter describes the instructions for starting the graphical user interface (GUI) simulation
in Matlab. It also contains theory that might be helpful in completing some of the exercises.

2.1 Running the simulation

2.1.1 How to start simulation

1. Double-click the icon named ifa 1 2.ps on the Desktop. This will retrieve the necessary
files, start Matlab and compile the files which takes about 5 minutes to complete. Please
be patient.

2. Type �start� in the command window (without ��).

3. Follow the screen instructions. Please read Section 2.1.2 as it has a few things the user
needs to be aware of about the GUIs. See Section 2.1.3 if Matlab crashes. For assistance
with theoretical background, see Section 2.2.

2.1.2 Important GUI tips - READ IT!

• Please do not have other programs running - the software is memory intensive!

• Please be patient with Matlab Graphical User Interfaces (GUIs). Please wait
until the screen is fully loaded before doing anything. Please do not click around too fast.

• Most exercises with the joystick are limited to 30-40 seconds and will terminate automati-
cally. The inverted pendulum and balancing board simulations at the end are limited to 70
seconds. When joystick simulations are running, on-screen buttons will be disabled even
when visible.

• If Matlab freezes, see help in Section 2.1.3 or take a note of the GUI file name at the upper
left corner of the window and ask an assistant.

2.1.3 When things go wrong

• If the GUI is behaving abnormally, try using the back button “Zurück” and try again.

• If the GUI is not responsive or crashes and must be restarted:

1. Restart Matlab by double-clicking on the Matlab icon on the Desktop. Note: Do not
double-click ifa 1 2.ps since this would get a fresh copy of all files and would again
do a compilation of these files!

2. Make sure the current directory is at the root: C:\Scratch\Man in the loop
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Figure 2.1: Block diagram of a feedback system.

3. Type in �restart� in the command window (without ��).

This will open the GUI at a state close to where left off. However, it will not always
bring it back to exactly where left off. Alternatively, if Matlab has to be restarted, just
double-click ifa 1 2-restart.ps.

• If the user terminates a joystick exercise using 8 or 9 button, the program unloads. Just
press the “test ist fertig” and go to the next screen. There will be an option to try again.

2.1.4 After completing the experiment

Please fill out the feedback formular on the registration page under MyExperiments. Each
Student/Partizipatn has to fill out its own feedback. This will help us to improve the experiment.
Thank you for your help.

2.2 Theory and formulas

This section provides theory and formulas that may be needed during the exercise. Theory
related to closed-loop systems will be based on the block diagram in Fig. 2.1.

2.2.1 Nyquist stability criterion

The stability of the closed-loop system in Fig. 2.1 can be determined with its open-loop properties
using the Nyquist stability criterion. The open-loop transfer function of the system in the figure
is defined as

L(s) = P (s)C(s) (2.1)

where P (s) is the plant transfer function and C(s) is the controller transfer function. The
Nyquist contour is a plot of the magnitude of L(s) in Eq. (2.1) versus the angle of L(s).

Notation:

• P= number of open-loop poles of L(s) in the right-half-plane (RHP) or Rechte-Halb-Ebene
(RHE).

• N= number of encirclements of -1 by the Nyquist contour. Counterclockwise is positive
and clockwise is negative.

• Z= number of RHP poles (unstable) of the closed-loop system.

The Nyquist stability criterion
The Nyquist criterion states

Z = P −N (2.2)
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where the variables are defined in the notation above. In words, Eq. (2.2) states that the number
of RHP poles (unstable poles) of the closed-loop system is equal to the number of open-loop poles
in the RHP minus the number of encirclements of -1 by the Nyquist contour. Thus, in order to
have a stable closed-loop system, (i.e. Z = 0), we want P = N . In words, the closed-loop system
is stable if the number of unstable open-loop poles is equal to the number of counterclockwise
encirclements of -1 by the Nyquist contour. See [2] for further details.

2.2.2 Crossover frequency and plant limitation

The controllability of a plant is inherently limited by the properties of the plant. We can in fact
determine whether a plant can be controlled satisfactorily with any controller before a controller
is designed. There is no point in designing a controller if the plant can never be controlled to
meet performance specifications. One such specification is the crossover frequency, wc, require-
ment of the open-loop transfer function L(s) defined in Eq. (2.1). A plant P (s) in Fig. 2.1 may
have poles in the right-half-plane (RHP), zeros in the RHP, or delay. Any one of these imposes
limitations on the achievable cross over frequency of L(s).

Notation:

• π+ = real RHP (RHE) pole of plant P (s).

• ζ+ = real RHP (RHE) zero of plant P (s).

• τ = delay in P (s). [sec]

Plant limitation on wc
For a plant with a real RHP pole, a real RHP zero, or delay, the following condition needs to
be satisfied for closed loop stability and adequate performance:

max
{

2π+
}
≤ wc ≤ min

{
ζ+

2
,

1

τ

}
. (2.3)

Equation (2.3) states that wc must be:

• at least twice as large as the RHP pole of the plant.

• smaller than half of the RHP zero of the plant.

• smaller than the “delay frequency”, 1
τ .

If the plant has multiple RHP poles or RHP zeros, then the dominant one is the pole with the
largest real part or the zero with the smallest real part, respectively. See [4] for further details.

2.2.3 Controller gain and system stability using Routh’s stability cri-
terion

The stability of a transfer function is determined by the location of its poles. If there are any
RHP (unstable) poles, the system is unstable. So how do we determine if there are any unstable
poles in the system? Consider the following transfer function expressed as a ratio of polynomials:

T (s) =
b0s

m + b1s
m−1 + · · · + bm

sn + a1sn−1 + · · · + an
. (2.4)

The poles of the transfer function in Eq. (2.4) are the roots of the denominator. The denominator
polynomial is called the characteristic polynomial. Thus, determining the stability of the system
is equivalent to determining if there are RHP roots to the characteristic equation. One way of
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doing this is finding all roots of the characteristic equation and determining if any of them are in
the RHP (unstable). Another way is to use Routh’s stability criterion which tells us the stability
of a transfer function without finding the poles directly. This criterion is useful in determining
the range of gain allowable for a system with a P-controller to maintain stability. If the criterion
is satisfied, the system has no unstable poles and thus stable. The criterion has two parts:

Condition 2.1 (Necessary): all the coefficients a1, · · · , an of the characteristic polynomial in
Eq. (2.4) are positive and nonzero.

Condition 2.2 (Necessary and sufficient): all the elements in the first column of the Routh
array are positive.

The Routh array in Condition 2.2 is built using the characteristic polynomial coefficients as
follows:

sn : 1 a2 a4 · · ·
sn−1 : a1 a3 a5 · · ·
sn−2 : b1 b2 b3 · · ·
sn−3 c1 c2 c3 · · ·

...
...

...
...

s2 : ∗ ∗
s : ∗
s0 : ∗

(2.5)

where the elements in rows sn−2 and sn−3 (and so forth) are determined using the characteristic
polynomial coefficients a1, · · · , an as follows:

b1 = −
det

 1 a2
a1 a3


a1

b2 = −
det

 1 a4
a1 a5


a1

b3 = −
det

 1 a6
a1 a7


a1

c1 = −
det

 a1 a3
b1 b2


b1

c2 = −
det

 a1 a5
b1 b3


b1

c3 = −
det

 a1 a7
b1 b4


b1

(2.6)

The elements b1, b2, · · · of the Routh array in Eq. (2.5) and Eq. (2.6) are not the coefficients
of the numerator of the transfer function in Eq. (2.4). To demonstrate how Routh’s criterion is
used, below is an example using a second order transfer function.

2nd order system Routh’s criterion example
Consider a second order closed-loop transfer function of the system in Fig. 2.1 as in following
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T (s) =
C(s)P (s)

1 + C(s)P (s)
=

b0s+ b1
s2 + a1s+ a2

. (2.7)

For the system in Eq. (2.7) to be stable, its characteristic polynomial has to satisfy the necessary
and sufficient conditions of the Routh criterion.

1. Check if a1 and a2 are both positive (Condition 2.1).

2. Check if the elements in the first column of the Routh array are positive (Condition 2.2).

s2 : 1 a2 0

s1 : a1 0 0

s0 : b1 = −
det

 1 a2
a1 0


a1

= a2 b2 = −
det

 1 0
a1 0


a1

= 0 0

(2.8)

Re-write Eq. (2.8) for clarity
s2 : 1 a2 0
s1 : a1 0 0
s0 : a2 0 0

(2.9)

For stability, the elements in the first column of the Routh array, a1 and a2, in Eq. (2.9)
need to be positive. This is in fact the same as the necessary condition.

The two conditions in Eq. (2.8) and Eq. (2.9) show that for a second order characteristic
equation, both the necessary and sufficient conditions are satisfied if all the coefficients of the
characteristic polynomial are positive. Thus, for a second order system, it is stable iff all the
coefficients of the characteristic polynomial are positive; a Routh array does not need to be
created to determine stability. If a proportional controller is used so that C(s) = K, the
coefficients a1 and a2 will be functions of K. Then the Routh criterion can be used to determine
the range of K that will keep the system stable. See [2] for further details.
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Appendix A

Library of Transfer Functions

This section contains s-domain transfer functions that are frequently used in control system anal-
ysis. For each function, Nyquist, Bode plot, impulse response, step response, and analog/digital
realization are provided. The contents in this section were taken directly from [3].
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