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IfA Fachpraktikum - Experiment 3.7A :

Flexible Shaft A

Comment: This experiment is the first in a series of two experiments. Here we will

• analyze the system and

• design a PI controller.

The experiment can be continued with experiment 3.7B, where two more controllers
will be designed.

Based on experiment 3.7, the characteristics of so-called flexible structures are introduced. Gen-
erally speaking, flexible structures are mechanical systems which can be considered and modeled
as many mass points connected by elastic springs, as for instance robots and large satellite dishes.
As a simple physical model of such a flexible structure, we are using a shaft consisting of two
flywheels connected with a torsional spring. A drive motor accelerates this flexible shaft whereas
a load motor is used to simulate a load torque. The goal is to control the speed of the shaft.
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Figure 1: Hardware Setup



Experiment 3.7A is dedicated to the analysis of a continuous-time state space model, and a
first feedback controller design. Based on the model, typical phenomena like the antiresonance
and resonance behavior of such flexible structures will be investigated. Afterwards, the state
space model will be verified using a frequency response method. Finally, a PI controller will
be designed. It will be shown that PI controllers yield unsatisfactory results on both reference
tracking and disturbance rejection due to the resonance and antiresonance behavior of the flexible
shaft.

For the preparation of this experiment at home you need to download the following files from
the IfA Fachpraktikum website http://control.ee.ethz.ch/∼ifa-fp/ (provided as a zip-file
on the individual experiment’s page):

updateVarParamFlexShaft.m Matlab script for the controller design. Here you
have to insert your solutions to all the tasks; in the
other files no modifications are required.

simFlexShaft.mdl Simulink model of the flexible shaft used to measure
step responses.

continuousTimeSsModelFlexShaft.m Continuous-time state space model.
ConstantParameterFlexibleShaft Folder with Matlab functions containing constant

parameters for the Simulink model.
initFcnFlexShaft.m Matlab script to initialize the Simulink model.
stopFcnFlexShaft.m Matlab script to display the data recorded by the

Simulink model.

During the lab session you will need additional files that are provided locally on your machine.

Remark:

• The tasks in Chapter 2 have to be completed before the lab session.

• The tasks in Chapter 3 are covered during the lab session.
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Chapter 1

Problem Setup and Notation

1.1 Setup
Figure 1 shows the hardware setup for this lab experiment. The flexible shaft consists of a shaft
with two flywheels that are connected by a torsional spring. At both ends of the shaft a brushed
DC motor is mounted. Motor 1 is used to manipulate the shaft, whereas motor 2 is used to
disturb the shaft by simulating a load torque. Both motor angles can be measured independently
by an incremental encoder, although in the present experiment only encoder 1 is employed. The
angular velocity of motor 1 is measured indirectly by differentiating the corresponding angle.

The flexible shaft is controlled by a real time application running on the control unit. The
control unit consists of (from left to right in Figure 1) a CPU module, two counter modules
and a motor module, and works with 24V DC voltage provided by the power supply. The
motor module generates a PWM signal for each motor; for motor 2 we use the available current
controller mode. The real-time application was built from a Simulink model. The same model
also serves as a interface to interact with the control unit from the lab PC over Ethernet.

1.2 Modeling
In this section, the modeling of the flexible shaft is presented. It is not necessary to understand
the modeling in detail, although this enhances the overall comprehension. Figure 1.1 shows the
schematic for the flexible shaft including the two brushed DC motors. Table 1.1 introduces the
used notation.
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Figure 1.1: Schematic of Flexible Shaft
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Notation Meaning Unit
uj motor input voltage V
ij motor current A
Rj motor resistance Ω
Lj motor inductance H = Vs/A

uemf,j back-emf voltage (electro-motive force) V
Ku,j back-emf constant Vs/rad
Mt,j motor torque Nm
Kt,j torque constant Nm/A
Jj mass inertia of flywheel and shaft kgm2

ωj angular velocity rad/s
ωm,j measured angular velocity rad/s
φj angle rad
∆φ angular difference rad
Mv,j viscous friction in bearings Nm
Kv,j coefficient of viscous friction Nms/rad
f spring constant Nm/rad
d damping coefficient of spring Nms/rad

Table 1.1: Notation. Note that j ∈ {1, 2}.

Mechanical Part
To get the equations of the mechanical part of the flexible shaft, the principle of angular mo-
mentum is used. In terms of friction we only consider the viscous friction given as

Mv,1(t) = Kv,1 ·w1(t) , Mv,2(t) = Kv,2 ·w2(t).

This yields the following differential equations for the flywheels and the angles:

J1 ·
d

dt
ω1(t) = −f · (φ1(t)− φ2(t))− d · (ω1(t)− ω2(t))−Kv,1 ·ω1(t) +Mt,1(t) (1.1a)

J2 ·
d

dt
ω2(t) = f · (φ1(t)− φ2(t)) + d · (ω1(t)− ω2(t))−Kv,2 ·ω2(t) +Mt,2(t) (1.1b)

d

dt
φ1(t) = ω1(t) (1.1c)

d

dt
φ2(t) = ω2(t) (1.1d)

This is obviously a fourth-order system (with states ω1, ω2, φ1, φ2). But if we look more closely
at the mechanical part of our plant, then we actually see only three energy mass storages present
in the system:

1. The right flywheel storing kinetic energy.

2. The torsional spring storing potential energy.

3. The left flywheel storing kinetic energy.

Therefore, there must be an algebraic relation which reduces our system to a third-order system.
Examining the differential equations (1.1a) and (1.1b), we see that we can substitute the angular
difference

∆φ(t) = φ1(t)− φ2(t), (1.2)

which replaces the absolute angles φ1, φ2 as states. Combining (1.1c) and (1.1d) then leads to

d

dt
∆φ(t) =

d

dt
(φ1(t)− φ2(t)) = ω1(t)− ω2(t). (1.3)
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From here on we assume that the spring damping is neglectable and that both flywheels (in-
cluding the shaft they are mounted on) are symmetric, i.e.

d = 0

J = J1 = J2

Kv = Kv,1 = Kv,2.

Finally, we obtain the following differential equations for the mechanical part:

J · d
dt
ω1(t) = −f ·∆φ(t)−Kv ·ω1(t) +Mt,1(t) (1.4a)

J · d
dt
ω2(t) = f · ∆φ(t)−Kv ·ω2(t) +Mt,2(t) (1.4b)

d

dt
∆φ(t) = ω1(t)− ω2(t) (1.4c)

Electrical Part
We assume that the parameters of both motors are equal, i.e.

R = R1 = R2

L = L1 = L2

Ku = Ku,1 = Ku,2

Kt = Kt,1 = Kt,2.

Motor 1. As we are using permanent magnet excited brushed DC motors, the following general
relations hold:

Mt,1(t) = Kt · i1(t) (1.5)
uemf,1(t) = Ku ·ω1(t) (1.6)

Starting with Kirchhoff’s second law we have

uL,1(t) = u1(t)− uR,1(t)− uemf,1(t)

and derive the following differential equation for the current:

L · d
dt
i1(t) = u1(t)−R · i1(t)−Ku ·ω1(t). (1.7)

Figure 1.2 shows the block diagram for motor 1 resulting from (1.5) and (1.7).
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Figure 1.2: Block Diagram of Motor 1
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Assuming that the motor current dynamics can be neglected compared to the dynamics of the
mechanical system, we set d

dt i1(t) = 0 in (1.7) and obtain for the current

i1(t) =
1

R
· (u1(t)−Ku ·ω1(t)) ,

which leads by inserting into (1.5) to the algebraic relation

Mt,1(t) =
Kt

R
· (u1(t)−Ku ·ω1(t)) . (1.8)

Motor 2. For motor 2, the same equations as for motor 1 would apply. However, as motor 2
is current-controlled by the motor module of the control unit and we assume that this current
controller is ideal, we only use the algebraic relation

Mt,2(t) = Kt · i2(t). (1.9)

Measurement
The angular velocity ω1(t) is measured indirectly by differentiating the angle φ1(t). As the
angle is measured with an incremental encoder with limited resolution, the velocity measurement
carries noise and must therefore be lowpass filtered. We assume that this can be approximated
(in the frequency range of interest) by a first-order lowpass filter

d

dt
ωm,1(t) =

1

T1
· (ω1(t)− ωm,1(t)) , (1.10)

where ωm,1(t) is the measured angular velocity.

Complete Model
With the definitions

x(t) ,
[
ωm,1(t) ω1(t) ω2(t) ∆φ(t)

]T
w(t) ,

[
u(t) z(t)

]T
,
[
u1(t) i2(t)

]T
y(t) , ωm,1(t)

and by using the equations (1.4), (1.8), (1.9) and (1.10), the state space model of the flexible
shaft becomes:

d

dt
x(t) =


− 1

T1

1
T1

0 0

0 − 1
J

(
Kv + Kt ·Ku

R

)
0 − f

J

0 0 −Kv

J
f
J

0 1 −1 0


︸ ︷︷ ︸

=Ac

·x(t) +


0 0
Kt

J ·R 0
0 Kt

J
0 0


︸ ︷︷ ︸
=[Bc,u Bc,z ]
=Bc

·
[
u(t)
z(t)

]
︸ ︷︷ ︸
=w(t)

y(t) =
[
1 0 0 0

]︸ ︷︷ ︸
=Cc

·x(t) +
[
0 0

]︸ ︷︷ ︸
=[Dc,u Dc,z ]
=Dc

·w(t) .

(1.11)

This model is illustrated in Figure 1.3.
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Figure 1.3: Block Diagram of Continuous-Time State Space Model

For a better understanding, the inputs and outputs of the system are discussed again:

• u(t) denotes the manipulating input, i.e. the voltage of motor 1.

• z(t) denotes the disturbance input, i.e. the current of motor 2.

• y(t) denotes the output, i.e. the measured angular velocity of motor 1.

The state space representation (1.11) can be used to derive the transfer function models.
The input-output transfer function G(s) can be computed as

Y (s)

U(s)
= G(s) = Cc · (s · I −Ac)

−1 ·Bc,u +Dc,u , (1.12)

and the disturbance transfer function Gz(s) as

Y (s)

Z(s)
= Gz(s) = Cc · (s · I −Ac)

−1 ·Bc,z +Dc,z . (1.13)

This finally yields the block diagram shown in Figure 1.4.
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Figure 1.4: Block Diagram of Continuous-Time Transfer Function Model
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Chapter 2

Preparation@Home A

In this exercise, we first compute the continuous-time transfer function models and analyze
them step by step using, among other things, the Bode diagram. Finally, we are familiar with
the flexible shaft and therefore in position to design a first feedback controller, namely a PI
controller.

2.1 Instructions
1. The exercises of this chapter must be completed before the lab session of Chapter 2.

2. Download the provided zip-file from the IfA homepage and unpack it to your preferred
folder. Then, start Matlab and go to this folder.

3. Open the script updateVarParamFlexShaft.m. Make sure that the following values are
set: modeSel=0, cmd=1, J=402e-6 (in CONFIGURATION).

4. Now you are ready to solve the tasks given in the next section of this chapter step by step.
Write your code directly into updateVarParamFlexShaft.m at the marked positions. In
this file, the continuous-time state space model is available in the structure syscr.

5. In some tasks you should run the simulator to measure some responses. In this case,
proceed as follows:

(a) Open the Simulink model simFlexShaft.mdl.

(b) Configure updateVarParamFlexShaft.m according to the given task, i.e. set the func-
tion selector fcnSel and the controller selector controllerSel to the appropriate
value (in CONFIGURATION). Then, save the file.

(c) Start the simulation in simFlexShaft.mdl. This automatically loads the parameters
of updateVarParamFlexShaft.m into the model and starts with measuring the desired
response.

(d) As soon as the measurements are completed, the simulation stops automatically and
the recorded data is displayed. View the plot and save it for your records.

6. After having completed all the tasks: Store the file updateVarParamFlexShaft.m safely;
you will need it in the lab session to test your controller on the real hardware.
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2.2 Analysis of the Flexible Shaft Model

Task 1: Transfer Function Models

Convert the continuous-time state space model given in the Matlab structure syscr
to the input-output transfer function model G(s) and to the disturbance transfer
function model Gz(s) using the Matlab functions ss and tf. Write your code into
updateVarParamFlexShaft.m at marking Task A.1 and run the file.

Task 2: Bode Diagram

Plot the Bode diagram of the input-output transfer functionG(s) and the disturbance
transfer function Gz(s) using the Matlab function bode. Write your code into
updateVarParamFlexShaft.m at marking Task A.2 and run the file.

Task 3: Analysis based on Bode Diagrams

In this task you will do a qualitative analysis of the Bode diagrams of the input-output
transfer function G(s) and the disturbance transfer function Gz(s).

1. In the magnitude plot of the input-output transfer function you see a downward
and an upward peak in the frequency range from 1 to 10rad/s. What are the
names of these peaks?

2. What poles and zeros (real and conjugate complex) does the input-output trans-
fer function G(s) have according to the Bode diagram derived in task 2? What
is the relative degree of G(s)?

3. What poles and zeros (real and conjugate complex) does the disturbance trans-
fer function Gz(s) have according to the Bode diagram derived in task 2? What
is the relative degree of Gz(s)?

Task 4: Poles and Zeros of the Transfer Function Models

For each subtask, write your code into updateVarParamFlexShaft.m at marking
Task A.4 and run the file.

1. Use the Matlab function eig to calculate the eigenvalues of the system matrix
Ac respectively the poles of the input-output transfer function G(s).

2. Calculate the zeros of the transfer function G(s) using the Matlab function
tzero.

3. Does the disturbance transfer function Gz(s) also have zeros?

4. Do the poles of the two transfer function models G(s) and Gz(s) coincide with
each other? If yes, why is this so and is this generally the case? Hint: Pole-zero
cancellations.

5. Where does the difference between those two transfer function models come
from? Hint: Reflect on the input-output relations.
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Task 5: Step Responses

Use the simulator (as described in step 5 of Section 2.1) to plot the input-output step
response and the disturbance step response. Do not forget to set the function selector
in the Matlab script updateVarParamFlexShaft.m to the corresponding value (2
or 3). Note that the simulator will apply to G(s) or Gz(s) a profile consisting of
several positive and negative steps.

Task 6: Increased Moment of Inertia

Set the moment of inertia J in the Matlab script updateVarParamFlexShaft.m to
the value 1002 · 10−6kgm2 (in CONFIGURATION).

For the following subtasks you can reuse the code of Task A.2 and Task A.4.

1. Plot the Bode diagram of the input-output transfer function G(s). What impact
does the increased moment of inertia have?

2. Calculate the poles and zeros of the transfer function G(s). Has the increased
moment of inertia an influence on the poles and zeros? If yes, do you have any
physical explanation for this?

2.3 PI Controller

+

+
)(sG

+

-

r

)(sG
z

r
G (s)

u y

z

Figure 2.1: Block Diagram of Feedback Structure

After having analyzed the plant models, we are now able to design a PI controller. Figure 2.1
shows the feedback structure used in the experiment, where the transfer function Gr(s) of the
controller is given as

Gr(s) = Kp ·
(

1 +
Ki

s

)
, (2.1)

and the loop transfer function is defined as L(s) = G(s) ·Gr(s). Before we can start with the
actual controller tuning, we set some design criteria:

• The gain crossover frequency of the loop transfer function L(s) shall be below the antireso-
nance frequency, i.e. the frequency where the magnitude |L(jω)| crosses the 0dB-axis shall
be smaller than the antiresonance frequency.

• The gain crossover frequency should be as large as possible.

• The phase margin shall be greater than 50◦.
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• The bounds [−18V + 18V] of the control action u shall be respected by the controller.

Task 7: Controller Design

Set the moment of inertia J in the Matlab script updateVarParamFlexShaft.m
back to the value 402 · 10−6kgm2.

1. Why must the gain crossover frequency of the loop transfer function be smaller
than the antiresonance frequency?

2. Design a PI controller that meets the specified requirements. Write your code
into updateVarParamFlexShaft.m at marking Task A.7 and run the file.
Hint: one possible procedure is as follows:

• Decide on desired crossover frequency.
• Tune Ki such that the phase margin at desired crossover frequency is

enough.
• Tune Kp to obtain the desired crossover frequency.

For this procedure you need a Bode plot of L(s).

3. Use the simulator (as described in step 5 of Section 2.1) to plot the reference step
response and the closed-loop disturbance step response. Do not forget to set
the corresponding function selector (4 or 5) and make sure that the controller
selector is set to pid.
Note: For the reference step response, a reference profile consisting of a se-
quence of several positive and negative steps is applied. For the the closed-loop
disturbance step response, the shaft is successively operated at three reference
velocities (positive, zero, negative) and in each of them, a sequence of positive
and negative disturbance steps are applied.

Remark: We do the design in continuous time, despite the fact that we are ap-
plying digital control. The provided Simulink model implements the discrete-time
equivalent of (2.1) that results by trapezoidal integration (Tustin’s method, [1, §8.3]),
namely Gr(z) = Kp ·

(
1 +Ki · T (z+1)

2(z−1)

)
.
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Chapter 3

Lab Session A

In this lab session, we verify the transfer function models of the flexible shaft by applying
some automatically generated test signals, and we test the PI controller design of Chapter 2 by
applying it to the real hardware.

3.1 Instructions
1. Double-click the icon ifa_3_7.ps1 on the desktop of the lab computer. This will download

all necessary files into C:\Scratch\Flex_Shaft and start Matlab automatically.

2. Copy the Matlab script updateVarParamFlexShaft.m generated during the home exer-
cises to the current Matlab folder and open it. Set the mode selector to modeSel=1 and
make sure that the inertia is set to J=402e-6.

3. Open the Simulink model targetSysFlexShaft.mdl, which serves as graphical user in-
terface (GUI) to interact with the control unit. Figure 3.1 shows the GUI with some
highlighted elements.

1

2

3

4

Figure 3.1: GUI Flexible Shaft

4. Power on the control unit of the flexible shaft with the switch on the back side, and wait
until booting is completed and the application is running, which is indicated by a green
shining R/E light (this is the top most) on the front side of the CPU module.
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5. Now you are ready to complete the tasks according to the description in the next section
of this chapter. For each task proceed as follows:

(a) Connect (Fig. 3.1(1)) the GUI to the control unit, and wait until the absolute timer
(Fig. 3.1(2)) is running.

(b) Configure updateVarParamFlexShaft.m according to the given task, i.e. set the func-
tion selector fcnSel and the controller selector controllerSel to the appropriate
value. Set cmd=1 and run the file. The control unit should go to state running
(Fig. 3.1(3)). The flexible shaft starts rotating, and the measurements are in progress.

(c) Wait until the control unit is in state terminated, meaning that the measurements are
completed. In the meantime you can observe the real system and look at the scope
of the GUI. Note:

• You can stop the flexible shaft at any time by proceeding with step 5d!
• If the state goes to failure, then a hardware error occurred. For more information,

check the errorID (Fig. 3.1(4)). To reset the error, proceed with step 5d.
• If Simulink shows an error message box, then restart from step 5a.

(d) Set cmd=0 in updateVarParamFlexShaft.m and run the file. The control unit goes
back to state idle, and the flexible shaft stops rotating.

(e) Disconnect (Fig. 3.1(1)) the GUI from the control unit. The recorded data is auto-
matically loaded and displayed. View the plot and save it for your records.

(f) If the obtained results are not satisfactory enough, adjust the parameters of your
controller in updateVarParamFlexShaft.m and repeat from step 5a.

6. After having completed all the tasks:

(a) Store the file updateVarParamFlexShaft.m safely; you will need it again for Part B.

(b) Power off the control unit of the flexible shaft.
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3.2 Model Verification

Task 8: Frequency Responses

1. First, measure the input-output frequency response, G(jω). Do not forget to set
the corresponding function selector. The response will be automatically plotted
to the Bode diagram together with the response of the transfer function model.
Finally view the diagram and summarize the observations you make.

2. Optional: Do the same for the disturbance frequency response, Gz(jω).

Remark: In this experiment, a number of sine-waves of distinct frequencies are
sequentially applied to the system, and for each frequency, after the system is sta-
tionary again, the DFT of the input and output is measured synchronously using
the Goertzel algorithm [2, §5.5]. Note that to prevent the dynamics from getting
influenced by stiction, the experiment is not done around the 0-speed point; instead
a constant offset is superimposed to the sine-waves. Further note that measuring the
whole frequency response takes about a quarter of an hour.

Task 9: Step Responses

1. Measure the input-output step response by setting the corresponding function
selector. The response as well as the input will be automatically plotted to a
diagram together with the responses of the model. Finally, view the diagram
and summarize your observations.

2. Do the same for the disturbance step response.

3.3 PI Controller

Task 10: Verification of PI Controller

1. Measure the reference step response. Do not forget to set the corresponding
function selector, and make sure that the controller selector is set to pid. As
before, the recorded data is plotted into a diagram. View the diagram and
comment on the observations you make. You might want to compare the step
response with the simulated response.

2. Do the same for the closed-loop disturbance step response.

3.4 Conclusion

Task 11: Conclusion

1. Fill in the online feedback form found in MyExperiments on the laboratory
courses registration page. Each participant has to give his/her own feedback.
Thank you for your inputs! This helps us to improve our experiments.

2. Discuss the experiment with your supervisor to get the confirmation (Testat).
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