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IfA Fachpraktikum - Experiment 3.7B :

Flexible Shaft B

Comment: This experiment is the continuation of experiment 3.7A and can be done
only after that. Here we will design two more feedback controllers, namely

• a loop-shaping controller, and

• an LQR state feedback controller with integral action and observer.

Based on experiment 3.7, the characteristics of so-called flexible structures are introduced. Gen-
erally speaking, flexible structures are mechanical systems which can be considered and modeled
as many mass points connected by elastic springs, as for instance robots and large satellite dishes.
As a simple physical model of such a flexible structure, we are using a shaft consisting of two
flywheels connected with a torsional spring. A drive motor accelerates this flexible shaft whereas
a load motor is used to simulate a load torque. The goal is to control the speed of the shaft.
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Figure 1: Hardware Setup



Experiment 3.7B is mainly dedicated to the design of feedback controllers. First, a so-called
loop-shaping controller is developed. Specific tests show that the reference tracking of such
controllers is superior to the performance of PI controllers, but the disturbance rejection is of
poor quality. Then a LQR state feedback controller is designed based on a extended discrete-time
model that includes an integral action to reject disturbances. Furthermore, due to the incomplete
state measurement, a discrete-time observer must be developed. Analysis and experiments show
that reference tracking as well as disturbance rejection are satisfactory for step changes.

For the preparation of this experiment at home you need to download the following files from
the IfA Fachpraktikum website http://control.ee.ethz.ch/∼ifa-fp/ (provided as a zip-file
on the individual experiment’s page):

updateVarParamFlexShaft.m Matlab script for the controller design. Here you
have to insert your solutions to all the tasks; in the
other files no modifications are required.

simFlexShaft.mdl Simulink model of the flexible shaft used to measure
step responses.

continuousTimeSsModelFlexShaft.m Continuous-time state space model.
ConstantParameterFlexibleShaft Folder with Matlab functions containing constant

parameters for the Simulink model.
initFcnFlexShaft.m Matlab script to initialize the Simulink model.
stopFcnFlexShaft.m Matlab script to display the data recorded by the

Simulink model.

During the lab session you will need additional files that are provided locally on your machine.

Remark:

• The tasks in Chapter 2 have to be completed before the lab session.

• The tasks in Chapter 3 are covered during the lab session.
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Chapter 1

Problem Setup and Notation

1.1 Setup
Figure 1 shows the hardware setup for this lab experiment. The flexible shaft consists of a shaft
with two flywheels that are connected by a torsional spring. At both ends of the shaft a brushed
DC motor is mounted. Motor 1 is used to manipulate the shaft, whereas motor 2 is used to
disturb the shaft by simulating a load torque. Both motor angles can be measured independently
by an incremental encoder, although in the present experiment only encoder 1 is employed. The
angular velocity of motor 1 is measured indirectly by differentiating the corresponding angle.

The flexible shaft is controlled by a real time application running on the control unit. The
control unit consists of (from left to right in Figure 1) a CPU module, two counter modules
and a motor module, and works with 24V DC voltage provided by the power supply. The
motor module generates a PWM signal for each motor; for motor 2 we use the available current
controller mode. The real-time application was built from a Simulink model. The same model
also serves as a interface to interact with the control unit from the lab PC over Ethernet.

1.2 Modeling
In this section, the modeling of the flexible shaft is presented. It is not necessary to understand
the modeling in detail, although this enhances the overall comprehension. Figure 1.1 shows the
schematic for the flexible shaft including the two brushed DC motors. Table 1.1 introduces the
used notation.
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+

-

+
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2uemf ,2u
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Figure 1.1: Schematic of Flexible Shaft
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Notation Meaning Unit
uj motor input voltage V
ij motor current A
Rj motor resistance Ω
Lj motor inductance H = Vs/A

uemf,j back-emf voltage (electro-motive force) V
Ku,j back-emf constant Vs/rad
Mt,j motor torque Nm
Kt,j torque constant Nm/A
Jj mass inertia of flywheel and shaft kgm2

ωj angular velocity rad/s
ωm,j measured angular velocity rad/s
φj angle rad
∆φ angular difference rad
Mv,j viscous friction in bearings Nm
Kv,j coefficient of viscous friction Nms/rad
f spring constant Nm/rad
d damping coefficient of spring Nms/rad

Table 1.1: Notation. Note that j ∈ {1, 2}.

Mechanical Part
To get the equations of the mechanical part of the flexible shaft, the principle of angular mo-
mentum is used. In terms of friction we only consider the viscous friction given as

Mv,1(t) = Kv,1 ·w1(t) , Mv,2(t) = Kv,2 ·w2(t).

This yields the following differential equations for the flywheels and the angles:

J1 ·
d

dt
ω1(t) = −f · (φ1(t)− φ2(t))− d · (ω1(t)− ω2(t))−Kv,1 ·ω1(t) +Mt,1(t) (1.1a)

J2 ·
d

dt
ω2(t) = f · (φ1(t)− φ2(t)) + d · (ω1(t)− ω2(t))−Kv,2 ·ω2(t) +Mt,2(t) (1.1b)

d

dt
φ1(t) = ω1(t) (1.1c)

d

dt
φ2(t) = ω2(t) (1.1d)

This is obviously a fourth-order system (with states ω1, ω2, φ1, φ2). But if we look more closely
at the mechanical part of our plant, then we actually see only three energy mass storages present
in the system:

1. The right flywheel storing kinetic energy.

2. The torsional spring storing potential energy.

3. The left flywheel storing kinetic energy.

Therefore, there must be an algebraic relation which reduces our system to a third-order system.
Examining the differential equations (1.1a) and (1.1b), we see that we can substitute the angular
difference

∆φ(t) = φ1(t)− φ2(t), (1.2)

which replaces the absolute angles φ1, φ2 as states. Combining (1.1c) and (1.1d) then leads to

d

dt
∆φ(t) =

d

dt
(φ1(t)− φ2(t)) = ω1(t)− ω2(t). (1.3)
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From here on we assume that the spring damping is neglectable and that both flywheels (in-
cluding the shaft they are mounted on) are symmetric, i.e.

d = 0

J = J1 = J2

Kv = Kv,1 = Kv,2.

Finally, we obtain the following differential equations for the mechanical part:

J · d
dt
ω1(t) = −f ·∆φ(t)−Kv ·ω1(t) +Mt,1(t) (1.4a)

J · d
dt
ω2(t) = f · ∆φ(t)−Kv ·ω2(t) +Mt,2(t) (1.4b)

d

dt
∆φ(t) = ω1(t)− ω2(t) (1.4c)

Electrical Part
We assume that the parameters of both motors are equal, i.e.

R = R1 = R2

L = L1 = L2

Ku = Ku,1 = Ku,2

Kt = Kt,1 = Kt,2.

Motor 1. As we are using permanent magnet excited brushed DC motors, the following general
relations hold:

Mt,1(t) = Kt · i1(t) (1.5)
uemf,1(t) = Ku ·ω1(t) (1.6)

Starting with Kirchhoff’s second law we have

uL,1(t) = u1(t)− uR,1(t)− uemf,1(t)

and derive the following differential equation for the current:

L · d
dt
i1(t) = u1(t)−R · i1(t)−Ku ·ω1(t). (1.7)

Figure 1.2 shows the block diagram for motor 1 resulting from (1.5) and (1.7).
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Figure 1.2: Block Diagram of Motor 1
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Assuming that the motor current dynamics can be neglected compared to the dynamics of the
mechanical system, we set d

dt i1(t) = 0 in (1.7) and obtain for the current

i1(t) =
1

R
· (u1(t)−Ku ·ω1(t)) ,

which leads by inserting into (1.5) to the algebraic relation

Mt,1(t) =
Kt

R
· (u1(t)−Ku ·ω1(t)) . (1.8)

Motor 2. For motor 2, the same equations as for motor 1 would apply. However, as motor 2
is current-controlled by the motor module of the control unit and we assume that this current
controller is ideal, we only use the algebraic relation

Mt,2(t) = Kt · i2(t). (1.9)

Measurement
The angular velocity ω1(t) is measured indirectly by differentiating the angle φ1(t). As the
angle is measured with an incremental encoder with limited resolution, the velocity measurement
carries noise and must therefore be lowpass filtered. We assume that this can be approximated
(in the frequency range of interest) by a first-order lowpass filter

d

dt
ωm,1(t) =

1

T1
· (ω1(t)− ωm,1(t)) , (1.10)

where ωm,1(t) is the measured angular velocity.

Complete Model
With the definitions

x(t) ,
[
ωm,1(t) ω1(t) ω2(t) ∆φ(t)

]T
w(t) ,

[
u(t) z(t)

]T
,
[
u1(t) i2(t)

]T
y(t) , ωm,1(t)

and by using the equations (1.4), (1.8), (1.9) and (1.10), the state space model of the flexible
shaft becomes:

d

dt
x(t) =


− 1
T1

1
T1

0 0

0 − 1
J

(
Kv + Kt ·Ku

R

)
0 − f

J

0 0 −Kv

J
f
J

0 1 −1 0


︸ ︷︷ ︸

=Ac

·x(t) +


0 0
Kt

J ·R 0
0 Kt

J
0 0


︸ ︷︷ ︸
=[Bc,u Bc,z ]
=Bc

·
[
u(t)
z(t)

]
︸ ︷︷ ︸
=w(t)

y(t) =
[
1 0 0 0

]︸ ︷︷ ︸
=Cc

·x(t) +
[
0 0

]︸ ︷︷ ︸
=[Dc,u Dc,z ]
=Dc

·w(t) .

(1.11)

This model is illustrated in Figure 1.3.
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Figure 1.3: Block Diagram of Continuous-Time State Space Model

For a better understanding, the inputs and outputs of the system are discussed again:

• u(t) denotes the manipulating input, i.e. the voltage of motor 1.

• z(t) denotes the disturbance input, i.e. the current of motor 2.

• y(t) denotes the output, i.e. the measured angular velocity of motor 1.

The state space representation (1.11) can be used to derive the transfer function models.
The input-output transfer function G(s) can be computed as

Y (s)

U(s)
= G(s) = Cc · (s · I −Ac)−1 ·Bc,u +Dc,u , (1.12)

and the disturbance transfer function Gz(s) as

Y (s)

Z(s)
= Gz(s) = Cc · (s · I −Ac)−1 ·Bc,z +Dc,z . (1.13)

This finally yields the block diagram shown in Figure 1.4.
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Figure 1.4: Block Diagram of Continuous-Time Transfer Function Model
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Chapter 2

Preparation@Home B

In this exercise, we first design a feedback controller using the so called loop-shaping method.
Then, we transform the continuous-time state space model into a discrete time model, and based
on this model, we finally design a state feedback controller with observer.

2.1 Instructions
1. The exercises of this chapter must be completed before the lab session of Chapter 2.

2. Open Matlab and go to the folder created in Part A of the home exercise. If you have
adapted the script updateVarParamFlexShaft.m during the lab session, copy it to the
current Matlab folder.

3. Open the script updateVarParamFlexShaft.m. Make sure that the following values are
set: modeSel=0, cmd=1, J=402e-6 (in CONFIGURATION).

4. Now you are ready to solve the tasks given in the next section of this chapter step by step.
Write your code directly into updateVarParamFlexShaft.m at the marked positions. In
this file, the continuous-time state space model is available in the structure syscr.

5. In some tasks you should run the simulator to measure some responses. In this case,
proceed as follows:

(a) Open the Simulink model simFlexShaft.mdl.

(b) Configure updateVarParamFlexShaft.m according to the given task, i.e. set the func-
tion selector fcnSel and the controller selector controllerSel to the appropriate
value (in CONFIGURATION). Then, save the file.

(c) Start the simulation in simFlexShaft.mdl. This automatically loads the parameters
of updateVarParamFlexShaft.m into the model and starts with measuring the desired
response.

(d) As soon as the measurements are completed, the simulation stops automatically and
the recorded data is displayed. View the plot and save it for your records.

6. After having completed all the tasks: Store the file updateVarParamFlexShaft.m safely;
you will need it in the lab session to test your controller on the real hardware.
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2.2 Loop-Shaping Controller
Before we start with the actual controller design, the key points of the loop-shaping method
are highlighted based on the book of Skogestad and Postletwhaite [2, §2.6]. Examine now the
feedback structure shown in Figure 2.1, where

• u is the input-output input, hence the input voltage of motor 1,

• z is the disturbance input, hence the current of motor 2,

• y is the output, hence the measured angular velocity of motor 1,

• r is the reference input, hence the set point value of the angular velocity of motor 1,

• n is some additive measurement noise.

+

+
)(sG

)(sG
z

+

-
r

G (s)
r

n

yu

z

+

+

Figure 2.1: Block Diagram of Feedback Structure

In the classical loop-shaping approach to feedback controller design, "loop-shape" refers to the
magnitude of the loop transfer function L(s) = G(s) ·Gr(s) as a function of frequency, i.e.
|L(jω)|.

First, we have a look at the control error which is defined as

e= y − r, (2.1)

and yields the closed-loop response

e = −(I + L(s))
−1 · r + (I + L(s))

−1 ·Gz(s) · z − (I + L(s))
−1 ·L(s) ·n. (2.2)

For "perfect control" we want e = y − r = 0 or in other words

e ≈ 0 · r + 0 · z + 0 ·n. (2.3)

To achieve approximately perfect control, the following design objectives must be fulfilled:

1. Good disturbance rejection: needs large controller gains, i.e. |L(jω)| large.

2. Good command following (reference tracking): |L(jω)| large.

3. Mitigation of measurement noise: |L(jω)| small.

4. Small magnitude of input signal u: |Gr(jω)| and |L(jω)| small.
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5. Physical system must be strictly proper (relative degree of |L(jω)| > 0, i.e. more poles
than zeros): |L(jω)| approaches 0 at high frequencies.

6. Closed-loop stability (stable plant): |L(jω)| small.

We see that feedback controller design involves a trade-off between conflicting objectives. Fortu-
nately, they are generally in different frequency ranges, and we can meet most of the objectives
by using a large loop gain (|L(jω)| > 1) at low frequencies below crossover, and a small gain
(|L(jω)| < 1) at high frequencies above crossover.

In conclusion, we specify a reasonable loop transfer function L(s) for our problem as follows:

1. The gain crossover frequency should be smaller than the antiresonance and resonance
frequencies.

2. The slope of |L(jω)| must be at least −1 at low frequencies, meaning zero steady-state
error to step changes in the reference or disturbance input.

3. The phase margin should be larger than 50◦.

4. The controller must be proper (relative degree of L(s) > 0).

5. The bounds [−18V + 18V] of the control action u shall be respected.

Task 1: Controller Design

1. As the system is minimum phase, we might want to follow the idea to cancel
the poles and zeros of the plant by an inverse-based controller design approach
(Gr(s) = G(s)−1). Is it reasonable to compensate the poles and zeros origi-
nating from the resonance respectively the antiresonance point? In particular,
consider the case, where the poles and zeros of the plant are nearer to the
imaginary axis of the complex s-plane than assumed, e.g. due to an increased
moment of inertia J .

2. Design a loop-shaping controller that meets the specified requirements, and plot
the Bode diagram of the resulting loop transfer function L(s). Write your code
into updateVarParamFlexShaft.m at marking Task B.1 and run the file.
Hint: In industrial drive applications, the following approach is widely used:

Gr(s) = Kp
s+Ki

s︸ ︷︷ ︸
PI controller

·
s2 + s · 2 ·ω0 · dc + ω2

0

s2 + s · 2 ·ω0 · 1
c + ω2

0︸ ︷︷ ︸
notch filter

.

You can use your PI controller of Part A as a basis and design a notch filter to
damp the resonance peak.

3. Use the provided simulator (as described in step 5 of Section 2.1) to plot the
reference step response and the closed-loop disturbance step response. Set the
corresponding function selector (4 or 5) and make sure that the controller se-
lector is set to loopShaping.

4. Keep the controller parameters, increase the moment of inertia J to the value
1002 · 10−6kgm2 and plot again the Bode diagram of the loop transfer function
L(s). Afterwards, use the simulator to plot the step responses and comment on
the results.
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Remark: We do the design in continuous time, despite the fact that we are apply-
ing digital control. In the script updateVarParamFlexShaft.m, the continuous-time
transfer function of the controller, Gr(s), is automatically transformed into discrete
time using the function c2d with Tustin’s method. This method essentially sub-
stitutes the approximation s ≈ 2

T ·
z−1
z+1 , where T is the sampling interval, into the

continuous-time transfer function, [1, §8.3].
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2.3 State Feedback Controller
In this section, a LQR state feedback controller will be designed. We know from theory that
for state feedback control all states must be available. But in this experiment only one state is
measured. Therefore, the remaining states must be estimated by an observer. Furthermore, to
reject disturbances and model uncertainties, the control loop should be extended by an integral
action.

We will do a direct digital design, i.e. a design that is based on a discrete model of the plant.
So first of all it is necessary to convert the continuous-time state space model to a discrete-
time model (§2.3.1). Knowing that for LTI systems the separation principle holds, the problem
of designing a state feedback controller with integral action and an observer can be split into
two separate problems: one of designing the full-state feedback controller with integral action
(§2.3.2) and another one of designing the observer (§2.3.3). Finally the resulting combined
system is analyzed (§2.3.4).

2.3.1 Discrete Time State Space Model
Sampling the solution of the continuous-time model (1.11) with sampling period T and using
a zero-order hold (ZOH) to keep the inputs to the plant w(kT ) constant over each sampling
period, results in the discrete-time model

x(k + 1) = Ad ·x(k) +Bd ·w(k) = Ad ·x(k) + [Bd,u Bd,z ] ·
[
u(k)
z(k)

]
y(k) = Cd ·x(k) +Dd ·w(k) = Cd ·x(k) + [Dd,u Dd,z ] ·

[
u(k)
z(k)

]
,

(2.4)

where

Ad = eAc ·T Bd =

∫ T

0

eAc · (T−τ)dτ ·Bc

Cd = Cc Dd = Dc .

Task 2: Discrete-Time State Space Model

Set the moment of inertia J in updateVarParamFlexShaft.m back to the value
402 · 10−6kgm2. For each subtask, write your code into updateVarParamFlexShaft.m
at marking Task B.2 and run the file.

1. Derive the discrete-time state space model of the flexible shaft by using the
Matlab function c2d.

2. Calculate the eigenvalues of the matrix Ad using the Matlab function eig and
compare the results with the eigenvalues of the matrix Ac transformed into the
z-domain by the relation z = es ·T , where T is the sampling interval.

3. Show that the system represented by the discrete-time state space model is
controllable. To do this, you might use the Matlab functions rank and ctrb.

4. Show that the system is observable. Among other things, you might use the
Matlab function obsv.

2.3.2 LQR Full-State Feedback Controller with Integral Action
Let us consider the full-state feedback controller with integral action as depicted in Figure 2.2.
For the integral action, we used the forward Euler method to approximate the continuous-time
integrator in discrete time, yielding

d

dt
xI(t) ≈

xI(k + 1)− xI(k)

T
= − (r(k)− Cd ·x(k)) .
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Figure 2.2: Block Diagram of Full-State Feedback Controller

The discrete-time state space model for the plant is according to (2.4). Extending this model
with the integral action yields the extended model

[
xI(k + 1)
x(k + 1)

]
︸ ︷︷ ︸

=x̄(k+1)

=

[
1 T ·Cd
0 Ad

]
︸ ︷︷ ︸

=Ād

·
[
xI(k)
x(k)

]
︸ ︷︷ ︸

=x̄(k)

+

[
0 −T 0

Bd,u 0 Bd,z

]
︸ ︷︷ ︸

=[B̄d,u B̄d,r B̄d,z ]

=B̄d

·

u(k)
r(k)
z(k)


︸ ︷︷ ︸

=w̄(k)

y =
[
0 Cd

]︸ ︷︷ ︸
=C̄d

·
[
xI(k)
x(k)

]
︸ ︷︷ ︸

=x̄(k)

,

(2.5)

which represents the gray part of Figure 2.2.
We will determine the static feedback gain [Ki,K] optimization-based, namely by an LQR

design. For this, consider the discrete-time linear system

x̄(k + 1) = Ād · x̄(k) + B̄d,u ·u(k)

and the quadratic cost

J =

∞∑
k=0

x̄(k)
T ·Q · x̄ (k) + u(k)T ·R ·u(k),

where Q is a symmetric positive semidefinite matrix and R a positive scalar. Then the optimal
control law minimizing the quadratic cost is given by

u(k) = −
[
Ki K

]︸ ︷︷ ︸
=K̄

· x̄(k) (2.6)

where
K̄ = (R+ B̄Td,u ·P · B̄d,u)−1 · B̄Td,u ·P · Ād
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and P is the unique positive definite solution of the discrete algebraic Riccati equation (DARE)

P = Q+ ĀTd ·
(
P − P · B̄d,u · (R+ B̄Td,u ·P · B̄d,u)

−1 · B̄Td,u ·P
)
· Ād .

If the pair [Ād, B̄d,u] is stabilizable and the pair [Q
1
2 , Ād] detectable, then the DARE has a

unique solution. Furthermore, the closed-loop system is stable, meaning that all eigenvalues of
the matrix

(
Ād − B̄d,u · K̄

)
lie within the unit circle.

Task 3: State Feedback Gain

For each subtask, write your code into updateVarParamFlexShaft.m at marking
Task B.3 and run the file.

1. Define the matrices of the extended system (2.5) in Matlab.

2. Show that the extended system is still controllable (using Matlab).

3. Derive an optimal feedback gain K̄ using the Matlab function dlqr. For this
you have to define the matrix Q (penalty on the states, usually diagonal) and
the scalar R (penalty on the input). Note that a large Q results in small states,
whereas a large R results in small inputs, and that there is a trade-off between
both. Tune Q and R such that

(i) the closed-loop system is well damped, and
(ii) the amplitude of the control action u becomes not too high, meaning that

closed loop poles lie not too far left in the left half of the complex s-plane.

Hint: You may use the relation z = es ·T to check the eigenvalues of the matrix(
Ād − B̄d,u · K̄

)
.

2.3.3 Observer

)(ky

)(ku
1

z

d
A

d
C

)(ˆ kx)1(ˆ kx )(ˆ ky

L

ud
B

,

+

-

+
+

+

Figure 2.3: Block Diagram of Observer

We use the observer shown in Figure 2.3 to get an estimate x̂(k) of the full state vector x(k).
According to the Figure, the dynamics of the observer are given as

x̂(k + 1) = Ad · x̂(k) +Bd,u ·u(k) + L · (y(k)− Cd · x̂(k)) ,

or rewritten as
x̂(k + 1) = (Ad − L ·Cd) · x̂(k) +Bd,u ·u(k) + L · y(k). (2.7)
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We define the estimation error as ε(k) = x̂(k)− x(k), and then use equations (2.7) and (2.4) to
derive the error dynamics as

ε(k + 1) = x̂(k + 1)− x(k) = (Ad − L ·Cd) (x̂(k)− x(k))−Bd,z · z(k)

= (Ad − L ·Cd) · ε(k)−Bd,z · z(k).

When the pair (Ad, Cd) is observable, then by an appropriate choice of the observer gain L, the
eigenvalues of the matrix (Ad − L ·Cd) can be placed within the unit circle, meaning that the
error dynamics are stable.

Task 4: Observer Gain

Derive the vector L using the Matlab function dlqr. Here, Q corresponds to the
covariance of the state (model quality), whereas R corresponds to the covariance of
the measurement (noise level). Thus, with a small Q compared to R we trust the
model more than the measurement (noisy measurement), whereas with a large Q
compared to R we have a good measurement but a poor model. Write your code
into updateVarParamFlexShaft.m at marking Task B.4 and run the file.

Hint: With the property det (P ) = det
(
PT
)
of determinants we get:

det (λ · I − (Ad − L ·Cd)) = det
(
λ · I −

(
ATd − CTd ·LT

))
2.3.4 State Feedback Controller with Observer
Putting the equations (2.5) and (2.7) together we get the following state space description for
the open-loop system with integral action and observer:xI(k + 1)

x(k + 1)
x̂(k + 1)


︸ ︷︷ ︸

=x̃(k+1)

=

1 T ·Cd 0
0 Ad 0
0 L ·Cd Ad − L ·Cd


︸ ︷︷ ︸

=Ãd

·

xI(k)
x(k)
x̂(k)


︸ ︷︷ ︸

=x̃(k)

+

 0 −T 0
Bd,u 0 Bd,z
Bd,u 0 0


︸ ︷︷ ︸

=[B̃d,u B̃d,r B̃d,z ]

·

u(k)
r(k)
z(k)


︸ ︷︷ ︸

=w̃(k)

y(k) =
[
0 Cd 0

]︸ ︷︷ ︸
=C̃d

·

xI(k)
x(k)
x̂(k)


︸ ︷︷ ︸

=x̃(k)

(2.8)

With the control law

u(k) = −
[
Ki 0 K

]︸ ︷︷ ︸
=K̃

·

xI(k)
x(k)
x̂(k)


︸ ︷︷ ︸

=x̃(k)

, (2.9)

where the term K ·x(k) of (2.6) was replaced by K · x̂(k), the closed-loop system can finally be
written as

x̃(k + 1) =
(
Ãd − B̃d,u · K̃

)
· x̃(k) +

[
B̃d,r B̃d,z

]
·
[
r(k)
z(k)

]
y(k) = C̃d · x̃(k).

(2.10)

Task 5: State Feedback Controller with Observer

For each subtask, write your code into updateVarParamFlexShaft.m at marking
Task B.5 and run the file.
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1. Define the matrices of the closed-loop system with observer using Matlab.

2. Plot the frequency response of the reference transfer function and the closed-
loop disturbance transfer function using the Matlab function dbode.

3. Use the simulator (as described in step 5 of Section 2.1) to plot the reference
step response and the closed-loop disturbance step response. Do not forget
to set the corresponding function selector (4 or 5) and make sure that the
controller selector is set to state. In the obtained results, check if the bounds
[−18V + 18V] for the control action u hold. If not then adjust the feedback and
observer gain (i.e. change the matrices Q and R of the LQR design).

17



Chapter 3

Lab Session B

In this lab session, we verify the loop-shaping controller and the state feedback controller de-
signed in Chapter 2.

3.1 Instructions
1. Double-click the icon ifa_3_7.ps1 on the desktop of the lab computer. This will download

all necessary files into C:\Scratch\Flex_Shaft and start Matlab automatically.

2. Copy the Matlab script updateVarParamFlexShaft.m generated during the home exer-
cises to the current Matlab folder and open it. Set the mode selector to modeSel=1 and
make sure that the inertia is set to J=402e-6.

3. Open the Simulink model targetSysFlexShaft.mdl, which serves as graphical user in-
terface (GUI) to interact with the control unit. Figure 3.1 shows the GUI with some
highlighted elements.

1

2

3

4

Figure 3.1: GUI Flexible Shaft

4. Power on the control unit of the flexible shaft with the switch on the back side, and wait
until booting is completed and the application is running, which is indicated by a green
shining R/E light (this is the top most) on the front side of the CPU module.
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5. Now you are ready to complete the tasks according to the description in the next section
of this chapter. For each task proceed as follows:

(a) Connect (Fig. 3.1(1)) the GUI to the control unit, and wait until the absolute timer
(Fig. 3.1(2)) is running.

(b) Configure updateVarParamFlexShaft.m according to the given task, i.e. set the func-
tion selector fcnSel and the controller selector controllerSel to the appropriate
value. Set cmd=1 and run the file. The control unit should go to state running
(Fig. 3.1(3)). The flexible shaft starts rotating, and the measurements are in progress.

(c) Wait until the control unit is in state terminated, meaning that the measurements are
completed. In the meantime you can observe the real system and look at the scope
of the GUI. Note:

• You can stop the flexible shaft at any time by proceeding with step 5d!
• If the state goes to failure, then a hardware error occurred. For more information,

check the errorID (Fig. 3.1(4)). To reset the error, proceed with step 5d.
• If Simulink shows an error message box, then restart from step 5a.

(d) Set cmd=0 in updateVarParamFlexShaft.m and run the file. The control unit goes
back to state idle, and the flexible shaft stops rotating.

(e) Disconnect (Fig. 3.1(1)) the GUI from the control unit. The recorded data is auto-
matically loaded and displayed. View the plot and save it for your records.

(f) If the obtained results are not satisfactory enough, adjust the parameters of your
controller in updateVarParamFlexShaft.m and repeat from step 5a.

6. After having completed all the tasks: Power off the control unit of the flexible shaft.
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3.2 Loop-Shaping Controller

Task 6: Verification of Loop-Shaping Controller

1. Measure the reference step response. Do not forget to set the corresponding
function selector and make sure that the controller selector is set to loopShaping.
As usual, the recorded data is plotted into a diagram. Analyze the diagram and
summarize the observations you make. You might want to compare the recorded
data with the simulated results.

2. Do the same for the closed-loop disturbance step response.

3.3 State Feedback Controller

Task 7: Verification of State Feedback Controller

1. Measure the reference step response. Do not forget to set the corresponding
function selector and make sure that the controller selector is set to state. Of
course the recorded data is plotted into a diagram too. Examine the diagram
and based on the observations you make, adjust the feedback and the observer
gain respectively. This is usually an iterative process.

2. Do the same for the closed-loop disturbance response.

3.4 Conclusion

Task 8: Conclusion

1. Fill in the online feedback form found in MyExperiments on the laboratory
courses registration page. Each participant has to give his/her own feedback.
Thank you for your inputs! This helps us to improve our experiments.

2. Discuss the experiment with your supervisor to get the confirmation (Testat).
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