
Automatic Control Laboratory, ETH Zürich
Prof. John Lygeros

Revised by Niklas Schmid
Revision from: September 21, 2022

MATLAB Introduction

Day 2

Today we will look at functionalities MATLAB offers to define, analyse and simulate dynam-
ical systems. This can be used to analyse a system’s behaviour based on a model, verify models
against data or to design and analyse controllers.

Contents

1 Theory 3
1.1 Packages . 3
1.2 Linear system theory . 3
1.3 Linear systems: Definition . 4

1.3.1 Definition using standard MATLAB . 4
1.3.2 Definition using the Control Systems Toolbox 6

1.4 Linear systems: Analysis . 6
1.4.1 Stability analysis . 7
1.4.2 Frequency response analysis . 7
1.4.3 Time response analysis . 8

1.5 Simulating nonlinear systems . 9

2 Practice 11

2

Chapter 1

Theory

1.1 Packages

Last time we talked about classes like strings and matrices. However, you may want to perform
fancier computations using methods like neural networks without having to program everything
from scratch. Therefore, MATLAB offers a lot of additional packages which introduce new types
of classes and functions. One of these packages that we will look at today is the Control Systems
Toolbox, which allows you to define state space systems and transfer functions, as well as to solve
differential equations and run simulations.

First let’s have a look at linear systems. The following section serves as a brief summary. If
you are not familiar with linear systems, just take the following facts for granted. They will be
introduced in more detail in the ETH control systems and linear system theory lectures. There
is also freely available literature which you may find useful.1

1.2 Linear system theory

A linear dynamical system can be represented using differential equations in the form of

ẋ = Ax+Bu (1.1)

y = Cx+Du

with A,B,C,D being matrices, u the input, x the state, and y the output.

An alternative representation is the Laplace-transform, where a rational transfer function

G(s) =
Y (s)

U(s)
=

b0s
n + b1s

n−1 + · · ·+ bn−1s+ bn
sn + a1sn−1 + · · ·+ an−1s+ an

(1.2)

is used.

One can obtain the transfer function of system 1.1 as

G(s) = C(sI −A)−1B +D (1.3)

A transfer function of form 1.2 can be transferred into state space form, e.g. using the controller

1K. J. Astrom and R. Murray. Feedback Systems: An Introduction for Scientists and Engineers. Princeton
University Press, 2010. (freely available online)

3

canonical form

ẋ =

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . . 0
0 0 0 . . . 1

−an −an−1 −an−2 . . . −a1

x+

0
0
0
0
1

u (1.4)

y =
[
(bn − anb0) (bn−1 − an−1b0) . . . (b2 − a2b0) (b1 − a1b0)

]
x+ b0u. (1.5)

When analysing a dynamical system we often obtain differential equations leading to the
state space model. The system is stable if the eigenvalues of the matrix A have a negative real
part.

On the other hand, the transfer function is useful, since we can easily compute its poles and
zeros and thus determine the frequency behaviour of the system. The system is stable if all
poles have a negative real part. Furthermore, for second order systems we can easily obtain the
damping coefficient and resonance frequency of the system.

1.3 Linear systems: Definition

So how can we define a linear system in MATLAB? We will have a look at how to do it using
standard MATLAB code. We will then discuss a much more convenient way using the Control
Systems Toolbox.

1.3.1 Definition using standard MATLAB

State space models

We can define a linear system by its state space matrices A,B,C,D. E.g., for the system,

ẋ =

(
0 1
0 0

)
x+

(
0
1

)
u (1.6)

y =
(
1 0

)
x

we would define

A = [0, 1; 0, 0];

B = [0; 1];

C = [1, 0];

D = 0;

Alternatively, one could define the polynomials that define the transfer function. Let’s have
a closer look at how to store and work with polynomials in MATLAB.

Transfer functions

MATLAB offers a lot of functionality to work with polynomials with natural positive powers.
Therefore, the coefficients of the polynomials are stored in a vector.

ans
n + an−1s

n−1 + a0

↕
[an, an−1, . . . , a0]

Thus, for a transfer function

G(s) =
b0s

n + b1s
n−1 + · · ·+ bn−1s+ bn

sn + a1sn−1 + · · ·+ an−1s+ an
(1.7)

4

we would define two polynomials den = [b0, . . . , bn], num = [1, a1, . . . , an] for the denominator
and numerator, respectively.

You can evaluate a polynomial using the function polyval(p,x), where the polynomial p will
be evaluated at every point in x:

polyval([1 0 0],[1 -2 3])

ans =

1 4 9

You can add and subtract two polynomials by adding or subtracting their coefficient vectors.
Note that both vectors have to be of the same size for this operation. If one polynomial is of
lower order, you may add some zeros from the left to make them equally sized. Let’s compute

(s2 + s+ 1)− (s+ 2) = s2 − 1. (1.8)

[1 1 1] - [0 1 2]

ans =

1 0 -1

The multiplication of two polynomials equals the convolution of their coefficients:

(s+ 2)(s+ 3) = s2 + 5s+ 6 (1.9)

conv([1 2], [1 3])

ans =

1 5 6

Equivalently, the division of two polynomials equals their deconvolution

s2 + 5s+ 7

s+ 2
= s+ 3 +

1

s+ 2
(1.10)

[q,r] = deconv([1 5 7],[1 2])

q =

1 3

r =

0 0 1

The function roots(p) returns the roots of the polynomial p. On the contrary, given a vector
of roots N , the function poly(N) returns the coefficients of a respective polynom. Thus the
following command

roots(poly(1:n))

should give us the roots of a polynomial with roots at 1, 2, 3, . . . , n, which means it should return
a vector [1, 2, 3, . . . , n]. Try this command with n = 30. What do you observe? Can you explain
this behaviour?

Conversions between state space representation and transfer function

Assume you are given the state space representation of a system via matrices A,B,C,D. One can
obtain the coefficients of the numerator and denominator of the corresponding transfer function
using [num,den] = ss2tf(A,B,C,D). Vice versa, the function [A,B,C,D] = tf2ss(num,den) can be
used to obtain the state space representation of a given transfer function.

Let’s look at an example. An integrator system is given by

y =

∫
udt. (1.11)

5

We can write these dynamics as state space

ẋ = Ax+Bu = u

y = Cx+Du = x

by choosing A = 0, B = 1, C = 1, D = 0, or as transfer function using

Y (s)

U(s)
=

b0s+ b1
a0s+ a1

=
1

s
(1.12)

by choosing den = [b0, b1] = [0, 1], num = [a0, a1] = [1, 0]. Verify that you obtain the corre-
sponding conversion when using the commands ss2tf() and tf2ss().

For multidimensional systems you must specify the desired output via an addi-
tional argument n in [Z,N] = ss2tf(A,B,C,D,n). Otherwise, the command will
return a matrix with all transfer functions from every input to every output.

1.3.2 Definition using the Control Systems Toolbox

A much more convenient way of dealing with dynamical systems in MATLAB is provided by
the Control Systems Toolbox. This toolbox provides dedicated classes for LTI systems (Linear
Time Invariant systems). The definition of a system works in a similar way, but the resulting
LTI-system will be stored in one single object.

sys1 = tf(num,den) % transfer function

sys2 = ss(a,b,c,d) % state space

MATLAB will create a tf or ss object, respectively. You can change their preferred representation
using the commands ss(sys1) or tf(sys2).

These objects have several nice features. You can again extract the state space matrices and
the coefficients using the commands

[num,den] = tfdata(sys1);

[a,b,c,d] = ssdata(sys2);

You can can add, subtract, multiply and divide two transfer functions using the conventional
operators

sys1 + sys1

2 * sys1 * sys1

You can also connect LTI-systems in special configurations, which are explained on the respec-
tive help-pages. Some helpful commands are: append(), parallel(), series(), feedback(), star(),
connect().

We will next talk about the useful tools that the toolbox provides to analyse systems.

1.4 Linear systems: Analysis

Throughout this section, we will look at the following example

A = [-1, 1; 0, 0];

B = [0; 1];

C = [1, 0];

D = 0;

example_system=ss(A,B,C,D)

and analyse its behaviour.

6

1.4.1 Stability analysis

In order to analyse the stability of a system in state space form we will look at its eigenvalues.

eig(A)

You can also pass a ss- or tf-object to the function eig().
Alternatively, we can look at the roots of the characteristic polynomial

cp = poly(A)

rts = roots(cp)

For our initial example

eig(example_system)

ans =

-1

0

Thus we have a stable pole and an integrator.

1.4.2 Frequency response analysis

Nyquist-Plot

The Nyquist plot shows the frequency behaviour of the system for positive frequencies in the
complex plane. You can generate a Nyquist plot using the command

[re,im,wout]=nyquist(example_system)

If you do not store any values, MATLAB will automatically generate a Nyquist plot. The
variables re, im and wout are vectors of the same length. The elements in re and im are the real
and imaginary values obtained when evaluating the system at the frequencies given in wout.

Figure 1.1: nyquist(example system). The arrows point towards increasing frequencies. The
lower graph belongs to the positive frequencies. The upper graph belongs to the negative fre-
quencies.

Bode-Plot

The Bode-Plot depicts the amplitude and phase of the system over the frequency range. The
respective command is [mag,phase,wout] = bode(sys). The variables mag, phase and wout are
again vectors of the same length. The elements in mag and phase are the magnitude and phase
values obtained when evaluating the system at the frequencies given in wout.

7

Figure 1.2: bode(example system). We can clearly see the effect of the integrator since we start
at −90◦ and the effect of the stable pole at 1 rad/s

MATLAB automatically picks the frequencies in wout at which the trans-
fer function is evaluated. If you want to specify these frequencies, you can
pass them as a vector w via [re,im,wout]=nyquist(sys,w). Then, wout=w. In-
stead of passing a ss- or tf-object you can also pass the state space matrices or
the polynomials of the transfer function directly ([re,im,w]=nyquist(a,b,c,d,w),
[re,im,w]=nyquist(num,den,w)). Everything mentioned also holds for the com-
mand bode().

1.4.3 Time response analysis

We will now look at the time-response of a system to specific inputs, a.k.a. we will simulate the
system.

Impulse and step response

The impulse and step response of an ss or tf object can easily be computed and plotted using
the functions impulse() and step(). Similar as for the bode- and nyquist commands you can also
pass the transfer function and state space matrices directly. You can define a vector t specifying
the points in time at which the response is evaluated (similar as you did with w for the bode
and nyquist commands. This is still optional).

figure()

subplot(2,1,1)

impulse(example_system)

subplot(2,1,2)

step(example_system)

Response to user-defined inputs

You can simulate the response of a system to arbitrary inputs by defining a vector of inputs U ,
which are applied at times T and using the command

[Y,T] = lsim(example_system,U,T);

You can also track the evolution of the state using [Y,T,X] = lsim(sys1,U,T) and define a specific
initial state [Y,T,X] = lsim(example system,U,T,X0). If no initial state is defined, MATLAB
assumes it to be zero.

8

Figure 1.3: Impulse and step response of the system.

1.5 Simulating nonlinear systems

So far we only looked at linear, time invariant systems. The described methods cannot handle
nonlinear or time-varying systems. For these cases MATLAB offers more dedicated tools.

Let’s consider systems of the form

ẋ = f(x, u, t)

y = g(x, u, t)

x(0) = x0.

We differentiate between the case u = 0 (called the initial value problem, since we only look
at the system behaviour based on the initial condition x0), and the case u ̸= 0. The case u ̸= 0
will not be discussed within this script. We refer the reader to the Simulink environment that
is incorporated in MATLAB and offers vast functionality for arbitrary types of simulations. For
now we will only look at the initial value problem.

Therefore, the system function f(x, u, t) has to be put into a MATLAB function with input
parameters x and t and output variable dx. The name of the function can be chosen arbitrarily
and neither x nor t actually have to be used within the function.

The system can now be simulated using a specific solver that integrates the function f(x, u, t)
starting from x0. Therefore, we use commands of the form

[T,X] = solver(functionName,tspan,x0)

where

• T is a vector and X a matrix, where X(i, :) are the states at time T (i)

• functionName is the name of the function f(x, u, t)

• tspan is a vector of points t in time at which the state X(t) shall be stored in the vector X.
If only the initial and terminal time are given, then MATLAB automatically picks these
values in between. Otherwise, tspan= T .

• solver is the numerical integration method that MATLAB shall use. A choice that often
works is ode45 or ode15. The benefit of ode45 is that it is very fast, but it does not work
for every system. More on that later.

Let’s look at an example. We want to simulate the system

ẋ(t) = −x(t)||x(t)||3 x(0) =

(
1
3

)
(1.13)

9

starting from time t = 0 until t = 10. Therefore, we define the MATLAB function

function dx = Tsystem1(t,x)

dx = -x*norm(x)^3;

end

and call the solver

ode45('Tsystem1',[0 10],[1; 3]);

A plot of the results automatically appears because the output of the solver has not been assigned
to any variables.

Great caution is needed when choosing an integration method. There exist
big varieties of methods with individual benefits and weaknesses. A lack of
knowledge or carelessness may lead to arbitrarily wrong simulation results.
Even worse, since wrong simulation results are purely caused by numerical
issues, no solver will print an error message in case the simulation result is off.
A long list of solvers and examples explaining when to use which solver can be
found on the respective MATLAB help page.

10

Chapter 2

Practice

Today’s afternoon we will look at serial connections of the first order low pass filter

τ ẏ + y = u (2.1)

with τ = 5. We want to put N of these filters in series and analyse their behaviour.

1. Create a MATLAB script in which you generate a Nyquist- and Bode-Plot of the system’s
frequency behaviour for ω ∈ [0.01, 1000]. Take care of the logarithmic scaling of the Bode
and Nyquist plots. Also, plot the impulse- and step-response of the filter for t ∈ [0, 50]
with an adequate step-length. Helpful commands: linspace(), logspace(), bode(), nyquist(),
impulse(), step()

2. Generate a vector that contains a sawtooth signal with an amplitude A = 1 and a period
length Tp = 12 for the time interval t ∈ [0, 60] and plot it. Hint: You need to generate two
vectors: A vector U that stores the signal values and a vector T of same length with the
corresponding time stamps of the values in U . You may find it easier to generate only one
tooth of the sawtooth signal. Then, you can build the vector U by concatenating copies
of the single tooth multiple times.

3. Simulate the filter response when using the generated sawtooth signal as an input. Plot
the input and output signals in one figure.

4. Write a MATLAB function TFseries(num1, den1, num2, den2) that takes the numera-
tor and denominator of two transfer functions as inputs. The output shall be a transfer
function that has the frequency response of the serial connection of the two input func-
tions. Hint: The serial connection of two systems means that their transfer functions
are multiplied, i.e. their coefficient vectors are convoluted. For now, only consider SISO
systems.

5. Write another function TFseriesN(num, den, N) that outputs a transfer function, which
equals N serial connections of the inputted transfer function. Therefore, call and make
use of your function TFseries(num1, den1, num2, den2) within TFseriesN(num, den, N).
Print an error message if the input N is not meaningful.

6. We now want to compare the responses for different lengths of series of our low-pass filter.
Compute the transfer functions for N = 1, 2, 4, 8, 16. Generate four figures. Inside these
figures we will plot the Nyquist plots, Bode plots, the impulse responses and the step
responses, respectively. In every figure, plot the respective responses for all N in one
single plot using the command hold on. Add a legend to the plots using the command
legend(), so that you know which graph belongs to which N .

11

	Theory
	Packages
	Linear system theory
	Linear systems: Definition
	Definition using standard MATLAB
	Definition using the Control Systems Toolbox

	Linear systems: Analysis
	Stability analysis
	Frequency response analysis
	Time response analysis

	Simulating nonlinear systems

	Practice

