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IfA Fachpraktikum - Experiment 2.2:

Self-Erecting Inverted Pendulum

In this experiment, a pendulum is mounted on a cart. The pendulum shall be controlled to stay
at its unstable equilibrium, i.e. the upright position. You will design a linear quadratic regulator
(LQR) to achieve this goal.
Additionally, you will implement a destabilizing controller that will make the pendulum swing
up from its stable downward position. Finally, the two controllers will be combined to yield a
self-erecting pendulum.

Figure 1: The inverted pendulum in the IfA lab.

For the preparation of this experiment at home you need to download the following files from
the IfA Fachpraktikum website http://people.ee.ethz.ch/~ifa-fp/wikimedia/images/6/

67/IfA_2-2_matlab.zip.

stabilizing control structure.m m-file structure for inverted pendulum
swingup control structure.m m-file structure for self-erecting pendulum

During the lab session you will need additional files that are provided locally on your machine.

http://people.ee.ethz.ch/~ifa-fp/wikimedia/images/6/67/IfA_2-2_matlab.zip
http://people.ee.ethz.ch/~ifa-fp/wikimedia/images/6/67/IfA_2-2_matlab.zip
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Chapter 1

Problem Setup and Notation

The inverted pendulum is a classic problem in dynamics and control theory. It is widely used
for testing control algorithms. As opposed to the ordinary pendulum, the inverted pendulum
has its mass above its pivot point. Whereas the normal pendulum is stable when pointing down-
wards, the inverted pendulum is inherently unstable. Therefore it must be actively balanced in

Figure 1.1: A pendulum is mounted on a cart. It can be stabilized in the upright position by
moving the cart accordingly.

order to remain upright. To that end, the inverted pendulum is mounted on a cart that can
move horizontally (Figure 1.1). As the stabilization of the pendulum is a nonlinear problem, the
system must be linearized in order to be able to apply standard linear control methods.
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Figure 1.2 shows a picture of the experimental setup you will find in the lab. The plant consists

Figure 1.2: Hardware setup of the inverted pendulum in the lab.

of three parts: the pendulum, the cart, and the track, which limits the movement of the cart.
The orange box contains five fuses and plugs. All fuses must be set for the plugs to be live. The
blue box contains the black power module that provides the power for the motor of the cart,
and the B&R industrial control unit comprising a CPU and counter modules, that processes
the measurements and computes the control inputs. All code and simulations are implemented
using the lab PC on the right.
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Chapter 2

Preparation@Home

2.1 Modeling

Figure 2.1: Forces acting on the two rigid bodies of the system.

Task 1: Nonlinear Differential Equations

The pendulum is approximated as a point mass in its center of gravity. The free
body diagram is given in Figure 2.1. The pivot joint of the pendulum on the cart
is assumed to be frictionless. The rolling resistance of the cart is given by Fr = bẋ.
The forces H and N are the forces in the pivot joint of the pendulum. The cart can
be moved with the external force F = nKt/ri(t) applied by the motor. To establish
the differential equations the principle of linear and angular momentums are used.

Linear and angular momentum: Recall the definitions of the linear and an-
gular momentum and their principles for rigid bodies:

• The linear momentum is the product of the mass and the velocity of the
center of gravity of a rigid body:

~p := m · ~̇rOS

where rOS is the vector from the origin O of the coordinate frame to the center
of gravity S of the rigid body.
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• The angular momentum is the sum of the linear momentum of a stationary
point of the rigid body and the spin of the body:

~Lp := m · ~rOS × ~̇rOS + ΘSφ̇

where rPS is the vector from the reference point P to the center of gravity S.

• The principle of linear momentum states that the derivative of the linear
momentum is equal to the sum of the forces acting on the system:

~̇p =
∑

~Fi

• The principle of angular momentum states that the derivative of the an-
gular momentum is equal to the sum of the induced moments acting on the
body:

~̇Lp =
∑

~r0Bi
× ~FBi

+
∑

Mi

Proceed as follows:

1. Determine the linear momentum ~pc of the cart in x direction.

2. Take the first derivative of the linear momentum ~pc of the cart and set it equal
to all forces acting on the cart in x direction.

3. Determine the linear momentum ~pp of the pendulum in x and y direction.

4. Take the first derivative of the linear momentum ~pp of the pendulum in both
directions and set it equal to all forces acting on the pendulum in its respective
direction.

5. Determine the angular momentum ~Lp of the pendulum.

6. Take the first derivative of the angular momentum ~Lp of the pendulum and set
it equal to all moments acting on the pendulum.

7. Bring the system to the form ẍ = f1(x, ẋ, φ, φ̇, F ); φ̈ = f2(x, ẋ, φ, φ̇, F )

Task 2: Linearization of the system

In order to be able to apply linear control methods, this nonlinear system must
be linearized. Use the method presented in the control systems lecture to linearize
the system around its unstable equilibrium φ = 0, ẋ = 0, φ̇ = 0, F = 0, i.e.
x̃ss = [0, 0, 0, 0], uss = 0.

Task 3: State space representation

Write the linearized system in state space representation.
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Task 4: Numerical state space representation

Include the state space representation in the Matlab script stabilizing control structure.m.
Save it as stabilizing control.m. The numerical parameters are:

pendulum mass m 0.104kg
cart mass M 1.79kg
pendulum length from pivot to center of gravity l 0.1524m
gravitational acceleration g 9.81ms2
friction coefficient b 0.001Nsm
motor efficiency n 1
motor torque constant Kt 0.07NmA
motor pinion radius r 6.35e− 3m
force acting on the cart F n·Kt

r · i(t)
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2.2 Optimal State Feedback Control - LQR

To keep the pendulum in the upright position, a stabilizing state feedback controller shall be
implemented. The corresponding block diagram is given in Figure 2.2.
(xref , φref , ẋref , φ̇ref ) is the state reference. The reference angle φref must be equal to the

unstable equilibrium π. The pendulum’s and cart’s velocities φ̇ref and ẋref must be zero.
The cart position does not influence the equilibrium, its reference xref can therefore be chosen
arbitrarily inside its allowed range.
The task here is to find an optimal feedback controller, i.e. a linear quadratic regulator (LQR)
that stabilizes the system.

Figure 2.2: Block diagram of the state feedback system.

The idea behind LQR is to find a feedback gain KLQR, such that the control law

u(t) = −KLQRx̃

minimises the cost function

J(u(t)) =

∫ ∞
0

x̃(t)TQx̃(t) + u(t)TRu(t)dt

and stabilises the closed control loop (||x̃(t)|| → 0, and ||u(t)|| → 0 as t→∞) while keeping the
control energy as small as possible or within certain bounds.

The optimal feedback gain KLQR can be obtained using the Matlab command lqr. For
further mathematical details of LQR, please refer to the control systems lecture notes.

Task 5: Theoretical considerations for LQR control

1. What are the dimensions of the Q-matrix?

2. Which matrix properties are necessary for Q? Why?

3. What are the dimensions of the R-matrix?

4. Which matrix properties are necessary for R? Why?

5. How is the control behaviour affected if you choose much larger values for the
entries of Q than for R? What problems may occur?

6. What happens in the opposite case?

7. What happens if you increase/decrease the entries of Q and R at the same rate?

8. What is the impact of a deviation of the position of the cart from the equilibrium
state, what is the impact of a deviation in the pendulum angle? What does this
mean for the tuning of Q?

9. What are the units of the states and what is the expected maximum deviation?
What does this mean for the tuning of Q?

Hint: Helpful information can be found in the RS1 lecture notes chapter 13
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Task 6: LQR controller gain

The next step is to define the matrices Q and R and compute the gain K. For
the sake of comparison to the master solution, keep R = 1 and only tune Q. The
controller should be rather fast, but not too aggressive in order not to violate the
current saturation constraints. You can compute K in stabilizing control.m using
the Matlab command ’lqr’ !
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2.3 Self-Erecting Pendulum Control

The final goal of this experiment is to obtain a self-erecting pendulum. To that end, a destabi-
lizing controller for the angle (swing-up controller) must be implemented.

Figure 2.3: Schematics of the cascaded control of the swing-up motion.

The control of the position of the cart needs to be stable to keep the cart on the track.
The idea is to have a cascaded control with an inner loop that stabilizes the cart’s position,
and an outer control loop that destabilizes the pendulum’s down-equilibrium by calculating a
corresponding cart position reference (Figure 2.3).
To obtain a self-erecting pendulum, switching between the swing-up and the stabilizing controller
is necessary. This is denoted “mode selection” in Figure 2.4. Once the pendulum position reaches
an angle from which it can be stabilized, the control is switched from swing-up to stabilizing.

Figure 2.4: Schematics of the self-erecting pendulum control.

For the following tasks, use the file swingup control structure.m. Save the edited code as
swingup control.m.

Task 7: State space representation

For the stabilizing position control, calculate the model of the reduced system
(x, ẋ). Neglect the dependence on φ.
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Task 8: Stabilizing position control parameters

The poles shall be placed at −7 and −15, respectively. Determine the corresponding
gain Kpos using Ackerman’s pole placement formula! Hint: Use the Matlab com-
mand ’place’.

Task 9: Destabilizing pendulum control parameters

For the position reference, consider x = P · φ + D · φ̇, where [P,D] = Kφ, and
P ∈ R, D ∈ R. How should the cart respond to the pendulum angle in order to
swing up?
Remark: In this controller φ = 0 is the stable equilibrium (pendulum
pointing downwards), φ = π is the upright position

Task 10: Switch to stabilizing control

To stabilize the pendulum in the upright position, one must switch to the stabiliz-
ing controller once the pendulum has reached an angle close enough to the upright
position (φ = π). What angle would you choose?
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Chapter 3

Lab Session Tasks

The lab session consists of two parts: In a first step, the homework results will be tested
in a Simulink model. In a second step, the feedback control will be employed in the actual
experimental setup.

3.1 Hardware Setup

Before you start, make sure the hardware is set up correctly. First, mount the medium (i.e.
30cm long) pendulum rod to the cart front pendulum shaft, as illustrated in Figure 3.1.

Figure 3.1: The pendulum is mounted on the cart.

12



3.1.1 Safety precautions

• For safety reasons ensure that there is about 1m of clearance from either end of the track
at any time to avoid collisions.

• Before you start experiments, put the cart to the middle of the track.

• Verify that the suspended pendulum is not moving before starting the system.

• If you change any parameters, e.g. K, always verify the new controller with the Simulink
model first. Before implementing the controller on the actual system, you must ensure the
specifications are met without saturating the actuator.

• Ensure you are always able to safely reach the emergency stop button.

3.2 Inverted Pendulum Experiment

To start the session in the lab, right-click the icon ifa fp 2 2.ps1 on the desktop of the lab
computer and select ’run with power shell’. This will download all necessary files and start
Matlab. To run Matlab scripts, just type their name in the Matlab command window. Note
that the working directory should be the SEIP folder.

3.2.1 Simulation

The next step is to test the controller designed in the homework in a model. First, run ifa2 2a
if not done automatically. This will:

• change the Matlab directory to the correct folder, and

• open the necessary Simulink model InvertedPendulumSim.mdl.

Copy the Matlab script file stabilizing control.m prepared in the homework to the current
Matlab folder and run it. Run the Simulink model.
Investigate the model behaviour for different tuning parameters in Q! Check if the constraints on
the cart postion (±500mm) and the controller input (±15A) are respected! Save the improved
version of stabilizing control.m to the current folder.

3.2.2 Controller Real-Time Implementation

The next step is to implement the previously designed controller on the hardware. Run ifa2 2b.
This will:

• change the Matlab directory to the correct folder, and

• open the Simulink model Pendulum Real.mdl.

Copy the Matlab script file stabilizing control.m with the improved parameters found in the
simulation (section 3.2.1) to the current Matlab folder.

Preparation and implementation

• Before you start, make sure that safe operation is guaranteed and the parameters are
set accordingly (check with simulation!).

• Run ’START InvertedPendulum.m’ to initialize the amplifiers and setup the hard-
ware.

• Ensure the real-time code is run safely by manually moving the cart to the middle
of the track so it is free to move to both sides.

• In order to observe the system’s real-time responses, use the scope in the Simulink model.
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Figure 3.2: Press here to build the model.

Figure 3.3: Press here to connect to the target.

Execution

1. In the Simulink model Pendulum Real.mdl., press the button indicated in Figure 3.2 to
build the model.

2. Wait for the build to finish and then press the button indicated in Figure 3.3 to connect
to the target.

3. To activate the controller, set the ’manual allow signal’ in the Simulink file to 1. Then,
slowly rotate the pendulum counterclockwise to the upright position (the cart will begin
to move). Release the pendulum as soon as the controller is activated.
Remark: Do not try to close the window in Figure 3.3 while you are still connected to
the target and the manual allow signal is on.

4. The cart should now track the position reference and regulate the pendulum angle to 180o.

5. Also, try introducing a disturbance by gently poking the tip of the rod.

6. Set the ’manual allow signal’ in the Simulink file back to 0 and disconnect from the target
(same button as above) if you want to stop the real-time execution or change the gain K.
You do not need to rebuild the project after changing K, it is sufficient to restart from 2.
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3.3 Self-Erecting Pendulum

In a second experiment, we want to implement a self-erecting pendulum. As before, in a first
step simulations must be run to check the homework results. Run ifa2 2c. This will

• change the Matlab directory to the correct folder, and

• open the necessary Simulink model SelfErectingPendulum.mdl.

Copy the Matlab script file swingup control.m from your homework to the current folder and
run it. Note that the working directory should be the SEIP folder.

3.3.1 Simulation

The simulink model consists of two parts: the swing-up control and the stabilizing inverted
pendulum control. Corresponding to the pendulum angle, the respective controller is active.
The model also includes a small angular excitation.

• Set the switching angle to 3rad in swingup control.m.

• Run stabilizing control.m first, and then swingup control.m. Run SelfErectingPendulum.mdl.
Are the simulation results satisfactory?

• Tune Kpos, P and D and compare the results!

• Run SelfErectingPendulum.mdl with different switching angles, e.g. 2rad, 2.5rad, 3rad.
Which ones yield satisfactory results?

• Is this control save in terms of physical limitations (e.g. cart position)?

• Save the improved version of swingup control.m to the current Matlab directory.

3.3.2 Controller Real-Time Implementation

For the self-erecting pendulum control, run ifa2 2d. This will

• change the Matlab directory to the correct folder, and

• open the Simulink model Pendulum Real.mdl.

Copy your improved version of swingup control.m to the current Matlab directory.

Preparation and implementation

• Before you start, make sure that safe operation is guaranteed and the parameters are
set accordingly (see simulation!).

• Run START SelfErectingPendulum.m to initialize the amplifiers and setup the hard-
ware.

• Ensure the real-time code is run safely by manually moving the cart to the middle
of the track so it is free to move to both sides.

• In order to observe the system’s real-time responses, use the scope in the Simulink model.
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Execution

• To start the experiment, proceed as in the first point described in section 3.2.2 and Fig.
3.3.

• To activate the controller, poke the pendulum VERY gently. The pendulum will start
to swing up.

• Set the ’manual allow signal’ in the Simulink file back to 0 and then press the disconnect
button (Fig. 3.3) again if you want to stop the real-time execution.
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Chapter 4

Lessons Learnt

An inverted pendulum can be stabilized using a state feedback controller based on a linearized
model of the pendulum. The cart on which the pendulum is mounted is able to follow a given
trajectory while keeping the pendulum in the upright position. Furthermore, it is possible
to implement a self-erecting pendulum using feedback that destabilizes the stable pendulum
position.

Lesson Learnt 1: Model validity

In the simulation, for which range of starting angles does the stabilizing controller
work? Why?

Lesson Learnt 2: Tuning

What happens if you tune the destabilizing parameters for the self-erecting pendulum
too aggressively?

Lesson Learnt 3: Switching

What happens if you switch at an inadequate angle?

Lesson Learnt 4: Completion of Experiment

Please, fill out the online feedback form on the registration page under MyExperiments.
Each student/participant has to fill out its own feedback form. This will help us to
improve the experiment. Thank you for your help.
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