
Automatic Control Laboratory, ETH Zürich
Prof. J. Lygeros

Manual prepared by: X Guidetti and A. Karapetyan
(based on manual by S. Richter, J. Felder and C. Hersberger)
Revision from: April 14, 2023

IfA Fachpraktikum - Experiment 3.4 :

Quad Tanks

In this Fachpraktikum you are controlling a setup of four coupled water tanks. This multiple
input multiple output (MIMO) system can be made minimum and non-minimum phase. We
want to show you the following aspects of control theory:

• Effects of coupling in a system

• Meaning of the relative gain array (RGA)

• Concept of LQR control

• Control of minimum and non-minimum phase systems

Contents

1 Problem Setup and Notation 4
1.1 Setup . 4
1.2 Variables and Constants . 5

2 Preparation@Home 6
2.1 Theory . 6
Task 1: Modeling, LQR and computation of flow ratios . 6
2.2 PI Design . 6
Task 2: Compute the Closed Loop Transfer Functions . 7
Task 3: Compute the PI Parameters . 7

3 Lab Session Tasks 8
3.1 Arduino Interface . 8
3.2 Minimum Phase System . 8
Task 4: Get the system ready . 8
Task 5: RGA and zeros of the transfer function matrix . 9
Task 6: Decentralized PI control . 9
Task 7: How is the control performance? . 10
Task 8: Compare with PI Controller and dynamic decoupling . 10
Task 9: Manually tune PI controller parameters . 10
Task 10: Design an LQR controller . 11
Task 11: Design an LQR integral controller . 12
3.3 Non-Minimum Phase System . 13
Task 12: Make the system non-minimum phase . 13
Task 13: Decentralized PI control for non-minimum phase system . 13
Task 14: What went wrong? . 13
Task 15: PI tuning for non-minimum phase system . 13
Task 16: Design an LQR controller for the non-minimum phase system 14
Task 17: Finalizing the Lab-Experiment: . 15

A Mathematical Model – System Equations 16
A.1 Basic Equations . 16
A.2 Quad Tank System . 16
A.3 Further Analysis of the System . 19

B Introduction to LQR Control 20
B.1 Setup of the Feedback System . 20
B.2 Concept of the LQR . 20
B.3 Measuring the Performance Based on the States 20
B.4 Further Criteria: Considering the Inputs . 21
B.5 Finding the Feedback Matrix K with Matlab . 21
B.6 How to choose weighting matrices Q and R . 22
B.7 Summary - The LQR . 22

2

C PI Controller Parameters and the Step Response 23

3

Chapter 1

Problem Setup and Notation

1.1 Setup

The quadruple tank experiment consists of four water tanks and two pumps (see Fig. 1.1 for a
system schematic). The aim is to control the water levels in the lower tanks (tanks 1 and 2)
with the two pumps. The inputs of the process to control are the input voltages of the pumps v1
and v2. The outputs are the corresponding water levels in the tanks h1 and h2. The pump and
valve symbols used in Fig. 1.1 are explained in more detail in Fig. 1.2.

Figure 1.1: System schematic of the quadruple tank.

vj

qpump,j

(a) Symbol of a pump
with input voltage vj
generating flow qpump,j

qpump,j

γj · qpump,j

(1− γj) · qpump,j

(b) Symbol of valve
splitting up pump gen-
erated flow (γj ∈ (0, 1))

Figure 1.2: Symbols used in Fig. 1.1.

4

γj

1− γj

from pump j

Figure 1.3: Sketch of a valve section. The flow from pump j is split up in a part proportional
to γj and a part proportional to 1− γj .

The flows of the pumps are split up by valves. The flow of pump 1 goes into tanks 1 and 4
whereas pump 2 feeds tanks 2 and 3.

There are two valve sections in the setup each consisting of two manually operated valves
(see Fig. 1.3). Changing the flow ratios of the valve sections makes the system minimum or
non-minimum phase.

1.2 Variables and Constants

The following table gives you a reference of the most important variables used in this experiment:

Variable
Description

Units /
in Text in Matlab Value

hi hi water levels in the tanks cm

hi hi_ss steady state water levels cm

h1, h2 h1_ss, h2_ss steady state water levels of tanks 1,2 15 cm

xi xi deviations of water levels, xi := hi − hi cm
qi - flows of the pumps to tanks cm3/s
vj vj voltages to the pumps V
vj vj_ss steady state pump voltages V
uj uj deviation of pump voltages, uj := vj − vj V

qpump,j - total flow of a pump cm3/s
γj gammaj ratio of the flows (see Table A.1 on page 17) 0 to 1

Constant
Description

Units /
in Text in Matlab Value

a a cross-section of the tanks 15.52 cm2

o oi cross-section area of an outlet 0.178 cm2

g g acceleration due to gravity 981 cm/s2

kp kp pump flow constants 3.3 cm3/sV

Indices used: i = 1, . . . , 4 and j = 1, 2.

5

Chapter 2

Preparation@Home

2.1 Theory

Task 1: Modeling, LQR and computation of flow ratios

Get familiar with the system and its mathematical model (Appendix A on pages 16ff).
Read the introduction to the linear quadratic regulator (LQR) in Appendix B on
pages 20ff and the section about the flow ratios (Appendix ?? on pages ??ff).

2.2 PI Design

The hands-on part of your homework is the design of two PI controllers for the minimum phase
system. As derived in Section A.2 on pages 16ff, the system has the transfer function matrix:[

Y1(s)
Y2(s)

]
=

[
T1γ1kp

a(1+sT1)
T1(1−γ2)kp

a(1+sT3)(1+sT1)
T2(1−γ1)kp

a(1+sT4)(1+sT2)
T2γ2kp

a(1+sT2)

]
·
[
U1(s)
U2(s)

]
(2.1)

We want to control this MIMO system with two PI controllers. Because the system is only
slightly coupled (in the minimum phase setting), we ignore the off-diagonal elements of the
transfer function matrix. Thus we ignore the transfer functions U1(s) 99K Y2(s) and U2(s) 99K
Y1(s) in (2.1). We are left with two decoupled SISO systems which are schematically illustrated
in Fig. 2.1 by the dotted lines in the block denoted by G(s).

D1

D2

G(s)

r1

r2

u1

u2

y1

y2

+

+

−

−

Figure 2.1: MIMO system G(s) controlled by two PI controllers Dj(s) (ignoring the coupling).

The transfer functions of these SISO systems follow from the diagonal elements of (2.1):

gj(s) =
Tjγjkp

a(1 + sTj)
, where Yj(s) = gj(s) ·Uj(s). (2.2)

6

Note that the PI controllers Dj(s) in Fig. 2.1 have the form:

Dj(s) = Kj

(
1 +

1

τjs

)
(2.3)

Task 2: Compute the Closed Loop Transfer Functions

Compute the closed loop transfer functions Hj(s) =
Yj(s)
Rj(s)

, j = 1, 2. Bring them to

the standard form of a second order system:

Hj(s) =
· · ·

s2 + 2ζjωn,js+ ω2
n,j

(2.4)

Such a system has a step response as shown in Fig. 2.2.

st
ep

re
sp
on

se

time

Mp

ts

±1%
?
6

-�

?

6

Figure 2.2: Step response of a second order system with overshoot Mp and settling time ts.

Task 3: Compute the PI Parameters

Now compute Kj and τj such that the specifications

• settling time ts < 40s

• overshoot Mp < 9%

are fulfilled. As Kj and τj will depend on system parameters γ1 and γ2 you will get
symbolic expressions at home only. In the lab, you will need these expressions to
compute numeric values for the PI parameters (see Task 6).

The following relations should help you to obtain the PI parameters. They relate
the damping ratio ζj and the undamped natural frequency ωn,j to settling time and
overshoot:

ts ≈
4.6

ζωn
and Mp = exp

(
−πζ√
1− ζ2

)
(2.5)

Note that these relationships hold for a second order system of the form

P (s) =
ω2
n

s2 + 2ζωns+ ω2
n

(2.6)

only whereas you will find in Task 2 that the actual transfer functions H1(s) and
H2(s) have an additional (real) zero. However, for a first design controller design
these relationships can be used.

7

Chapter 3

Lab Session Tasks

3.1 Arduino Interface

You will use an Arduino Uno microcontroller as an interface between the computer and the lab
equipment.

Important: If at any time the experiment looks out of control and water
is about to overflow and touch the ultra-sonic sensor mounted on top of the
tanks, the best way to stop it is to push the reset button on the Arduino
board. It is the only button you will find, hidden between the main board
and the shield. Try it now!

3.2 Minimum Phase System

First you will control the minimum phase system with two PI controllers and compare the step
responses to those of an LQR controller.

Task 4: Get the system ready

• Make sure the water reservoirs are filled with water (approx. 3/4 of max. height)
and that the hoses to the pumps are well placed in the reservoirs.

• Also check if the big hose connecting the two reservoirs is completely filled with
water and that there is no air in it! Only if there is no air in it, a balancing
effect between the two reservoirs can be reached. If this is not the case, then
ask your colleague to close one end of the hose with her/his fingers while you
are pouring water into the other end. Then close the other end too and put
both ends back into water without letting any air into the hose (can be a bit
tricky!). It might help to shift the reservoirs a bit to the front so that it is easier
to put the hose back into water.

• Switch on the two power supplies above the monitor. They will provide power
to the water pumps.

• On the desktop, extract the lab files from the respective zip file.

• Make sure the Arduino board is properly connected to the computer through
a USB port and then flash the required firmware on it. To do so, open the file
Arduino QuadTanks.ino with Arduino IDE and then load it on the board by

8

clicking on the arrow shaped button. You should also be able to see four other
tabs, each corresponding to a different control scheme. If the upload button
does not do anything and it says ”No board selected” in the bottom right, pro-
ceed as follows: Press the ”Select Board” Tab on the top. Then choose ”COM4”
or ”COM5”. In the next popup, search for the ”Arduino Mega or Mega 2560”.
Select it and press ”OK”.

• Within the Arduino IDE, press CTRL+Shift+M to open a console with the
sensor readings. Make sure that that the sensor readings (the second, fourth,
sixth and eighth value) of all tanks are within ±1cm. If one sensor is reading
high values, try to tap it or move it gently until it reads good values. If the
console just prints weird symbols, press the button on the right of the console
that contains a number and the word ”baud”. It will open a list, from which
you pick ”115200 baud”. The console should now print numbers.

• Set the valves to minimum-phase. The valves feeding the bottom reservoirs
should be completely open (parallel to the flow direction) while the valves feed-
ing the top reservoirs should be approximately 3/4 open. This will approxi-
mately result in a γ1 ≈ γ2 ≈ 0.7, which you can assume throughout the next
tasks.

Task 5: RGA and zeros of the transfer function matrix

Run the Matlab script physical_model.m to compute the mathematical model of
the system together with the relative gain array (RGA) and the zeros of the transfer
function matrix according to the equations in Appendix A on pages 16ff. Save the
RGA as a new variable: RGA_min=RGA. You will need it later.

In the arduino IDE, in the fill-in part of the Arduino_QuadTanks tab, change the
values of the steady-state references (h1_ss, h2_ss) and voltages (v1_ss, v2_ss)
so that they correspond to the ones that MATLAB has just calculated and displayed
in the command window. Load this updated code on the Arduino.

The RGA has entries ≈ 1.1 on the diagonal, whereas the elements on the off-diagonal
are small. This means: input 1 is coupled with output 1 and input 2 with output
2. The coupling between input 1 and output 2 and vice versa is only small. From
this we conclude that it makes sense to control tank 1 with pump 1 and tank 2 with
pump 2. Which signs do you expect (and hopefully see) for the zeros?

Task 6: Decentralized PI control

Now you will regulate the system with two decentralized PI controllers. The term
‘decentralized’ herein means that PI controller D1 does not coordinate its control ac-
tions with PI controller D2, i.e. the (existing) coupling in the plant is neglected when
it comes to controlling. You need the values for the PI controller parameters Kj , τj ,
you calculated as a homework now. Go to the tab ”pi controller.ino” in the Arduino
IDE.

• Use your PI parameters computed for the PI controller parameters (from Task 3)
to define the parameters K1, tau1 and K2, tau2 respectively. Then flash the
code to the Arduino board. The microcontroller now contains everything it
needs to control the quad tanks. The computer connection will only be used to
visualize the system’s behavior

9

• Come back to matlab and open the script run_controllers.m. Set the variable
ctrl_char to ’p’ and execute the script. If needed, you can interrupt the
experiment by pushing the Arduino reset button and - after that - hitting ctrl+C
on matlab. If MATLAB prints an error message that the COM port cannot be
opened, close the Serial Monitor in the Arduino IDE (where you verified that
the sensor readings are okay) and try again. The red lines with ”KF-OFF” are
the measurements and ”KF-ON” a smoothed variant of these measurements.

• Once the experiment is completed, save the figure it produced

Task 7: How is the control performance?

Compare the plot of the step responses with the specifications on overshoot and
settling time given in Task 3. As you can see, the system does not react as desired.
What is the reason in your opinion? Try to think of an explanation and discuss it
with the supervisor.

Task 8: Compare with PI Controller and dynamic decoupling

Now we want to compare the control performance of the coupled system from before
with the one of a decoupled system. Decoupling is possible for some plants by means
of a dynamic element (the decoupler) located between the PI controllers and the
actual plant. We have already prepared the code calculating the effect of a decoupler
in the script pi_controller_decoupled.m.

• Open the script pi_controller_decoupled.m and execute it, this will calculate
additional controller gains

• Note the controller gains that you have just calculated, then move to the Ar-
duino IDE. Insert new the gains in the fill-in section of the PI_controller_dec
tab, then flash the code to the Arduino board.

• Come back to matlab and open the script run_controllers.m. Set the variable
ctrl_char to ’d’ and execute the script. If needed, you can interrupt the
experiment by pushing the Arduino reset button and - after that - hitting ctrl+C
on matlab

• Once the experiment is completed, save the figure it produced

• Compare the two experiments you just conducted: with and without the dy-
namic decoupler

Task 9: Manually tune PI controller parameters

Decoupling the system as done in the previous task is not always possible (luckily,
here it is). It might happen that the transfer function of the dynamic decoupler can-
not be realized. You will now return to the coupled system but manually tune the PI
controller parameters to get better control performance. The tuning of the controller
is done by multiplying or dividing the previous controller parameters Kj , τj .

In the pi_controller tab of the Arduino firmware this has already been prepared:
K_p1, K_p2, tau_1 and tau_2 are the values that are actually used in the PI controller
implementation in arduino. By replacing the factors “1*” in K_p1=1*K1 etc. by
other factors you can define multiples of your previously calculated PI controller

10

Proportional Part
Symptom Solution
Slow response Increase Kj

High Overshoot or Oscillations Decrease Kj

Integral Time
Symptom Solution
Slow response Decrease τj
Instability or Oscillations Increase τj

Table 3.1: PI tuning guide: What you have to do when your system does not react as desired

parameters. Table 3.1 illustrates how you can improve your step response in a
systematic way.

A first improvement can be achieved by doubling the integral times and leaving the
proportional constants:

• In the Arduino IDE open the tab pi_controller.

• Scroll down to the ”tuning” section and change the values used for the PI
controllers: K_p1=1*K1 and tau_1=2*tau1. Do the same for K_p2 and tau_2.

• Flash the modified code on the arduino board.

• Come back to matlab and open the script run_controllers.m. Set the variable
ctrl_char to ’p’ (to disable the decoupler again) and execute the script.

If you want to try to improve the step response further, you can try to find better
values for the controllers. If you need further help with tuning the PI controller,
look on page 23. There you can see how the proportional and the integral part of
the PI controller affect the step response. In general, a trade-off between overshoot
and settling time is necessary. When you are satisfied with your results, save figure
containing the step responses of your optimized controller for comparison.

Task 10: Design an LQR controller

Now you will compare your optimized PI step responses with those of an LQR con-
troller.

The LQR controller is a linear, static state-feedback controller, i.e. u = −Kx. So, for
its implementation we first have to compute x, the deviations of the states from their
steady state levels. Then u is computed using the linear control law. After that, the
steady state values of the pump voltages are added to the “deviation voltages” u,
i.e. v = u+ v is then the vector of actually applied pump voltages. These operations
are carried out in Arduino IDE tab LQR_controller.

Now you will compute the feedback matrix K and run the LQR:

• Run the script lqr_controller.m to compute the controller K.

• Note the controller gains that you have just calculated, then move to the Ar-
duino IDE. Insert new the gains in the fill-in section of the LQR_controller

tab, then flash the code to the Arduino board.

• Come back to matlab and open the script run_controllers.m. Set the variable
ctrl_char to ’l’ and execute the script.

• Once the experiment is completed, save the figure it produced

11

pump voltages

Controller Plant Display

LQR − Controller

steady−state
valuestank levels

deviations of
tank levels

deviations of
input voltages

steady−state
values

4

Out4

3

Out3

2

Out2

1

Out1

−K* u

feedback matrix
K

h4_ss

h3_ss

h2_ss

h1_ss

v2_ss

v1_ss

In1

In2

In3

In4

In5

Display on XPC

Demux

Vp1 (V)

Vp2 (V)

Tank Levels (cm)

pump voltage

pump voltage1

Coupled−Tank:
Actual Plant

Clock

Figure 3.1: Simulink block diagram of the LQR controlled quad tank.

• Compare the experiment you just conducted with one of the optimized PI con-
trollers

How is the control performance now? Why is there a steady state error? Can you
imagine a remedy for that?

Task 11: Design an LQR integral controller

In order to get rid of the steady state error of the LQR controller from before, it is
possible to combine it with an integral controller. We don’t give any further details
here regarding how the new controller gains are being computed but just ask you to
try it out:

• Run the script lqr_int_controller.m to compute the LQR with integral con-
trol gains.

• Note the controller gains that you have just calculated, then move to the Ar-
duino IDE. Insert new the gains in the fill-in section of the LQR_int_controller
tab, then flash the code to the Arduino board.

• Come back to matlab and open the script run_controllers.m. Set the variable
ctrl_char to ’q’ and execute the script.

• Once the experiment is completed, save the figure it produced

12

• Compare the results of the experiment you just conducted with one of the
optimized PI controllers

3.3 Non-Minimum Phase System

Now we want to run the same experiment in the non-minimum phase setting to learn about the
differences between a minimum and non-minimum phase system.

Task 12: Make the system non-minimum phase

To make the system non-minimum phase you have to change the valve settings:

• Set the valves to non-minimum phase: lower valves should be 3/4 open while
upper valves should be fully open. This will change γ1, γ2 approximately to 0.3.

• As the system has changed, we have to re-compute the mathematical model of
the system. Run the Matlab script physical_model.m to compute the mathe-
matical model of the system together with the RGA and the zeros of the transfer
function matrix. Which signs do you expect (and hopefully see) for the zeros
now?

Task 13: Decentralized PI control for non-minimum phase system

Now you will use the PI controller you developed at home for the control of the
minimum phase system for the non-minimum phase system. As the system has
changed (γ1 and γ2 are different now), the controller parameters have to be re-
computed accordingly.

• Familiarize yourself again with the reset button of the Arduino.

• Evaluate your symbolic expressions for the PI controller parameters (see Task 3)
and define the parameters K1, tau1 and K2, tau2 respectively in the Arduino
IDE PI_controller tab. Make sure to reset the PI tuning section to its original
state, i.e. K_p1=1*K1, . . . , and flash the new code.

• Come back to matlab and open the script run_controllers.m. Set the variable
ctrl_char to ’p’ and execute the script. Stop the system with the Arduino
reset button (followed by ctrl+C) if the behavior of the system becomes strange,
i.e. water levels rise too high.

Task 14: What went wrong?

The system will not react as desired. What is the problem?

Comparing the relative gain array you computed for the non-minimum phase system
(RGA) with the relative gain array for the minimum phase system (RGA_min) might
help you to answer this question. When you have arrived at a conclusion, look at the
quad tanks system: What should be changed there to get better control performance?
Discuss your answer with the supervisor before you proceed.

13

Task 15: PI tuning for non-minimum phase system

After having made the appropriate changes to the hardware, we need to re-compute
the PI controller parameters since the corresponding plant transfer functions have
changed: They are now the off-diagonal elements of the transfer function matrix (2.1).
Since these SISO transfer functions do not have the same structure as the transfer
functions used for the computation of the controller parameters before, the explicit
expressions for the PI controller parameters you calculated as a homework have
become useless!

By trial-and-error we have found new values for the PI controller parameters:
K1 = 1, K2 = 1.5, τ1 = τ2 = 18.

• Define the given controller parameter values in the Arduino IDE PI_controller

tab. Make sure to reset the PI tuning section to its original state, i.e. K_p1=1*K1,
. . . , and flash the new code.

• Come back to matlab and open the script run_controllers.m. Set the variable
ctrl_char to ’p’ and execute the script.

• Tune the controller parameters with the guide (Table 3.1) or with the help of
Appendix C as done in Task 9. As before, change the parameters in Arduino
IDE, flash the new controller and then use matlab to make it run.

• When you have finished tuning, save the obtained response

• Compare the step responses of the minimum phase system and the non-minimum
phase system

Task 16: Design an LQR controller for the non-minimum phase system

Important: Make sure you undo the hardware changes you made during the previ-
ous section and bring the system back to its original state.
Now you will regulate the system with the LQR and compare the step response to
the step response of the PI regulated system but also to the LQR response of the
minimum phase system.

• Run the script lqr_controller.m to compute the controller K.

• Note the controller gains that you have just calculated, then move to the Ar-
duino IDE. Insert the new gains in the fill-in section of the LQR_controller

tab, then flash the code to the Arduino board.

• Come back to matlab and open the script run_controllers.m. Set the variable
ctrl_char to ’l’ and execute the script.

• Once the experiment is completed, save the figure it produced

• Compare the step responses of PI and LQR control solutions

• You will observe a steady state error in the LQR responses. Let’s eliminate it
again by means of additional integral control: Run the script lqr_int_controller.m
to compute the LQR with integral control gains.

• Note the controller gains that you have just calculated, then move to the Ar-
duino IDE. Insert new the gains in the fill-in section of the LQR_int_controller
tab, then flash the code to the Arduino board.

• Come back to matlab and open the script run_controllers.m. Set the variable
ctrl_char to ’q’ and execute the script.

• Once the experiment is completed, save the figure it produced

14

• Compare the step responses of PI and LQR with integral control solutions

• Finally, compare the LQR with integral control responses of the minimum and
the non-minimum-phase system. You should see that the minimum phase set-
ting shows much better control performance than the one of the non-minimum
phase setting.

Task 17: Finalizing the Lab-Experiment:

• Please fill out the online feedback-form on the registration-page under MyExperiments.
Each student/participant should fill out his own feedback-form. This will help
us to steadily improve the experiments. Thank you for your inputs.

• Discuss the experiment with your lab-tutor to get the testat.

15

Appendix A

Mathematical Model – System
Equations

In this section the mathematical model of the quad tank is derived. We set up the basic equations
that hold for each of the tanks and for the two pumps. Then they are put together to obtain the
model of the whole system. A word about notation: the time derivative of a value z is denoted
with a dot, dz

dt = ż, and its steady state value with z.

A.1 Basic Equations

Mass Balance Mass balance gives for each of the four tanks:

V̇ = a · ḣ = qin − qout (A.1)

with V : volume of water in the tank
a: cross-section area of the tank
h: water level
qin: inflow
qout: outflow

Bernoulli’s Law By evaluating Bernoulli’s law for incompressible liquids

p+
1

2
ρv2w + ρgh = const. (A.2)

at the water surface (vw = 0) and at the bottom of each tank (h = 0) and subtracting the
resulting equations from each other, we obtain for the outflow:

qout = o · vw = o
√
2g ·

√
h (A.3)

with o: cross-section area of an outlet
vw: speed of water (at the outflow)
h: water level
g: acceleration due to gravity

Pump Generated Flows The pumps generate a flow proportional to the applied voltage:
qpump,j = kp · vj . The flow is split up by the valves according to Table A.1.

A.2 Quad Tank System

Now we want to derive the state space representation and the transfer function matrix of the
system.

16

to tank 1 to tank 2 to tank 3 to tank 4
from pump 1 γ1kp · v1 - - (1− γ1)kp · v1
from pump 2 - γ2kp · v2 (1− γ2)kp · v2 -

Table A.1: Flows to the tanks generated by the two pumps

Nonlinear System Equations (A.1) and (A.3) and Table A.1 lead to the following nonlinear
differential equations for the four tanks:

ḣ1 =
1

a

(qin︷ ︸︸ ︷
o
√
2g ·

√
h3 + γ1kp · v1 −

qout︷ ︸︸ ︷
o
√
2g ·

√
h1

)
ḣ2 =

1

a

(
o
√

2g ·
√

h4 + γ2kp · v2 − o
√
2g ·

√
h2

)
ḣ3 =

1

a

(
(1− γ2)kp · v2 − o

√
2g ·

√
h3

)
ḣ4 =

1

a

(
(1− γ1)kp · v1︸ ︷︷ ︸

qin

− o
√
2g ·

√
h4︸ ︷︷ ︸

qout

)
(A.4)

Steady State In equilibrium all time-varying variables have settled to some constant value.
It holds that ḣi = 0 for each tank, which leads to four equations for the six steady state values
h1, h2, h3, h4, v1, and v2. This allows us to choose two of the values. As we want to control
the levels of tanks 1 and 2, we choose h1 and h2 and resolve the system of equations:

0 =
1

a

(
o
√

2g ·
√

h3 + γ1kp · v1 − o
√
2g ·

√
h1

)
0 =

1

a

(
o
√

2g ·
√

h4 + γ2kp · v2 − o
√
2g ·

√
h2

)
0 =

1

a

(
(1− γ2)kp · v2 − o

√
2g ·

√
h3

)
0 =

1

a

(
(1− γ1)kp · v1 − o

√
2g ·

√
h4

)
(A.5)

The last two equations of (A.5) tell us that o
√
2g ·

√
h3 = (1− γ2)kp · v2 and o

√
2g ·

√
h4 =

(1− γ1)kp · v1. These expressions together with the first two equations of (A.5) give a system of
two linear equations:

[
o
√
2g ·

√
h1

o
√
2g ·

√
h2

]
=

[
γ1kp (1− γ2)kp

(1− γ1)kp γ2kp

]
·
[
v1
v2

]
⇐⇒

[
v1
v2

]
=

[
γ1kp (1− γ2)kp

(1− γ1)kp γ2kp

]-1
·

[
o
√
2g ·

√
h1

o
√
2g ·

√
h2

] (A.6)

It follows that the values for the remaining four steady state variables are1:

1Note that for γ1 + γ2 = 1 the steady state voltages v1 and v2 cannot be computed with the given expression,
because the matrix in equation (A.6) is not invertible, its determinant is equal to 0. This means, that in the case
of γ1 + γ2 = 1 we cannot choose h1 and h2 independently of each other.

17

[
v1
v2

]
=

√
2g

kp(γ1 + γ2 − 1)
·
[

γ2 γ2 − 1
γ1 − 1 γ1

]
·

[
o ·
√
h1

o ·
√
h2

]

h3 =

(
(1− γ2)kp · v2

o
√
2g

)2

and h4 =

(
(1− γ1)kp · v1

o
√
2g

)2 (A.7)

Linearization Now we want to get the state space representation of the system:
ẋ = Ax+Bu, y = Cx+Du.

This includes some matrix algebra. So let us introduce vectors h =
[
h1 h2 h3 h4

]T
and

v =
[
v1 v2

]T
and analogously h, v.

Now we can write the system as ḣ = f(h, v), where f is a general function of the water levels h
and the pump voltages v. We see from equations (A.4), that the system contains square roots
of state variables - and therefore the function f(h, v) is nonlinear.
If we want the state space representation with matrices A, B, C and D we have to linearize the
system around the steady state (h, v). In steady state it holds that ḣ = f(h, v) ≡ 0. Thus we
get the system matrices with the aid of Taylor series expansion

ẋ = ḣ ≈ f(h, v)︸ ︷︷ ︸
≡0

+
∂f(h, v)

∂h

T
∣∣∣∣∣
h=h︸ ︷︷ ︸

A

· (h− h)︸ ︷︷ ︸
x

+
∂f(h, v)

∂v

T
∣∣∣∣∣
v=v︸ ︷︷ ︸

B

· (v − v)︸ ︷︷ ︸
u

with x =
[
x1 x2 x3 x4

]T
and u =

[
u1 u2

]T
,

(A.8)

where we have introduced new vectors x and u. x contains the deviations of the water levels
from their steady state values (xi := hi − hi). u contains the deviations of the pump voltages
from their steady state values (ui := vi − vi).

State Space Representation Linearizing the nonlinear system has already given us A and
B. C can be found easily: The outputs of the system are simply the state variables y1 = x1 and
y2 = x2. So, we get the state space representation of the system as:


ẋ1

ẋ2

ẋ3

ẋ4

 =


− 1

T1
0 1

T3
0

0 − 1
T2

0 1
T4

0 0 − 1
T3

0

0 0 0 − 1
T4

 ·


x1

x2

x3

x4

+


γ1kp

a 0

0
γ2kp

a

0
(1−γ2)kp

a
(1−γ1)kp

a 0

 ·
[
u1

u2

]

[
y1
y2

]
=

[
1 0 0 0
0 1 0 0

]
·


x1

x2

x3

x4


with the time constants Ti such that

1

Ti
=

o
√
2g

a
·

1

2
√
hi

(A.9)

Transfer Function Matrix The Laplace transform of (A.9) yields the transfer matrix of the
four tank system:

G(s) = C(sI −A)-1B,

[
Y1(s)
Y2(s)

]
= G(s) ·

[
U1(s)
U2(s)

]
G(s) =

[
T1γ1kp

a(1+sT1)
T1(1−γ2)kp

a(1+sT3)(1+sT1)
T2(1−γ1)kp

a(1+sT4)(1+sT2)
T2γ2kp

a(1+sT2)

]
=:

[
g11(s) g12(s)
g21(s) g22(s)

] (A.10)

18

A.3 Further Analysis of the System

Relative Gain Array (RGA) The relative gain array reflects how the inputs and outputs
of the system are coupled2. For 2 × 2 systems at steady state it has the form:

M =

[
m 1−m

1−m m

]
with m =

g11(0) · g22(0)
g11(0) · g22(0)− g12(0) · g21(0)

(A.11)

Using (A.10) m can be found as:

m =
γ1 · γ2

γ1 + γ2 − 1
(A.12)

For big values of m, the dominating elements of the transfer function matrix are the diagonal
elements. Output 1 is affected mostly by input 1, output 2 by input 2. If m is small, output
1 depends mainly on input 2, and output 2 on input 1. The knowledge of which input mainly
affects which output is important for the design of (decentralized) PI controllers for the MIMO
system.

Zeros of the System A zero of the transfer function matrix (A.10) is defined as any complex
number zi where the rank of G(zi) is less than the normal rank of G(s). In our case the
normal rank of G(s) is 2 (full rank), so the latter condition is equivalent to detG(zi) = 0. The
determinant is given by

detG(s) =
T1T2k

2
pγ1γ2

a2
∏4

i=1(1 + sTi)
·
[
(1 + sT3)(1 + sT4)−

(1− γ1)(1− γ2)

γ1γ2

]
(A.13)

To find both zeros z1, z2, we set the term in the bracket in (A.13) to zero

(1 + ziT3)(1 + ziT4)−
(1− γ1)(1− γ2)

γ1γ2︸ ︷︷ ︸
η

= 0 , i ∈ {1, 2} , (A.14)

and solve this quadratic equation for z1 and z2. Depending on the flow ratios γ1 and γ2, the
introduced parameter η takes values in (0,∞). Qualitatively, the zeros then behave as follows:

• If η < 1 (because γj are big), the two zeros are close to − 1
T3

and − 1
T4
.

• If η = 1, and thus γ1 + γ2 = 1, the zeros are at 0 and −(1
T3

+ 1
T4
).

• If η → ∞ one zero tends to −∞ and the other to +∞.

Thus we can say that one of the two zeros is always in the left half-plane, but the other one
can be located either in the left or in the right half-plane. The system is minimum phase (both
zeros are in the left half-plane) for η < 1 and thus γ1 + γ2 > 1, and the system is non-minimum
phase for η > 1, i.e. γ1 + γ2 < 1.

Zeros of the System: Physical Interpretation We want to control the water levels in the
two lower tanks. If both flow ratios γj are big, most of the water is going directly into the lower
tanks. If γj are small — and thus η is big — the water is going first to the upper tanks and after
that into the lower tanks. Note, that in this case, pump 1 indirectly fills tank 2 and pump 2
indirectly fills tank 1. It is intuitively clear that it is easier to control the lower water levels if
the water is going directly into these tanks, instead of going there indirectly via the upper tanks.
Briefly: The system is harder to control if it is non-minimum phase than if it is minimum phase.

2See for instance the book MULTIVARIABLE FEEDBACK CONTROL, Analysis and Design (2nd Edition),
by S. Skogestad and I. Postlethwaite

19

Appendix B

Introduction to LQR Control

In this section, a short overview of the Linear Quadratic Regulator (LQR) is given. We want to
provide the information needed to setup an LQR for the quad tank experiment. The concept is
easy to understand, the math will be kept short since Matlab provides us all the functions we
need to compute an LQR controller.

B.1 Setup of the Feedback System

The LQR is a controller for dynamic systems, that feeds the system’s states back to its inputs
via a static feedback matrix K (see Fig. B.1):

u = −K ·x (B.1)

In the case of the quad tank, K is of dimension 2 × 4, because we want to feed back 4 states
to 2 inputs. Setting up an LQR means finding the matrix K.

x

yu = −K · x
G(s)

−K

Figure B.1: Diagram of the LQR with feedback matrix K and plant G(s).

B.2 Concept of the LQR

The LQR is a controller that tries to drive the system to its steady state point and to stabilize
it there. For our quad tank this means: All the water levels are on their steady state values or

equivalently x =
[
0 0 0 0

]T
. This steady state point can be chosen partially (see (A.7)).

B.3 Measuring the Performance Based on the States

As the LQR wants to bring the system to steady state, we can say: A good LQR controller is a
controller that keeps the system as close as possible to its steady state. If we want to measure
how good the controller performs, we ask: How far away from steady state is the system?
This question can be answered with the norm ||.|| operator. We know: The bigger ||x|| is, the

20

farther away we are from equilibrium.
In a system there are typically states that should have only small deviations from steady state
whereas for other states this might not be crucial. Thus it is better to measure the performance
of the LQR with a cost function like:

Ξx = q1 · (x1)
2 + q2 · (x2)

2 + q3 · (x3)
2 + q4 · (x4)

2 =

4∑
k=1

qk · (xk)
2 (B.2)

Note that Ξx is basically a weighted norm.

Example: Weighting Factors qk: Let’s look at our quad tank with xi being the deviation
of the water level from the steady state level in tank i. Our aim is to control the water levels
in tanks 1 and 2: We want to keep them close to equilibrium. But we don’t care about water
level variations in tanks 3 and 4. How do we have to choose the factors qk if we want to take
this into account?
Don’t proceed with reading the answer in the footnote until you have thought about it!1

Note that we could — and will, as we work with Matlab — express Ξx also via a diagonal
weighting matrix Q as:

Ξx =

4∑
k=1

qk · (xk)
2 = xT ·Q ·x with Q = diag(q1, q2, q3, q4) (B.3)

B.4 Further Criteria: Considering the Inputs

In the previous section we said: A controller that keeps Ξx small is a good controller. But
imagine the (practical) situation where we have a system with disturbances. If the controller
wants to stabilize the system in its steady state at any cost, it would need huge amounts of
energy and probably act very rudely. Usually it is better to have a controller that doesn’t want
to force the system to its steady state at any cost.
Thus we expand our concept of a good controller. We say: A good LQR keeps the system close
to its steady state and doesn’t act rudely2 and doesn’t use much power.

We expand our cost function and penalize also the deviations of the inputs from their steady
state values:

Ξu = r1 · (u1)
2 + r2 · (u2)

2 = uT ·R ·u with R = diag(r1, r2) (B.4)

B.5 Finding the Feedback Matrix K with Matlab

Up to now we have set up criteria for a good controller. Now we want to find the best one. This
means minimizing the sum of the cost functions (B.3) and (B.4) over an infinite horizon into
the future

J =

∫ ∞

0

(Ξx + Ξu) dt =

∫ ∞

0

(xT ·Q ·x+ uT ·R ·u) dt , (B.5)

subject to the system’s dynamics ẋ = Ax + Bu. It turns out that the optimal solution to this
problem is a linear, static state-feedback law u = −Kx, where matrix K can be found using the
Matlab command K=lqr(A,B,Q,R)3.

1Answer: q1, q2 ‘large’ whereas q3, q4 ‘small’ (or zero)
2This means: Only small deviations of the input’s values from their steady state values are allowed.
3Details about the theory on LQR control are taught for instance in the course ‘Model Predictive Control’

offered by IfA.

21

B.6 How to choose weighting matrices Q and R

Weighting matrices Q and R are used to define the cost function as shown before. The topic
of this section is to provide some general guidelines on how to choose Q and R in order to
get a linear quadratic regulator that acts according to the specifications. Note that these are
simplified rules only!

• We restrict ourselves to diagonal weighting matrices, i.e.
Q = diag(q1, q2, q3, q4) and R = diag(r1, r2). Q has four entries because we have four
states and R has two entries because we have two inputs.

• Q and R are weighted relatively to each other, so multiplying both with a scalar gives the
same controller.

• With qk ≥ 0 we can set how deviations of state xk from zero or steady state – depending on
how the states are defined – are penalized. If qk is big, we do not allow for big deviations
of state xk. If qk = 0 we don’t care about deviations of this state at all.4

• With rk > 0 we can set how much energy our input uk is allowed to use. If rk is big, it
means that the controller should not act too forcefully on input uk. On the other hand,
making rk small means that the controller can use more energy on this input. rk = 0 is
not reasonable at all since this would allow the controller to use infinite energy.

• If we want to have little deviations of the states from zero (or steady state), we have to
choose the values of R small compared to Q, thus making control cheap. But if control
is made too cheap, the controller is going to react very brusquely, even on the smallest
deviation of the states.

• If we want to make control expensive (e.g. because we have a battery that does not provide
much power) we have to choose the values of R big compared to Q. But if control is made
too expensive, the controller’s reaction could get too sluggish and slow.

• In general one has to find a good ratio between the values qk and rk. For the quad tank
experiment we have found out (by trial-and-error method) that a good ratio of qk and rk
is 100, i.e.
Q = diag(1, 1, 0, 0) and R = diag(0.01, 0.01).

B.7 Summary - The LQR

An LQR controller implements a static state-feedback control law u = −K ·x. The matrixK can
be found by minimizing the cost function given in (B.5) subject to the system’s dynamics. Since
the cost function is a quadratic function in both the states’ evolution and the inputs’ evolution
over time and the system dynamics are expressed in terms of a linear differential equation, the
resulting controller is termed “Linear Quadratic Regulator” .

For the implementation of an LQR we need information about all the states of the system.
In general, not all the states can be measured so they must be estimated. This complicates the
implementation of an LQR. Fortunately in the quad tank experiment the states (which are the
water levels of the individual tanks) can be easily measured.

To compute matrix K the following steps have to be performed:

• Compute the system matrices A and B.

• Choose Q and R following the rules in Section B.6.

• Compute the controller with Matlab: K=lqr(A,B,Q,R).

4The choice qk = 0 could cause problems when state xk reflects an unstable mode, but for our quad tank this
is not the case.

22

Appendix C

PI Controller Parameters and the
Step Response

The table on page 24 shows the effects of the proportional constant K and the integral time τ
on the step response. The plot located in the middle of this table corresponds to “untuned
values”. These untuned values were then doubled and halved to get the other surrounding step
responses. The measurements were done with the minimum phase system.

23

2
·K

1
·K

1/
2

·K

1/
2

·τ
1

·τ
2

·τ

Table C.1: Abscissa: time [0 . . . 60s]; ordinate: step response [0 . . . 25cm].

24

	Problem Setup and Notation
	Setup
	Variables and Constants

	Preparation@Home
	Theory
	PI Design

	Lab Session Tasks
	Arduino Interface
	Minimum Phase System
	Non-Minimum Phase System

	Mathematical Model – System Equations
	Basic Equations
	Quad Tank System
	Further Analysis of the System

	Introduction to LQR Control
	Setup of the Feedback System
	Concept of the LQR
	Measuring the Performance Based on the States
	Further Criteria: Considering the Inputs
	Finding the Feedback Matrix K with Matlab
	How to choose weighting matrices Q and R
	Summary - The LQR

	PI Controller Parameters and the Step Response

