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The Multiple Multipole Program (MMP) is an advanced boundary 
method for computational electromagnetics and optics. Its closeness to 
analytical methods allows one to obtain highly accurate and reliable 
results. After a short introduction of the fundamentals of MMP, 
additional techniques are introduced that allow one to drastically 
improve the performance for various applications. This includes 1) a 
special consideration of ill-conditioned matrices, 2) the so-called 
connection concept, 3) an advanced eigenvalue solver with a special 
eigenvalue tracing procedure, and 4) the Parameter Estimation 
Technique (PET). Special attention is paid to the error estimation and 
validation of the results. In a second section, the most recent MMP 
version of the MaX-1 software with its advanced modeling, 
visualization, and animation features is presented and it is demonstrated 
how this software is used for handling complicated projects. Thereafter, 
some typical applications of computational optics with a focus on 
photonic bandgap computations and photonic crystal structures are 
presented. 

1. The Multiple Multipole Program (MMP) concept for 
electrodynamics 

The Multiple Multipole Program (MMP) concept was developed since 
1980 [1] at ETH Zurich as an extension of the traditional multipole 
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approximation that was used by Mie in 1900 for the computation of 
electromagnetic waves along circular wires [2] and in 1908 [3] for the 
scattering at a spherical particle. MMP is therefore very close to 
analytical solutions and is sometimes called a semi-analytical approach. 
In fact, MMP approximates the field in any domain by a series expansion 
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as many other matrix methods, for example, the Method of Moments 
(MoM). The basis functions Basisk used in MMP are always analytical 
solutions of the Maxwell equations within at least one domain. The 
unknown, linear Parameters Ak, i.e., the amplitudes of the basis functions, 
are determined in such a way that the weighted square errors of the 
boundary and continuity conditions along all boundaries of all domains 
are minimized. Therefore, MMP is a true boundary method. In contrast 
to the Boundary Element Method (BEM), MMP does usually not 
approximate the boundary by a polygon or by boundary elements, i.e., it 
works directly on the original boundaries. Therefore, an important source 
of inaccuracies is omitted. MMP is also closely related to the MoM, 
although the MoM is traditionally formulated as a domain method 
similar to the Finite Elements Method (FEM). Since the MoM usually 
approximates the sources (currents and charges) of the electromagnetic 
field, it also "works" on the boundaries of the field domains when only 
perfect conductors and loss-free dielectrics are present. Therefore, MoM 
codes discretize the boundaries only when no losses are present. In this 
case, MoM codes usually approximate the boundaries like BEM codes, 
which causes inaccuracies especially for the near-field computation. The 
MMP approach allows one to precisely compute the electromagnetic 
field everywhere, even on the boundaries. This is especially important 
when the near-field effects must be taken into account, for example, in 
Scanning Nearfield Optical Microscopy (SNOM). 

1.1. Remarks on completeness and convergence 

In 1948, Vekua provided a strong mathematical basis for multipole 
approximations of 2D problems [4]: A series expansion of the form 
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may be used to approximate any solution of the 2D Helmholtz equation 

 ( ) 02 =+∆ Fκ  (3) 

(where κ is the 2D wave number) within a domain D with an error that is 
below an arbitrarily small positive number e everywhere in D – provided 
that the maximum orders Ki of all multipoles (terms containing the 
Hankel functions H) and the maximum order K0 of the Bessel expansion 
(terms containing the Bessel functions J) are sufficiently big and 
provided that the linear parameters or amplitudes Aik, Bik, A0k, B0k have 
appropriate values.  This means that we can write 

 0;;)()( >∈∀<− eDPePFPF correctapprox  (4) 

Note that D is a multiply connected domain with I holes (with boundaries 
∂Di) and with an exterior boundary ∂D0. Inside each of the holes, one 
must place a set of multipole expansion with its polar coordinate system 
(ri, φi). When D is simply connected, i.e., no holes are present, the 
multipole expansions are missing. When the exterior boundary ∂D0 is 
missing, the Bessel expansion set with its polar coordinate system (r0, φ0) 
is omitted. Furthermore, one sets all amplitudes Bi0=B00=0 because 
sin(0)=0. Note that the location of each field point P inside D must be 
expressed in I+1 different polar coordinate systems (see Fig. 1). 
Vekua's proof uses general conforming mapping transformations. 
Therefore, it holds for very general, multiply connected domains D with 
Hoelder-continuous boundaries. 
Although Vekua's work was translated in 1967 [5], there was a long, 
confusing debate about the completeness of the series expansion (2) 
because many authors encountered numerical problems when they used 
(2) for writing electromagnetic codes. This debate was misleading 
because most of the authors - who were not aware of Vekua's work - 
guessed that (2) is incomplete. Finally, methods based on (2) were 
abandoned in the USA and replaced by MoM and similar codes. In 
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Europe, Japan, and other countries, several methods based on (2) were 
independently developed by several groups under different names [6]. 
It is interesting to observe that many scientists who develop numerical 
methods overestimate the value of mathematical proofs of completeness 
and convergence. This shall be outlined in the following. 
The standard procedure of those who design numerical methods based on 
series expansions, is to first verify that the expansion is complete. If this 
is guaranteed, they try to prove the convergence, which is even more 
difficult. If convergence is guaranteed, they consider the convergence 
rate and assume that the method will be excellent, when a fast 
convergence, namely when exponential convergence is obtained.  
According to Vekua, the standard multipole expansion (2) is complete in 
the sense that it uses a complete approximation basis for domains with 
Hoelder-continuous boundaries. The proof of the convergence is more 
difficult. Fortunately, the situation is similar to the well-known Fourier 
approximation of a function f(t) that is defined on a limited time interval. 
It is well known that exponential convergence is obtained when the 
function f(t) is infinitely many times differentiable. When the nth 
derivative is discontinuous in a finite number of points, the convergence 
of the Fourier series is no longer exponential, but still nth order 
convergence is obtained. Essentially the same holds for the convergence 
of (2): When all boundaries are infinitely many times differentiable, one 

 
 
Fig. 1. Domain D with three holes and 3+1 different polar coordinate systems for the 
Vekua expansion (2). The origins O1, O2, O3 must be inside the three holes. Otherwise, 
the locations and orientations (dashed lines) of the coordinate systems are free.  
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obtains an exponential convergence. This holds for many of the 
prominent analytic test cases, namely for circular and elliptic boundaries 
(see Fig. ). For technical applications, one often works with boundaries 
having some corners, where the field may be singular and where the first 
derivative of the boundary is not continuous. Therefore, the convergence 
is much worse. From a more detailed analysis, one can see that a rather 
unbalanced error distribution is obtained along the boundaries when 
corners are present (see Fig. 2). This is no surprise: When the field is 
singular in some point, 100% error must be obtained there with any 
numerical method that uses finite numbers. 

We can take advantage of the dependence of the convergence on the 
geometric shape of the boundary by introducing smoothing procedures. 
For example, when we round all corners by inserting arbitrarily small 
circles, the convergence is of order 2 rather than order 1. With a cubic 
spline approximation, we even can obtain order 3. Theoretically, we can 
even approximate a boundary that is given in a finite number of points by 

 
 
Fig. 2. 2D scattering problem. Plane wave incident in y direction from the bottom on a 
PEC cylinder with a sharp corner, E field parallel to the z axis Error distribution along the 
right half of the boundary (green lines) and time average of the Poynting vector field. Left 
hand side: The scattered field is modeled with a single multipole expansion at x=0, y=0, 
maximum order 100. The maximum error is 100%, the average error along the boundary 
is quite big (15%) despite of the high order multipole. Higher orders cause numerical 
under- and overflow problems. Right hand side: MMP expansion with 3 multipoles 
(green crosses) of maximum order 10. As a consequence, the number of unknowns is 
reduced by a factor 3, the matrix size is reduced by the factor 32, and the computation 
time is reduced by the factor 33. The maximum error near the corner is still 100%, but the 
average error is reduced by a factor 2. 
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a smooth, infinitely many times differentiable boundary that leads to 
exponential convergence. Although it is nice to apply smoothing 
procedures for improving the convergence, one can also see that a 
practical numerical model with very small circles near the corners will 
lead to almost identical results as the model without smoothened corners. 
In fact, even when exponential convergence of a series expansion is 
guaranteed, this does not guarantee that a useful numerical method is 
obtained, because it may happen that a huge number of basis functions 
are used for obtaining reasonable results. Obviously, a divergent series 
expansion that allows one to approximate the solution with, for example, 
10 terms having an accuracy of 0.00001% is much better than a series 
expansion with exponential convergence that requires, for example, 1010 
terms for 10% accuracy. Therefore, our goal is to find series expansions 
that allow us to approximate our solution with a given accuracy having a 
minimum number of terms or – at least – with a reasonably small number 
of terms. 
To illustrate this, let us analyze a function f(t) defined on the interval 
0<t<1. When we have, for example,  
 )cos()( ttf ω=  (5) 

we obtain exponential convergence of the Fourier approximation 
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When the frequency ω is equal to nω0, we have 100% error as long as 
K<n and 0% error otherwise. Note that this is even better than 
exponential convergence. However, this approach is not reasonable for 
big n. In order to overcome such problems, one can generalize the 
Fourier series approach by admitting arbitrary frequencies ωk, instead of 
multiples of ω0. This leads immediately to non-orthogonal series 
expansions that require the solution of a matrix equation for obtaining 
the linear parameters or amplitudes Ak of the series expansion. When the 
frequencies ωk  are within a narrow band, one obtains an ill-conditioned 
matrix, but one can obtain excellent approximations – even when ω of 
the given function is not within this band – when a matrix solver is used 
that can handle ill-conditioned matrices. We will encounter similar 
effects when we consider the condition number of the MMP matrix. 
Generalized Fourier series essentially contain two sets of parameters, 
namely the amplitudes and the frequencies. The former are linear 
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parameters, whereas the latter are non-linear. The numerical optimization 
of the non-linear parameters is much more time consuming than the 
optimization of the linear ones, especially when the number K of terms is 
high. But with the generalized Fourier approach we can obtain good 
results even when we only have a rough guess of the frequencies. 
Furthermore, we can generalize the expansion by admitting arbitrary 
basis functions 
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where pk may be a single non-linear parameter or a set of such 
parameters. This general series expansion - with an arbitrary set of basis 
functions that are generated with some advanced Genetic Programming 
(GP) code - was implemented in the GGP code [7]. Although the GGP 
approximation of an arbitrary function is much more time consuming 
than the approximation with standard series (Fourier, power series, etc.), 
it has an important advantage: GGP approximations often provide 
excellent extrapolations outside the interval where f(t) is given, whereas 
rather poor extrapolations are obtained with standard series. This plays 
an important role for advanced methods that speed up numerical 
procedures. Typical examples are the Parameter Estimation Technique 
(PET) and the Eigenvalue Estimation Technique (EET) that will be 
outlined below. 
The generalized series expansion (7) is useful for obtaining good 
extrapolations, but it is also the prototype of the Generalized Multipole 
Method (GMT) [6]. Here, one can simply write (1) or 
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Since GMT codes usually are frequency domain codes, we use complex 
notation and write 
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In electrostatics, we simply can express the scalar potential V as: 

 ∑
=

=
K

k
kkk

approx rpBasisArV
0

),()( rr
 (9’) 



Ch. Hafner and J. Smajic 8 

Obviously, Vekua's standard 2D multipole set (2) has essentially the 
form (9). In addition to the amplitudes, i.e., the linear parameters A and 
B, one has nonlinear parameters that describe the coordinate transforms 
required for the different systems of polar coordinates. Theoretically, it is 
possible to optimize the non-linear parameters, i.e., the locations of the 
polar coordinate systems, but this is extremely time consuming. 
Furthermore, it turns out that severe numerical problems may occur even 
when the multipoles are optimally placed and even when exponential 
convergence is guaranteed, i.e., the number K of basis functions may be 
very high for obtaining reasonable accuracy. Furthermore, the condition 
number of the system matrix may be high.  
In order to reduce the number K of linear parameters, we can generalize 
the series expansion (2) by 1) placing additional multipoles in each hole, 
2) placing multipoles outside the exterior boundary, 3) introducing other 
types of expansions that analytically fulfill the Helmholtz equation or the 
Maxwell equations in general. Placing additional multipoles is the main 
idea of the Multiple MultiPole (MMP) approach [6]. The MMP solver of 
the MaX-1 code [8] also contains additional expansions, namely, plane 
waves, harmonic expansions, Rayleigh expansions, Gaussian beams, and 
distributed multipole expansions that help to reduce the number of basis 
functions in special situations where a pure multipole approach turns out 
to be inefficient. 
It is important to note that the generalization of the Vekua expansion also 
creates new problems. The main problem is that the condition number of 
the resulting system matrix can become very high. In order to overcome 
these problems, several simple rules for the placement of the multipoles 
were derived. Furthermore, the procedure for obtaining the MMP system 
matrix was carefully analyzed (see below). This led to the Generalized 
Point Matching (GPM) technique that is similar to the method of 
weighted residuals and similar to the Galerkin method. Since the GPM 
uses direct solvers for the resulting overdetermined system of equations, 
it reduces problems obtained from ill-conditioned matrices. 
Consequently, the combination of the MMP expansion with GPM allows 
one to obtain very accurate results with relatively small matrices with 
typically less than 2000 columns. 
It has been mentioned that Mie used the multipole approach not only for 
solving 2D problems, but also for 3D scattering. In fact, the MMP 
approach can easily be extended to arbitrary 3D problems of 
elecrodynamics. It seems that no proof of completeness has been found 
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up to now, although the Mie method seems to work very well. However, 
since MMP uses additional multipole expansions, the MMP set is always 
complete when sufficiently many multipoles are used. As mentioned 
before, the problem is neither completeness nor convergence: The 
problem is to find a set of basis functions that allow one to obtain the 
desired accuracy with a sufficiently small number of unknown linear 
parameters. However, for reasons of simplicity, we will focus on 2D 
applications, i.e., cylindrical structures in the following sections. 

1.2. From simple multipole solutions to efficient MMP solutions 

In order to illustrate the main MMP concepts, we first consider the 
simple electrostatic case of the electric field and potential computation of 
two symmetric, circular, cylindrical wires. Note that the dynamic case 
was considered by Mie in 1900. The static case is considerably simpler 
because the 2D Helmholtz equation is replaced by the simpler 2D 
Laplace equation ∆V=0 that holds in the 2D cross section of the 
cylindrical structure, where V denotes the scalar potential. The potential 
must be computed outside the conductors, i.e., in an unbounded domain 
D with two circular holes (see Fig. 3). Inside the holes (conductors), the 
scalar potential V is constant. Let us assume that it is equal to +1 in the 
right wire and –1 in the left wire. 

The static counterpart to Vekua's expansion (2) is 

 
 

Fig. 3. Cross section of two symmetric, circular wires. 
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Note that the radial functions are much simpler, but the form is 
essentially unchanged. According to an old theorem of Runge, equation 
(10) is complete in the same sense as equation (2). For our unbounded, 
symmetric domain D, we can simplify equation (10) considerably 
because we know that V is anti-symmetric with respect to the y axis and 
symmetric with respect to the x axis. Therefore, we set one multipole 
expansion in the right conductor with origin at O1 (Cartesian coordinates 
(a,0)) and a second multipole at O2 (Cartesian coordinates (-a,0)) and 
obtain 
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instead of equation (10). Note that we can omit the sin terms because of 
the symmetry, when we orient the polar coordinate systems in O1 and O2 
in such a way that φi=0 describes the x axis. 
The main problem now is to find a reasonable or even the optimal 
location of the origins of the multipoles. At first sight, the centers of the 
conductors seem to be reasonable places for the origins of the multipoles. 
As long as the distance between the two conductors is not small, one 
obtains reasonable results with quite small maximum orders (see Fig. 4).  
A more detailed analysis shows that the orders required for a given 
accuracy increase rapidly when the conductors come close together. 
Therefore, we look for a better solution. Because of the simplicity and 
because of the symmetry of the problem, we only need to define a single 
parameter a, i.e., the distance of the multipoles from the y axis. Since the 
analytical solution of the problem is known, it is easy to find the 
optimum value of a, i.e., the optimum location of the multipoles. When 
the centers of the two wires with radius R are at (b,0) and (-b,0), we 
obtain 

 22 Rbaopt −=  (11) 
When we set the multipoles at (aopt,0) and (-aopt,0), we obtain the 
analytical solution  



Efficient and Accurate Boundary Methods for Computational Optics 11 

 ))(ln())(ln(),( 22
20

22
10 yaxAyaxAyxV optopt ++++−= (12) 

already for zero order multipoles, i.e., K1=K2=0. Because of the 
symmetry, we have A=A10=-A20. From the boundary condition at any 
point, for example, V(b+R,0)=1, we finally obtain A. Instead of 
considering the analytical solution, we may also find the optimal 
placement from numerical studies (see Fig. 5). 
The analytical solution can be interpreted as follows: Outside the 
conductors we "see" a charge, i.e., zero order multipole or monopole, in 
each conductor at the virtual positions (aopt,0) and (-aopt,0). Since the 
conductors act as mirrors for the electric field, one also calls the 
monopoles mirror charges or image charges. Unfortunately, the method 
of mirror charges or image charges does not provide analytical solutions 
for more complicated configurations. As we know from optical mirrors, a 
point source can be seen at various positions within a curved mirror or it 
is even smeared over some area. In 2D electrostatics, we can find the 
locations of the mirror charges for an arbitrary configuration of two 
electrodes when we know a conformal transformation that maps the 
surfaces of the electrodes on two parallel lines. Assume that 
w=u+iv=C(z) maps the original points z=x+iy in such a way that the 
surfaces of the two electrodes are mapped on the straight lines at u=-1 
and u=+1 (see Fig. 6). When these lines are on the potential –1 and +1 

 
 
Fig. 4. Potential obtained with a single multipole per conductor. Right hand side: 
multipole in the center of the conductor, left hand side: zero order multipole at optimal 
location (origin of the bi-polar coordinate system). 
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respectively, the potential in the w plane is simply V(u,v)=u for 
–1<u<1.  
Obviously, we simply have a perfect parallel plate capacitor. We know 
that the field inside the capacitor is generated by a uniform charge 
distribution on the electrodes. We can easily extend the field outside the 
interval –1<u<1, by simply saying that we have V(u,v)=u for –d<u<d and 
that this field is obtained form a fictitious charge distribution along u=-d 
and u=+d. When we approximate the uniform charge distributions along 
the auxiliary lines u=-d and u=+d by a set of monopoles that are 
uniformly distributed along the auxiliary lines, we obtain an 
approximation that is  better the bigger the distance d is. In the limit 
where d approaches infinity, it is even sufficient to use two single 
monopoles at u=-∞ and u=∞. When we now map the locations of the two 
monopoles back to the original z plane using the inverse transform  
z=C-1(w), we obtain the locations of the mirror charges in our simple case 

 
 
Fig. 5. Average of the relative errors on the boundary for the problem shown in Fig.4. 
Model with a single multipole inside each conductor at (a,0) and (-a,0) respectively. Left 
hand side: Dependence on the multipole location a for the maximum multipole orders 0, 
1, 2,…,10. Note that the error estimation is inaccurate when the multipole is very close to 
the boundary, i.e., when a is close to 0.2 or close to 0.8. All curves exhibit a very deep 
and sharp minimum at the optimal location a=0.4. Right hand side: Convergence for 
different multipole locations. Curve without marker: optimal placement a=0.4; □ marker: 
a=0.25; + marker: a=0.3; x marker: a=0.35; + and x marker: a=0.45; □ and + marker: 
a=0.5; □ and x marker: a=0.55; □, +, and x marker: a=0.6. Note that one has exponential 
convergence until machine precision (14 digits, i.e., 10-12% error) is reached, with one 
exception: For a=0.25, the error no longer decreases when the maximum order is bigger 
than 35 because the matching point density is not high enough in this model. 
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of two circular electrodes. Unfortunately, finding a conformal 
transformation is not easy in most cases. Furthermore, one often 
encounters problems with the inverse transform that causes the 
"smearing" effects mentioned above. However, when we map the 
auxiliary lines u=-d and u=+d back into the z plane, we obtain auxiliary 
lines along the surfaces of the electrodes. These auxiliary lines are 
entirely inside the electrodes. In general, the distance of each auxiliary 
line from the surface is not constant. Even if we do not know the precise 
location of the auxiliary line, those who have much experience in 
conformal mapping can manually draw lines that are a good guess. For a 
numerical method, this is sufficient. Once the auxiliary lines are defined, 
one simply can distribute a finite number of auxiliary charges with 
unknown amplitudes along these lines. This is nothing more than a 
multiple monopole expansion, i.e., a special case of the MMP approach 
of the form of equation (10) with Ki=0 and I equal to the number of 
auxiliary charges. Charges are the sources of the electrostatic field. 
Therefore, this technique is also called Method of Auxiliary Sources 
(MAS) [9]. Note that the MAS can be extended to dynamic problems as 
well as to 3D problems although no conformal mapping is known in this 
case. The MAS is also called Method of Fictitious Sources (MFS) [10].  
For computing the I unknown amplitudes of the amplitudes of the 
auxiliary sources, at least I equations are required. These equations are 
usually obtained from a Simple Point Matching (SPM) technique, where 
the boundary conditions in a finite set of matching points are used. For 

 
 
Fig. 6. Conformal mapping of two symmetric circular wires (z plane) on two parallel 
plates (w plane). 
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our simple 2D electrostatic case, we can easily construct one matching 
point (xP,yP) on the boundary for each source point (xS, yS) in such a 
manner that the distance between these two points is minimized. When 
the transformation C-1(w) is known, one can use it for obtaining an even 
better set of matching points. In fact, the correlation between the 
matching points and the locations plays an important role for the 
accuracy.  
From the conformal mapping, we know that it is best to move the 
auxiliary sources as far away from the surface as possible. If we increase 
the distance d in the w plane in our simple example, the auxiliary sources 
in each electrode tend toward the optimal points (aopt,0) and (-aopt,0). At 
the same time, the distances between neighboring sources is decreased 
and tends to zero. As a consequence, the condition number of the MAS 
matrix tends to infinity. When the condition number is large enough, the 
positions of the matching points and the quality of the matrix solver 
become critical. Therefore, one usually moves the auxiliary sources not 
far away from the surface. Typically, the distance between neighboring 
sources is in the same order of magnitudes as the distance of the sources 
from the boundary. However, when one uses a matrix solver that can 
handle ill-conditioned matrices, one can increase the distances and obtain 
more accurate results with the same numerical effort. The main road 
toward a better matrix solver is the Generalized Point Matching (GPM) 

 
 
Fig. 7. Two non-circular wires. Error distributions along the surface indicated by black 
lines. Left hand side: MAS approximation with auxiliary sources relatively far away from 
the boundary (red crosses). Right hand side: MMP expansion with four multipoles (red 
and black crosses). 30 unknowns for both computations. 
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technique that will be outlined below. 
When one obtains clusters of monopoles when the distance d in the w 
plane is sufficiently long, it is reasonable to replace each cluster by a 
higher order multipole in the center of the cluster. This is similar to what 
is done in the Fast Multipole Method (FMM) [11]. In the simple example 
above, we obtain one cluster per wire, i.e., one multipole expansion per 
wire as in the standard Vekua-Runge approach. When we do not use 
conformal mapping and "guess" that concentric auxiliary lines are good 
enough, we finally set the multipoles at  (b,0) and (b,0), whereas we find 
the optimal locations (aopt,0) and (-aopt,0) when we use conformal 
mapping for the construction of the auxiliary lines. 
For more complicated geometry, we often obtain more than one cluster 
of auxiliary sources in each electrode. Fig. 7 illustrates this. We then 
immediately obtain more than one multipole per hole in the domain D, 
i.e., a Multiple MultiPole (MMP) expansion. 
Since we need quite sophisticated conformal mapping procedures for 
finding the clusters of auxiliary sources, it is quite demanding to find the 
optimal locations of the multipoles. Fortunately, one also obtains 
excellent results with sub-optimal sets of multipoles or with 
automatically generated sets [6, 8]. Fig. 7 illustrates this. In fact, one has 
a very high degree of freedom in setting the multipoles. When one starts 
with a given set of multipoles that is either constructed with some 
automatic procedure [6] or from simple geometric rules (distances 
between neighbor multipoles similar to the distances from the boundary), 
one usually obtains reasonable results. One then can analyze the errors 
along the boundaries and use this information to improve the accuracy if 
required. This is simply done by increasing the maximum orders of the 
multipoles near the areas of large errors or by inserting additional 
multipoles in these areas, i.e., adaptive MMP modeling is almost trivial. 
Although it seems to be obvious that the MMP approach is more general 
and better than the MAS approach, MMP has an apparent difficulty: 
MMP does not allow one to associate simply one matching point on the 
boundary for each multipole. Furthermore, the SPM technique fails for 
complicated geometry, because the distribution of the matching points 
may be very critical. We therefore need a more general method that is 
much more robust and accurate. 
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1.3. Generalized Point Matching (GPM) technique 

Although the point matching technique may be applied to quite arbitrary 
problems, we focus on the simple 2D electrostatic Dirichlet problem for 
reasons of simplicity. Assume that the Laplace equation holds in a 
multiply connected domain D and that the potential V is known along the 
boundary ∂D of D. Note that ∂D consists of several pieces when D is 
multiply connected. 
When V is approximated by a series expansion of the form (9'), we can 
find the unknown linear parameters Ak from the boundary conditions. 
When we apply the SPM technique, we simply write down the boundary 
condition(s) in a finite set of matching points Pi : 

 KIiPVPpBasisAPV i
boundary

K

k
ikkki

approx ====∑
=

,...,2,1;)(),()(
1

 (13) 

When the boundary is parametrized and s is the parameter, we can also 
express 

 
 
Fig. 8. Time average of the Poynting vector field and error distribution (red lines) along 
a PEC boundary illuminated by a plane wave. Left hand side: multipole set generated 
automatically, average relative error 5.3%, condition number of the MMP matrix 4.3E3. 
Right hand side: "randomized" multipole set, average relative error 2.7%, condition 
number of the MMP matrix 4.9E7. Note that large errors are obtained in the shadow area, 
where the field is almost zero. Note also that the model with the higher condition number 
is more accurate although the corresponding multipole set seems to be less reasonable. 
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and obtain (13) by writing down (13s) in I points Pi located at si. 
Note that the number of unknowns K  is equal to the number of matching 
points I. Therefore, we obtain a set of N=I equations with N=K 
unknowns. In matrix notation, we have: 

 VMASPM =  (14) 
Where M is an N by N matrix with the elements  
 ),( ikkik spBasism =  (14m) 

A is the unknown vector with N elements Ak, and V is a known vector 
with the elements  

 )( i
boundary

i sV=ν  (14v) 

It is well known from the MoM literature, that the SPM technique is not 
optimal, i.e., the vector ASPM obtained is often inaccurate. In order to 
examone the accuracy, we need a reasonable error definition first. When 
we would know the correct solution, this would be relatively easy, but 
this is usually not the case, when we apply a numerical method. 
However, for the simple Dirichlet problem, we know the scalar potential 
on the boundary. Furthermore, we know that the extreme values of V are 
always on the boundary and that V gets more and more smooth when we 
move away from the boundary. Therefore, the error along the boundary 
is a reasonable measure that can easily be defined, for example: 

 ∫ −=
boundary

boundaryapproxboundary dsVVError 2)(  (15) 

Note that the error definition is not unique at all. First of all, we have 
used the square norm that could be replaced by a more general p norm. 
Furthermore, we could introduce weights. Weighting is very important 
for more complicated problems, for example, in dynamics when different 
fields (electric and magnetic) are involved in the error definition. 
However, for the simple Dirichlet problem, the definition (15) is 
appropriate. 
As soon as we insert the series expansion of equation (13) in equation 
(15), we obtain Errorboundary as a function of the unknown amplitudes Ak. 
The square of Errorboundary is minimized when  
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From this square error minimization, we obtain the matrix equation 

 E2E2 VSA =  (17) 
Where S is a symmetric matrix with the elements 

 ∫ ⋅=
boundary

kkiiik dsspBasisspBasiss ),(),(  (17s) 

Furthermore VE2 is a vector with the elements 

 ∫ ⋅=
boundary

boundary
iii dssVspBasisv )(),(  (17v) 

and AE2 is the vector containing the linear parameters Ak. Note that we 
could obtain the same matrix equation with the projection technique, 
when we project the boundary condition (13s) on a set of I=K testing 
functions ti(s) and use Galerkin's choice of testing functions, 
ti(s)=Basisi(pi,s). 
In simple cases, we can analytically solve the integrals in (17), but for a 
general numerical code that shall handle arbitrary boundaries, we must 
approximate the integrals numerically, for example, with a Riemann 
sum: 
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where dsj is essentially the distance between neighboring points. When 
the integration points sj are distributed uniformly along the boundary, all 
lengths dsj are equal to stot/J, where stot is the total length of the boundary. 
It is well known that this is not optimal for obtaining small errors. When 
we use adaptive integration routines, the integration points will be at 
different locations for each matrix element. Although this may be done, 
it is numerically expensive because the basis functions must be evaluated 
finally at many positions. It is therefore better to select a sufficiently 
large, sub-optimal set of integration points for all matrix elements. Such 
a set may be obtained from experience: Since one knows that the field 
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varies more rapidly when the radius of curvature of the boundary is 
small, one will increase the density of integration points in such areas. 
Furthermore, the set of integration points may be improved adaptively. 
However, reasonable approximation may only be obtained when the 
number J of integration points is sufficiently large. First of all, J≥K must 
hold. In simple cases, J=2K is sufficient. In complicated cases, higher 
numbers are required. 
Since all matrix elements in (18) are scalar products of vectors, we can 
write for the numerical approximation of equation (17): 

 VRVRRSVAS TapproxETapproxapproxEapproxEapprox === 222 ,,  (19) 

Where R is a rectangular matrix with the elements  

 iikkik dsspBasisr ⋅= ),(  (19r) 

RT is the transposed of R, and V is a vector with the elements  

 ii
boundary

i dssVv ⋅= )(  (19v) 

Note that equation (19) solves the overdetermined system 

 E2approxoveroverover VVE,VRA ==−  (20) 

where E is the error or residual vector, in the least-squares sense, i.e., it 
minimizes the square norm of E which contains the mismatching values 
in the integration points si. This allows one to compute and plot the error 
distribution along the boundary. 
When we compare equation (14) with equations (19) and (20), we see 
that equation (20) is very similar to equation (14). It is obtained from 
equation (14) essentially by two generalizations: 1) inserting weights (the 
square roots of the distances between neighbor matching points) and 2) 
using I>K matching points, i.e., an overdetermined system of equations. 
Therefore, we call equation (20) Generalized Point Matching (GPM) 
technique.  
GPM is very similar to SPM and needs only minor modifications in the 
implementation. Despite of this, it provides much better results in 
general, because it essentially minimizes the square error and is 
numerically equivalent to the Galerkin method.  
When the matrix R is not well conditioned, the direct computation of the 
GPM equations (20) is even more accurate than computation of the 
symmetric system (19) obtained from the Galerkin method or from the 
error minimization technique. The reason for this is that Sapprox is 
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essentially the square of R and this causes severe numerical problems 
when the condition number is high. Solving equation (20) with a direct 
matrix solver (for example, the Givens updating procedure) using single 
precision is as accurate as solving equation (19) with double precision. 
Remember that the MAS accuracy is increased when the sources are 
moved away from the boundary and that the condition number of the 
MAS matrix is increased as well. The same holds for MMP and similar 
methods. Therefore, replacing equation (19) by the GPM system 
ofequations (20) allows one to obtain considerably more accurate results 
without a significant increase of the memory requirement and 
computation time. We will consider this in the following section. 

1.4. The role of ill-conditioned matrices 

From conformal mapping and the consideration of the simple case of the 
two circular wires in the previous sections, it is clear that the accuracy of 
the MAS results for a fixed number of sources (monopoles) depends on 
the distance of the sources from the boundary. As we have seen, 
conformal mapping provides optimal auxiliary lines in some sense. For 
our simple case, we can use conformal mapping of the entire structure, 
i.e., of both boundaries and obtain circles as auxiliary lines that are 
nothing else but coordinate lines of a bipolar coordinate system. 
Furthermore, conformal mapping provides the optimal distribution of the 
sources on such a circle, which is non-uniform. Since conformal 
mapping of the entire structure is useful only in simple cases, one often 
uses sub-optimal auxiliary lines, for example, at a given distance from 
the boundary. In our case, such auxiliary lines are concentric circles that 
would be optimal when only one circular wire would be present or when 
the two conductors would be co-axial. Figure 9 shows the behavior of the 
MAS matrix condition number and of the average mismatching error 
along the boundary for concentric auxiliary lines with different sets of 
monopoles along them. As one can see, the condition number becomes 
very large when the distances of the monopoles from the centers of the 
wires, i.e., the radii of the auxiliary lines become small. This is to be 
expected. As one can see, the values of the condition number are always 
below 1017. This is due to the SVDC evaluation of the condition number. 
When the condition number is above 10M, where M is the precision of the 
arithmetic, SVDC cannot accurately compute the condition number and 
it will return a value in the order of 10M. For the computations shown 
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here, double precision (M=16) has been used throughout. Essentially the 
same behavior is observed when we distribute the monopoles along the 
optimal, bipolar circles (see Figure 10). 
When we compare the error distributions of Figures 9 and 10, we see that 
the error always decreases when the condition number increases, as long 
as the condition number is below 10M. In Figure 9, one also observes 

 
 
Fig. 9. Dependence of the condition number and of the relative error (in percent) along 
the boundary for MAS approximations of the problem shown in Fig. 3+4, with different 
numbers of auxiliary sources (monopoles) uniformly distributed along concentric circles. 
"distance" indicates the distance of the sources from the center of the wire. 
 

 
 
Fig. 10. Same as in Fig. 9, but the sources are moved toward the optimal multipole 
location at (0.4,0). "distance" indicates the average distance of the sources from the focus 
point (0.4,0). 
 



Ch. Hafner and J. Smajic 22 

some kind of saturation effect for "distance" below 0.18. This effect is 
due to that the auxiliary circles do not contain the focus point at (0.4,0) 
when "distance" is too small.  
However, it is more important to note that the curves become noisy when 
the "distance" is so small that the condition number is higher than 10M. 
This is because the matrix solver looses accuracy when the condition 
number is high. As we can see, the standard matrix solver of the MMP 
implementation of the MaX-1 code is excellent as long as the condition 
number is below 10M. Even when the condition number is above this 
limit and cannot be evaluated with SVDC, accurate results with low 
errors may be obtained. The standard MMP matrix solver is an efficient 
update procedure based on Givens plane rotations [12]. As we can see, 
this matrix solver allows us to work with matrices with very large 
condition numbers and allows us to obtain highly accurate results even 
when the condition number is above 10M. 
Note that the Givens procedure runs on the overdetermined system (20), 
but the rectangular matrix R needs not to be stored when the Givens 
update procedure is applied. In this case, only a triangular matrix must be 
stored, i.e., the same memory space is required as when one works with 
the symmetric system of equations (19) obtained from the error 
minimization or from the Galerkin method. When we solve equation 
(19), we may apply, for example, the Cholesky algorithm that is a little 
bit faster than the Givens procedure. As we can see from Figure 11, this 
algorithm exhibits severe problem as soon as the condition number is 
higher than 10M/2. As a consequence, the final error is much higher than 
when we solve equation (20) with Givens. Furthermore, we have much 
less freedom in setting the monopoles. For the MAS this is less dramatic 
than for MMP, because one usually puts the sources not very far away 
from the boundaries, whereas MMP users often work with multipoles 
that are far away from the boundary. However, it is very important to see 
that we may obtain much more accurate results when the condition 
number is close to 10M than when we use a method that provides small 
condition numbers, i.e., minimizing the condition number is not 
reasonable when one is interested in accurate results. According to our 
experience, this does not only hold for MMP, MAS, and closely related 
methods such as the MoM, but also for other methods such as Finite 
Elements, generalized Fourier series, etc. When symmetric systems of 
equations are present, this should always be considered as a hint that the 
symmetric matrix S might be a product of the form S=RTR, where R is a 
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rectangular matrix. If this is correct, one should try solving the 
overdetermined system described by R directly. 
Unfortunately, there are much fewer numerical algorithms for 
rectangular matrices than for symmetric ones. Furthermore, direct matrix 
solvers such as the Givens procedure are very time consuming for big 
matrices and should be replaced by iterative matrix solvers, whenever 
possible. A prominent iterative solver for symmetric matrices is the 
Conjugate Gradient (CG) method. In fact, in the original paper of 
Hestenes and Stiefel [13] also a CH version for rectangular matrices was 
presented. For CG, the preconditioning is very important. Unfortunately, 
almost no information about the preconditioning of rectangular matrices 
is available. Therefore, we use a simple Jacobi preconditioner that 
essentially is nothing else but scaling the rectangular matrix R in such a 
way that the square norm of each column is equal to 1. This leads to the 
results shown in Figure 12. As one can see, the behavior is considerably 
better than for the Cholesky solver, but much worse than for the Givens 
solver. Numerical problems obviously already occur when the condition 
number is above 10M/2. Therefore the placement of auxiliary sources and 
multipoles is much more critical when this solver is applied. One then is 
usually forced to work with sub-optimal placement for obtaining 
sufficiently small condition numbers. As a consequence, the errors 
become larger.  When a given problem shall be solved with a certain 
accuracy, this means that a considerably bigger matrix must be solved 

 
 
Fig. 11. Relative error average versus distance when the Cholesky matrix solver is 
applied for solving the system (19) with the symmetric matrix S. Left hand side: same as 
in Fig. 9, right hand side: same as in Fig. 10. 
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when the CG solver is used instead of the Givens procedure. Therefore, 
the CG solver is not always more efficient than the Givens solver. We 
will see in the next section how to take advantage of the CG solver. 
CG without preconditioning, i.e., without column scaling leads to very 
bad results. Therefore, the column scaling might also be helpful for 
direct matrix solvers. Unfortunately, efficient column scaling requires the 
storage of the entire rectangular matrix R. Since R has typically 4-40 
times more elements than the triangular matrix stored in the Givens 
update procedure, scaling requires more memory and computation time. 
As we can see from Figure 13, scaling also improves the quality of the 
results obtained with the Givens solver, but here, the effect is not big at 
all. 

1.5. Parameter Estimation Techniques (PET) for speeding up matrix  
methods 

When we compare frequency domain methods with time domain 
methods, we see that the time domain methods usually use iterative 
procedures for tracking the time. When the field is known for a certain 
time t0, it is computed for the next point t1=t0+dt  usually with a single 
iteration. This procedure only works when the time increment dt is 
sufficiently small. The known field at t0 can be considered as a good 
starting value for the iterative procedure that computes the field at t1. 

 
 
Fig. 12. Relative error average versus distance when the conjugate gradient matrix 
solver is applied for solving the system (20). Left hand side: same as in Fig. 9, right hand 
side: same as in Fig. 10. 
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Frequency domain methods usually consider the frequency as a constant 
rather than a variable. This is reasonable when the sources operate at a 
single frequency, but it is not reasonable when one computes the 
frequency dependency. If we know the field for some frequency f0, we 
can assume that it is not much different for another frequency f1=f0+df, as 
long as the increment df is small enough. The same holds for all 
parameters of a series expansion that is used to approximate the field, for 
example, for the parameters Ak in (1). 
In order to take advantage of the fact that Ak(f0) is a good approximation 
of Ak(f1), we need an iterative matrix solver, for example, the CG solver 
mentioned above. In order to illustrate this, we consider a simple 2D 
photonic crystal consisting of  8 columns and 8 rows of circular dielectric 
rods with a missing row of rods in the center as shown in Figure 14. Note 
that the lower half of the rods is not explicitly shown because of the 
symmetry of the configuration. The number of CG iterations required 
depends very much on the frequency. It is between 100 and 500 
iterations when the CG iterations are started at Astart

k(f1)=0. When we 
start at Astart

k(f1)=Ak(f0) instead, only about 40 iterations are required. This 
can be considered as a 0 order PET. 
As soon as we know the solutions of two frequency points, we may 
replace the 0 order by a first order extrapolation, i.e., by a linear 
extrapolation. When we have three frequency points, we may apply 
second order extrapolation and so on. In fact, high order extrapolations 

 
 
Fig. 13. Relative error average versus distance when the rectangular matrix is scaled 
before the Givens solver is applied for solving the system (20). Left hand side: same as in 
Fig. 9, right hand side: same as in Fig. 10. 
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using standard power series are not helpful. As we can see from Figure 
14, 1st order PET is considerably better than 0 order PET, whereas 2nd 
order PET outperforms 1st order PET only within some frequency range. 
It is interesting to see that all PET solutions require the same number of 
iterations as the solution obtained by the brute force approach without 
PET for some critical frequency. The plot of the Poynting vector field in 
Figure 14 at this frequency shows that the mode in the defect waveguide 
in the photonic crystal is evanescent rather than guided above this 
frequency. There is a higher frequency, where the PET also "fails". This 
is the upper frequency of the photonic band gap. For frequencies of the 
guided mode within the band gap, an average of 3 iterations instead of 
100 iterations is required, i.e., 2nd order is approximately 30 times faster 
than the brute force CG solution. 
The PET can be further improved by using smart extrapolations that 
allow one to estimate the starting values of the parameters more 
accurately. As one can see already from the simple example above, this 
is not easy because the extrapolation may considerably depend on the 
frequency. A more detailed analysis shows that the optimal extrapolation 
also depends on the type of basis functions used in the series expansion 
and on details of the numerical model [6]. Searching for an optimal 
extrapolation for a given class of problems is reasonable when such 

 
 
Fig. 14. PET for speeding up the computation of the frequency dependence. Left hand 
side: Time average of the Poynting vector field of the  test example at the critical 
frequency. Right hand side: Number of iterations required for each frequency step for 
computations without PET and with 0 up to 2nd order PET. 
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problems are to be solved frequently, but this search process is time-
consuming. 
Note that the PET is not restricted to MMP. It may be applied to all kind 
of frequency domain methods. Furthermore, the PET may also be applied 
for sequences of similar numerical models, i.e., it is not restricted to the 
calculation of the frequency dependence. When p is any parameter of the 
model, for example, the angle of incidence of a scattering problem, we 
can say that Astart

k(p1)=Ak(p0) is a reasonable start value that leads to a 0 
order PET, and so on. The PET may be further generalized when several 
model parameters are varied, which is often the case when extended 
studies are performed, for example, when one wants to know the 
dependence of the efficiencies of a grating on the frequency and on the 
angle of incidence. Similarly, the PET is very helpful for model 
optimizations, where one optimizes several model parameters. 
In the following section, we will se a variant of the PET that is helpful 
for nonlinear eigenvalue problems. 

1.6. The MMP eigenvalue solvers 

Many standard problems of electro- and magnetostatics, electromagnetic 
scattering, antenna, etc. are characterized by an inhomogeneous system 
of equations of the form MX=B, where M is a matrix, X is the vector to 
be computed, and B is a known right hand side vector that essentially 
contains the excitation of the field. When one considers resonators and 
guided waves, one usually uses idealized, energetically closed models 
without any excitation. As a consequence, a homogeneous matrix 
equation of the form 
 0)(X)(M =ee  (21) 

is obtained, where e denotes the eigenvalue. For resonators, e is usually 
the resonance frequency, for waveguides, it may be the propagation 
constant. Equation (21) obviously has the trivial solution X=0 that is of 
no interest. When M is a square matrix, equation (21) has non-trivial 
solutions when  
 0))(M( =eDet  (22) 

holds. In general, equation (22) is a transcendent equation that may have 
several solutions. Therefore, equation (22) must be solved numerically. 
Note that the numerical solution of this equation can cause several 
problems. First of all, it is important to accurately and efficiently 
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compute the determinant of a matrix that may be big and also ill-
conditioned, especially near the zeros of the determinant. As a 
consequence, Det(M(e)) may be quite noisy near the zeros. If this 
happens, the routine that detects the zeros of the determinant will be 
heavily disturbed. It may even detect several zeros, i.e., several 
eigenvalues instead of a single one. This is a very difficult problem when 
one has almost degenerate modes, i.e., two modes with almost identical 
eigenvalues. This situation is often encountered in the computation of 
band diagrams of photonic crystals. Therefore, equation (22) is of 
questionable value. 
Since MMP works with rectangular matrices R(e), a square matrix 
equation of the form (21) is obtained by a multiplication with the adjoint 
matrix R*, i.e., one then has M(e)=R*(e)R(e). We have already seen that 
it is numerically better to work directly on the overdetermined system, 
especially when the condition number might cause problems. Therefore, 
we consider the overdetermined system 
 )(E)(X)(R eee =  (23) 

where E(e) is  the residual vector that should be minimized. Note that 
E(e) is unknown. The square norm of the residual vector Res2 is now a 
positive function of the eigenvalue e. The main question is the following: 
Is 

 .min)(Res2 =e  (24) 

a transcendent equation that defines the eigenvalues? It is hard to answer 
this question. Numerical experience shows that equation (24) may be 
used in simple situations, but in complicated situations it may also lead 
to almost trivial solutions. In order to avoid such almost trivial solutions, 
one must define the amplitude of the field, which is also a function of the 
eigenvalue e. Once this has been done, one can minimize the following 
search function 

 )(Amp/)(Res)( 22 eeeF search =  (25) 

instead of equation (24). Note that the definition of the amplitude 
Amp(e) is not unique. Typically, one can use voltages, i.e., integrals over 
the electric field along a line, currents, integrals over energy densities, 
the power flux, etc. According to our experience, it is best to define 
Amp2 as the integral over the energy density for resonators and similar 
problems, namely photonic band diagram computations, whereas the 
definition of Amp2 as the power flux is best for the computation of 
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guided waves. For guided waves on transmission lines, the definition of 
the amplitude as voltages between the conductors or as currents in the 
conductors seems to be more natural, but these definitions may lead to 
search functions that exhibit "misleading minims" at high frequencies, 
i.e., minims that do not correspond to eigenvalues. It is not difficult to 
detect such minims, but testing the validity of the minims requires 
additional efforts. 
The accurate computation of integrals over some field components or 
over the energy density may be time consuming. According to our 
experience, very rough evaluations are sufficient, i.e., the integrals may 
be approximated by sums over a few test points. Often, even a single test 
point is sufficient. If a single test point is used, it must be placed at a 
position where it is guaranteed that the field of the mode to be searched 
is not zero or even relatively strong. 
The standard MMP matrix solver is based on Givens plane rotations. 
This solver transforms the rectangular matrix R into an upper triangular 
matrix T. When this algorithm is applied to equation (23), one obtains 

 0)(X)(T =ee  (26) 

The last element tnn of T contains the residual. A careful analysis shows 
that the corresponding last parameter, i.e., the last element xn of the 
parameter vector X and therefore the last basis function Basisn of the 
series expansion used for the approximation of the field plays a 
prominent role: If Basisn is chosen in such a way that the scalar product 
of Basisn with the field of the mode to be searched is zero (or 
numerically almost zero), the last equation of (26), i.e., 
 0)()( =exet nnn  (27) 

holds because xn is zero. Therefore, the mode cannot be found. This may 
be useful when one is interested in suppressing some mode. For example, 
when one has two degenerate or almost degenerate modes with different 
symmetries, e.g., an even and an odd mode, one can select a basis 
function Basisn that has the symmetry of the desired mode. The 
undesired mode will then be suppressed. 
For applications where one wants to detect all modes and where the 
number of modes is high, an algorithm that suppresses some mode may 
be inconvenient. This especially holds for the band diagram computation 
of photonic crystals as illustrated in Figure 15. 
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When we recognize that the last basis function somehow plays the role of 
the excitation of the mode, we can easily find an alternative method by 
introducing a fictitious excitation [14]. This technique has also be used in 
the context of the MAS [9] and for other methods [15]. We will call it 
MMP-MAS eigenvalue solver in the following. 
Essentially, the MMP-MAS solver mimics the practical measurement of 
eigenvalues such as resonance frequencies: In order to measure the 
resonance frequency, one must feed the resonator and one must measure 
the amplitude somewhere. For doing that, one must open the 
energetically closed structure. Numerically, we can easily excite any 
mode, for example, with a fictitious monopole or dipole source and we 
can test the amplitude of the field in some testing point. Resonances are 
characterized by peaks of the amplitude observed in the test point Ptest: 

 .min),(Amp/1.max),(Amp 2 == eporep testtest  (28) 

are therefore alternatives for detecting the eigenvalues. Note that there is 
some similarity between equation (28) and equation (25), but there is an 
important difference as well: The residual is missing in equation (28). A 
careful analysis [14,  16] shows that the residual is a very flat function of 
e when a fictitious excitation is introduced, but in the close vicinity of the 

    
 
Fig. 15. 2D photonic crystal consisting of dielectric rods. Left hand side: 2D MMP 
model. Only the two thick lines (periodic boundaries) and the circle in the center are 
modeled explicitly. The field is modeled by two Bessel expansions and a single multipole 
expansion in the center. For the MMP-MAS eigenvalue solver, a fictitious monopole 
excitation is introduced at a random position. Right hand side: The different eigenvalue 
search functions at the Γ point. 1) MMP-MAS search function (without markers), 2) 
standard MMP search function for 0 order multipole at "last" position, 3) standard MMP 
search function for 1st order multipole at "last" position. 
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correct eigenvalue, it exhibits a sharp peak, whereas Amp(Ptest,e) exhibits 
a sharp dip as shown in Figure 16. We call this double peak 
phenomenon.  
As a consequence, 1/Amp2(Ptest,e) and the MMP standard search function 
(25) exhibit twin minims (see Figure 15). The double peak phenomenon 
only occurs when fictitious excitations are used and it considerably 
disturbs the search procedure when a very fine search is performed for 
obtaining highly accurate results. In order to get rid of this problem, one 
can introduce a more sophisticated search function that is composed of 
different powers of Amp and Res, one can implement smart search 
strategies that consider both Amp and Res, or one can introduce small, 
fictitious losses: As in the measurement of resonators, the resonance 
peaks get less sharp and more smooth when losses are present. 
Beside the double peak phenomenon, the method of the fictitious 
excitation exhibits similar problems as the standard MMP eigenvalue 
search procedure: Both the fictitious excitation and the test point must be 
appropriately set. Otherwise, some of the eigenvalues will not be 
detected. In order to make sure that all eigenvalues are found, one can 
easily introduce several test points and one can also introduce several 
fictitious excitations. We usually use this technique for the computation 
of complete band diagrams of photonic crystals [14]. Whereas we use the 

 
 
Fig. 16. Double peak and twin minimum phenomenon for a 2D photonic crystal 
consisting of dielectric rods. Left hand side: Zoom of Fig. 15. The standard MMP 
eigenvalue search function (x markers) exhibits a single minimum. When a fictitious 
excitation is introduced, the same search function exhibits the twin minimum 
phenomenon. Right hand side: The different parts (residual and amplitude) involved in 
the MMP eigenvalue search function for another point of the band diagram. 
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standard MMP eigenvalue search method more frequently for the 
computation of guided waves. 
Numerically, the eigenvalue search procedure may be very time-
consuming, because the search function Fsearch(e) must be evaluated many 
times for different estimates of the eigenvalue e. In order to evaluate the 
search function, a matrix equation of the form of equations (23) must be 
solved. Therefore, it is important to develop efficient eigenvalue search 
strategies that can precisely find the minims of  Fsearch(e) with a minimal 
number of evaluations of  Fsearch(e). The standard MMP search strategy 
starts with a rough search on a regular grid within a reasonable search 
interval. The grid of the rough search should be as coarse as possible (in 
order to reduce the number of search function evaluations), but fine 
enough for detecting all eigenvalues. Note that the search grid also 
depends on the definition of the search function. 
As soon as the rough search has detected all minims of Fsearch(e), a fine 
search routine precisely detects each of the eigenvalue. For the fine 
search, a smart routine using parabolic and geometric interpolations is 
used. Beside the search algorithm, stopping criteria are very important of 
the speed of the fine search. Here, MMP has nice advantages because 
both the accuracy of the eigenvalue and of the field of the correlated 
mode can be estimated from the search function. Note that this is not 
possible, when the eigenvalue search is based on equation (22). 
Usually, one is interested in the dependence of the eigenvalue on some 
model parameters or some variables. For example, when we consider 
guided waves, we may consider the propagation constant as the 
eigenvalue and we then want to know its frequency dependence. In the 
computation of band diagrams, we search for the resonance frequencies 
depending on the orientation of the wave vector. Thus, we often want to 
compute diagrams of e(v), where v is either a scalar (real or complex) or 
a vector. Of course, we can restart the eigenvalue search for a finite set of 
values vi , i=1,…I for plotting such diagrams. When I is big, this brute-
force method is inefficient. Since we usually have vi+1=vi+dvi with a 
relatively small step dvi, we may proceed as in the parameter estimation 
technique, i.e., we may implement an Eigenvalue Estimation Technique 
(EET) as a variant of the PET. The EET implemented in the MaX-1 code 
is very efficient. Depending on the desired accuracy and on the step size, 
one typically requires 4-10 iterations per eigenvalue e(vi).  
More tricky problems occur when one searches for eigenvalues in the 
complex plane for lossy structures. Note that handling lossy structures as 
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complex eigenvalue problems is not obvious from the theoretical point of 
view, because lossy structures are not energetically closed. Furthermore, 
the search for minims in the complex plane is numerically much more 
demanding because the search are is two-dimensional rather than one-
dimensional, because the search area is not strictly limited, and because 
the eigenvalue search function may exhibit discontinuities due to cuts in 
the complex plane. For example, when we consider a loss-free optical 
fiber, we know that the propagation constant of all guided modes is real 
within a well-defined, limited interval. When the fiber coating is lossy, 
each guided mode gets a complex propagation constant, but we observe 
an infinite number of additional modes that usually exhibit relatively 
large imaginary parts of the propagation constant [17]. Even if one 
focuses on the modes with reasonably small imaginary parts of the 
propagation constant, detecting these modes and tracking their frequency 
dependence is very demanding. Here, the EET is very useful and allows 
one to drastically reduce the computation time. 
Note that beside losses caused by a finite conductivity, also radiation 
losses may cause a complex propagation constant. This is typical for 
waveguides in finite photonic crystals that will be presented later. 

1.7. The "connection" concept 

It has been mentioned that MMP is a semi-analytic method in the sense 
that the basis functions or basis fields in the series expansion (9) that 
approximate the field are analytical solutions at least in a single domain. 
Typical expansions are plane waves and multipole expansions. These 
expansions are single domain expansions, because they fulfill the 
Maxwell equations only in one domain with specific material properties. 
Outside this domain, they are not evaluated, i.e., set to zero. Because of 
the linearity of the Maxwell equations, linear superpositions of 
expansions that fulfill the Maxwell equations will also fulfill the 
Maxwell equations – provided that the material properties are linear as 
well. Therefore, we may easily construct more complicated basis 
functions for equation (9) by defining new basis functions, such as  

 ∑
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=
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 (29) 

We call this a connection. Note that connections may be nested, i.e., 
some of the basis functions that define a connection may be other 
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connections. Furthermore, a connection may contain basis functions that 
are defined in different domains. Therefore, a connection is usually a 
multi-domain expansion. A simple example is presented in the following: 
Assume that a plane wave hits a planar boundary between two different 
dielectrics. The analytical solution consists of a simple superposition of a 
reflected and a transmitted plane wave with well defined amplitudes. 
These plane waves may easily be packed in a connection. When one 
considers a plane wave that hits a planar boundary with a bump, the 
connection mentioned above is an excellent basis function that fulfills the 
boundary condition everywhere, except on the bump. In order to obtain 
an accurate solution, one can add some multipole expansions in the 
vicinity of the bump. 
More advanced problems where connections play an important role are 
waveguide discontinuities that usually consist of several waveguide 
sections (waveguide ports) and the discontinuity region itself. For 
handling such problems, one can first compute the fields of all modes in 
all waveguide sections (using the eigenvalue solver outlined above) an 
pack each mode, i.e., the corresponding basis functions and amplitudes, 
in a connection [6]. This procedure is extremely helpful for the 
simulation of arbitrary structures embedded in finite photonic crystals [8,  
18] because it allows one to work with very efficient models where only 
a small discontinuity area must be modeled explicitly. We will consider 
such problems later in this chapter. 

1.8. Validation problems 

It is well-known from traditional domain methods that the results 
sometimes look reasonable but turn out to be rather inaccurate or 
completely wrong. Therefore, many scientists do not trust the 
simulations and demand experimental validation of the results. When 
numerical simulations shall be used to abbreviate the design process, to 
optimize a structure, or to analyze new concepts of structures that cannot 
be fabricated yet, such codes are not very helpful. Therefore, there is a 
strong need for robust codes with reliable results that maybe validated 
even when neither a comparison with experimental results nor with other 
numerical methods is possible. 
Because of its semi-analytic nature, MMP allows one to obtain highly 
accurate results. In the close nearfield area and even on the boundaries, 
the field may be computed accurately. From the analysis of the boundary 
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conditions that are matched numerically, one obtains an excellent error 
estimation because the electromagnetic field is usually most complicated 
near the boundaries. Therefore, the maximum errors typically occur on 
the boundaries. The error distribution along the boundaries and their 
characteristic average and maximum values allow one to easily validate 
the results. The MMP implementation of MaX-1 allows one to plot the 
absolute and relative error distributions along the boundaries, not only in 
the matching points but everywhere else (see Figures 2, 4, 7, 8, etc.). 
The error distributions along the boundaries may not only be used for 
getting confidence in the results, but also for improving the numerical 
model. Usually, it is easy to reduce the error in some region by adding 
multipole expansions in this region. Therefore, one can systematically 
reduce the maximum error with adaptive multipole setting procedures. 
When the error distribution is known, one can also use it for obtaining 
more efficient models with acceptable accuracy by reducing the orders of 
the multipoles in those areas where the accuracy is relatively high. 
In many applications, the near-field computation plays a minor role 
because one is mainly interested in derived quantities such as the 
absorbed power, the directivity of an antenna, the S parameters of a 
filter, and so on. Such quantities usually contain integrals over the field 
that may be accurate enough even when the field along the boundaries is 
very inaccurate. For estimating the accuracy of such quantities, one can 
compare results of different numerical methods. Here, the fast 
convergence of usual MMP models is very helpful. MaX-1 contains 
several tools for the comparison of solutions obtained with different 
models. Thus, one usually can internally validate the MMP results very 
well, without any comparison with measurements or with other codes. 

1.9. Comparison with MoM 

Although the MoM is originally designed as a domain method that is 
very close to the method of Finite Elements (FE), it is also closely related 
to the MMP method in the loss-free case. When one compares MoM and 
FE, one sees that the main difference is the following: in the FE one 
usually approximates the electromagnetic field or the potential, whereas 
one starts with a series expansion approximation of the sources (charges, 
currents) of the field in the MoM. In the loss-free case, the sources are 
located on the boundaries. Therefore, a discretization of the boundaries is 
required (In terms of the MoM, the boundaries of the field domains are 
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the domains of the field sources. In order to avoid confusions, we will 
not use this terminology here.). This avoids the problems associated with 
the truncation of the infinite space (absorbing boundaries) of standard 
domain methods. 
When one considers the MoM as a "source expansion method", one 
immediately can see its vicinity to the MAS. Since the MAS is a special 
case of the MMP method, it is sufficient when we compare the MoM 
with the MAS. The main difference between the MAS and the MoM for 
loss-free problems is that the MoM approximates the sources where they 
really are, i.e., on the boundaries, whereas the MAS introduces auxiliary 
sources at some distance from the boundary. We have already seen that 
moving the auxiliary sources away from the boundary allows one to 
drastically increase the accuracy of the results without increasing the 
memory and computation time. The only price that has to be paid is the 
higher condition number of the matrix. Putting point sources (point 
charges in electrostatics) directly on the boundaries has very bad 
consequences. First of all, the field of these sources on the boundaries 
has singularities that cause severe numerical problems. As a 
consequence, the field evaluation on the boundaries and in the close 
nearfield becomes completely wrong.  
Standard MoM implementations avoid or reduce such problems by more 
sophisticated approximations of the source along the boundaries. For 
reasons of simplicity, we only consider the simple electrostatic case here. 
On a sufficiently smooth metallic electrode without corners, the surface 
charge density is also a smooth function without singularities. Therefore, 
it can be approximated by a piecewise constant function, by a piecewise 
linear function, or by some other sophisticated functions. Instead of this, 
one can subdivide the boundary into several boundary elements 
(subdomains in the MoM terminology) and assume that the charge 
distribution on each element is constant, linear, or a more sophisticated 
function. In order to obtain the corresponding electrostatic potential, one 
must solve the Coulomb integrals, i.e., one must integrate the charge 
distribution over each element. This integration is numerically time-
consuming when the element has a complicated shape or when it is 
curved. Therefore, one usually approximates the physical boundary by a 
piecewise flat boundary, in the 2D case, by a simple polygon. This 
approximation introduces modeling errors that cannot be analyzed easily. 
Furthermore, when simple basis functions are used on each element, the 
resulting electric field is discontinuous or it may even have singularities 
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on the boundary. Therefore, more sophisticated basis functions are 
desirable, but for such functions one does not have analytical solutions of 
the Coulomb integrals and the numerical integration is time consuming. 
Since one usually has many boundary elements, the price to pay is 
numerically high. 
When we consider the field of an auxiliary source, we can notice that this 
field may also be obtained from a smooth charge distribution along the 
entire boundary. In the MoM terminology, one therefore has an "entire 
domain" basis function that is known to be much better than the standard 
"subdomain" basis functions. Furthermore, the Coulomb integral over 
this "entire domain" basis function is known and must not be solved. 
What is unknown, is the charge distribution along the boundary. In fact, 
it is not necessary to know the charge distribution for the implementation 
of the field solver. Therefore, the MAS (and MMP) is an elegant and 
efficient technique that removes the major MoM problems. Once more, 
the only prize we pay is the higher condition number. 
Since the field distribution along the boundaries (where the boundary 
conditions must be imposed) is not smooth is standard MoM codes, the 
Simple Point Matching (SPM) technique is not very reliable. Therefore, a 
variant of the projection technique is often used in the MoM. For rather 
obscure reasons, a special product is introduced that only coincides with 
the traditional scalar product for real functions. This product is then used 
to "project" the boundary conditions on some testing functions defined 
along the boundaries. Both the basis functions (charge distributions) and 
the testing functions along the boundaries may be defined everywhere or 
in some boundary elements only. The SPM is obtained, when Dirac 
testing functions are used. This allows one to analytically solve the 
integrals contained in the products mentioned above, but it is known to 
be the worst choice of testing functions. The optimal choice of testing 
functions is considered to be Galerkin's choice, where basis and testing 
functions are the same. We have already seen that this leads to an error 
minimization in the least squares sense and that a numerically better way 
is the GPM that avoids time-consuming numerical integration as well as 
problems with high condition numbers. 
From these considerations, one can easily understand that the MAS-
MMP approach is more efficient, more accurate, and easier to implement 
than standard MoM, provided that accurate results or near-field 
computations are desired. When only farfield approximations of a 
moderate accuracy are desired, the situation may be different for the 
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following reason: The MAS-MMP codes usually have a very rapid 
convergence when the surface is smooth enough, but they have not been 
tuned for obtaining quick and approvimate results for complicated 
geometry that exhibit field singularities near sharp corners etc. Typical 
examples are airplanes, microwave circuits, etc. For such situations, one 
can design specialized MoM codes based on advanced concepts, such as 
non-free-space Green's functions, that are much better suited. 
A simple case, where the standard MMP-MAS approach is not efficient, 
is a thin but long wire. For such an object, the auxiliary sources or 
multipoles are best placed along the center of the wire. In order to obtain 
accurate results, the distances between neighboring sources should not be 
much larger than the radius of the wire. Therefore, one obtains a huge 
number of source when the wire is long – even when it is short compared 
with the wavelength. One then observes that the amplitudes of the 
sources vary slowly along the wire. In order to overcome this problem, 
one can introduce a new type of basis functions, so-called distributed 
multipoles [6]. When an array of multipoles is distributed along a straight 
line, we call it line multipole. When it is distributed along a circle, we 
call it ring multipole. Line multipoles are a generalization of the thin-
wire approximation that is frequently used in MoM codes. The standard 
thin-wire expansion is a zero order line multipole. The more general line 
multipoles may be used not only for thin wires, but also for non-circular 
wires and for relatively thick wires. In fact, each Green's function that 
may be used in a MoM code is a solution of the Maxwell equations. 
Therefore, it can be implemented and used in the MMP code as well. As 
soon as such a basis function is available in MMP, the main difference to 
its use in a MoM code will be the following: In the MoM code, it will be 
used in its "natural or physical" place, whereas it can be used in the 
MMP code at some arbitrary place - just as a new basis function that is 
helpful for the field approximation. For example, a MoM current patch is 
used on the surface of a conductor, where the currents really are, whereas 
the MMP user will move the same current patch inside the conductor in 
order to avoid the field discontinuity problems on the boundary. 
Therefore, MoM must not be considered as a concurrent of MMP. It is a 
useful source of possible basis functions. 
Note that ring multipoles are not only useful for toroidal objects but also 
for general axisymmetric problems. Such problems can often be handled 
with ring multipoles with similar computation times as 2D problems. 
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2. The MaX-1 implementation of MMP 

The most advanced MMP code is contained in the MaX-1 software 
package [8, 18]. This package contains helpful tools for the advanced 
modeling, visualization, animation, and validation. The main concepts 
are outlined in the following section. 

2.1. Advanced modeling features 

Since MMP is a semi-analytical field solver that is very close to 
analytical solutions, it is important that modeling tools are available that 
allow one to describe the geometry and other data as accurately as 
possible because the accuracy of the input data limits the accuracy of the 
results. For example, when the locations of the matching points and the 
tangential directions of the boundaries in the matching points are defined 
with a certain accuracy, one cannot obtain the near field with a higher 
precision. Therefore, a very precise input is desirable. For this reason, 
MaX-1 does not only permit real and integer data input, but also formula 
input. In order to avoid time-consuming formula evaluations, it uses a 
simplified formula interpreter that is general enough for standard tasks. 
The formula input can be used, for example, for the definition of 
frequency dependent material properties, for the analytical definition of 
boundaries, and for the definition of curved grid lines. 
For 2D modeling, standard boundaries in most of the technical 
applications are polygons, sometimes with circular parts. It is well-
known that the electromagnetic field usually exhibits singularities near 
corners. In order to avoid the difficulties associated with singularities, 
one best inserts reasonably small arcs at the corners of the polygons. 
Since manual insertion of arcs is tedious and a source of inaccuracies, 
this is done automatically in MaX-1. A polygon with appropriate arcs in 
each corner is called a C-polygon. 
The error analysis shows that the highest errors of models with C-
polygonal boundaries always are observed near the junctions of the arcs 
with the straight polygonal lines. From the theoretical point of view, this 
is to be expected, because the second order derivatives of the boundary 
function in these points are discontinuous. An improvement may 
therefore be obtained by a cubic spline approximation of the C-polygons. 
This approximation is also implemented in MaX-1. It is considered to be 
sufficiently accurate for most of the practical applications. 



Ch. Hafner and J. Smajic 40 

When the 2D boundaries and additional model parameters (material 
properties, frequency, geometric symmetries, etc.) are defined, an 
appropriate set of basis functions – mainly 2D multipoles – must be 
defined. For inexperienced MMP users, this is the most difficult task. 
Therefore, MaX-1 contains several automatic pole setting procedures. 
The construction of geometric 2D objects is relatively simple because a 
computer screen is well suited for that. 3D modeling is much more 
tricky. Since an analytical definition of the boundaries of 3D Objects is 
desired for 3D MMP models, standard input procedures of CAD 
packages are not appropriate. MaX-1 contains several transformations 
that allow one to construct parts of complicated objects from the 
definition of boundaries and 2d multipoles defined in the xy plane. In 
order to illustrate the procedure, we consider a grating of "hat-like" 

bumps that are periodic both in the x and y directions. A single cell of 
this grating shall be a cube that contains a single "hat" as shown in 
Figure 17. 
The "hat" is an axisymmetric part that is obtained from a the blue C-
polygon in Fig. 17 by rotation about the y axis. For this C-polygon, 
MaX-1 could generate a set of appropriate multipoles. Since only a rough 
model shall be computed first, only 2 multipoles (red crosses in Fig. 17) 
are introduced manually.  Beside the "hat", the original cell of the grating 
to be modeled consists of several rectangles that may be obtained by 
cylindrical translations from the red and green line in Fig. 17. When the 

   
 
Fig. 17: Grating with "hat like" bumps, periodic in x and y directions (right hand side) 
and 2D constructions required (left hand side) for generating the 3D model.  
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"hat" and the 7 rectangular boundary parts shown in Fig. 17 have been 
defined, one should delete the circular area of the green rectangle below 
the hat. The MaX-1 user can do this by the simple directive "ADD 
INHIBIT D8R6" which means: Add the inhibit directive D8R6 to the list 
of inhibit directives that are performed before the 3D matching points are 
generated. D8R6 means "Delete all points of object 8 (the "hat") on the 
Right hand side of object 6 (the green rectangle mentioned above)". 

Figure 18 shows the matching points that will be generated. 
As soon as the 3D boundaries and expansions are defined together with 
additional data (material properties, frequency, periodic symmetry, etc.), 
MaX-1 will generate the 3D matching points, impose the boundary 
conditions, set up and compute the resulting MMP matrix. After that, 
MaX-1 can evaluate the electromagnetic field and derived fields such as 
the Poynting vector field, everywhere in space, for example on the 
matching points themselves as shown in Figure 18. 

2.2. Validation, visualization and animation 

Visualizations are especially helpful for the model validation, for 
the analysis of results, and for understanding how electromagnetic 
fields propagate. Since MMP is a semi-analytical technique, it 
allows one to compute the electromagnetic fields and arbitrary 
quantities derived from this field with a high precision everywhere 

     
 
Fig. 18: Grating with "hat like" bumps. Left hand side: 3D matching points. Right hand 
side: Time-average of the Poynting vector field in the matching points.  
 



Ch. Hafner and J. Smajic 42 

in space, in the far field as well as in the near field or even on the 
boundaries. For doing that neither interpolation nor extrapolation 
routines are required. 
Since we also can compute the field in the matching points on all 

boundaries, we can easily obtain the mismatching error as in 
Figure 19. 
Although the error distributions in the matching points are useful 
for a quick overview and for an adaptive model improvement, the 
errors along the boundaries between the matching points may be 
higher than between the matching points, namely when simple 
models with a weak overdetermination are used. Therefore, one 
can also compute the error distribution on an arbitrary grid as 
shown in Figure 19. 
For more detailed model validations, one can easily modify the 
MaX-1 models by changing the MMP expansions by increasing 
the multipole orders. From the comparison of different models one 
can also estimate the errors in points that are not on the boundaries. 
For the visualization of the surfaces of 3D objects, OpenGL is 
known to be very convenient. However, since the electromagnetic 
field is a quantity defined everywhere in space and not only on the 

     
 
Fig. 19: Distribution of the mismatching error along the boundaries of the problem shown 
in Figs. 17 and 18. Left hand side: error distribution in the matching points, right hand 
side: error distribution on a grid. Note that the maximum relative error of this model is 
3.3% and the average error is 0.8%.  
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surfaces of 3D objects, its visualization is much more demanding. 
Therefore, one usually visualizes the field only on one or a few 
rectangular patches. Since MaX-1 allows one to visualize arbitrary, 
curved boundaries in 3D space, it allows one to also display the 
field and derived fields on such curved surfaces as shown, for 
example, in Figure 18. Such visualizations often give a much 
better insight than visualizations on rectangular patches. 
When the field is visualized on several surfaces, hiding becomes 
an important issue. The standard OpenGL features allow one to 
draw the fields once and to rotate, pan, zoom while one is 
observing the field. Although this is very helpful, it still allows one 
to observe some portions of the field only. In order to obtain a 
deeper insight and more information, animations are required. In 
addition to standard animations that show the time-dependence of 
the field, MaX-1 allows one to easily generate advanced 
animations that show the field dependency on some other variables 
or model parameters. For defining advanced animations, the user 
must instruct MaX-1 what shall be shown on the frames of a 
movie. This is done by so-called movie directives that define 
actions such as "increase time", "increase frequency", "rotate 
object", "move expansion", and many more. 

2.3. Solving complicated projects 

The movie directives are essentially a set of batch commands for 
the 3D MaX-1 modeling that are similar to the well-known batch 
directives of MS DOS. These directives are not only useful for 
generating advanced animations, but also for solving complicated 
projects. For example, when we want to compute and draw the 
band diagram of the first N modes of a 2D photonic crystal, we 
have 3 sections of the band diagram that correspond to the three 
sides of the 1st Irreducible Brilloin Zone (IBZ). Since degenerate 
modes often occur in the tree corners of the IBZ, we usually start 
the rough eigenvalue search in the centers of the three sections. 
Once we have detected the first N modes for a center point, we 
perform a fine eigenvalue search with the desired accuracy for 
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each mode. Then we track each eigenvalue from the center point to 
the left and to the right end of the corresponding section. For each 
point of the section we save the data of all N eigenvalues on a file. 
As soon as all eigenvalues are known along a section, we read the 
data file and let MaX-1 plot the diagram. The following MaX-1 
directives are used for drawing a section of the band diagram: 
 
write function band010.fun header 0 2 
write function ! 
end pre processing directives 
! 
set period constant 3141592.6 0 0 0 
write function + header 0 2 
write function / text "n" 
write function / text "fa/c" 
end inner loop pre directives 
! 
mmp solve 
write function / frequency real 
increase period constant -78539.815 0 0 0 
end inner loop directives 
! 
write function ! 
read function / 
process function div(v1,3e14) 
draw function 1 3 1 
increase eigenvalue 1 
end inner loop post directives 
! 
read directive band002.dir 
end post processing directives 
 
This set of directives consists of 5 blocks 1) pre processing 
directives, 2) inner loop pre directives, 3) inner loop directives, 4) 
inner loop post directives, 5) post processing directives. In fact, 
these blocks define two nested loops.  
First, the block 1) is computed. Here, a "function" file prototype is 
defined. This file will be used for storing the band data. Its name is 
band010.fun. The second directive of block 1) closes the file. 
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Then the outer loop is performed for each of the N eigenvalues. 
This starts with the pre-processing directive block 2) for the inner 
loop. In the first line of this directive, the start point on the IBZ for 
the rough eigenvalue search is defined. The remaining directives of 
the block 2) open a new function file and write header data on it.  
Now, the inner loop is started. In this loop, the directive block 3) is 
used. First, the MMP solver is called. Afterwards, the real part of 
the frequency (eigenvalue = resonance frequency) is written on the 
function file. Then, the search point on the segment of the IBZ is 
moved. This is repeated in the inner loop until the end of the 
search interval is reached. 
When the inner loop is finished, the block 4) will be computed: 
First, the function file is closed. Then, it is opened again and all 
data are read. The third directive of block 4) scales the function, 
i.e., it divides the value by 1E14. Then, the function is drawn. 
After that, the eigenvalue number is increased by one and the outer 
loop is repeated until all eigenvalues are computed and plotted. 
After the outer loop is terminated, the directive block 5) is 
performed. Here, a new set of directives, specified in the file 
band002.dir is read. This set of directives will replace the current 
one. It contains the directives for plotting the next section of the 
band diagram. 
The movie directives of MaX-1 allow one to automatically 
perform complicated investigations not only of a single numerical 
model, but also of entire sets of models. Therefore, it may be used 
for the extensive analysis of problems.  

2.4. Linking with optimizers 

Because of its high accuracy and reliability, MMP is very 
advantageous not only for the analysis, but also for the synthesis. 
For the latter, MaX-1 must be combined with a numeric optimizer. 
Typically, an optimizer will "propose" some model parameters 
(material properties, geometric parameters, etc.) an it then expects 
the fitness value of this model from the field analysis tool. Within 
MaX-1, the model analysis can be automated as we have seen in 
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the previous section. Furthermore, the movie directives allow one 
to precisely define the fitness function to be returned to the 
optimizer. MaX-1 and an external optimizer exchange information 
simply through ASCII files. The optimizer writes the model 
parameters on a specific input file for MaX-1. As soon as this file 
is available, MaX-1 reads and deletes it. After that, it performs all 
directives. When the model is analyzed and the fitness is 
computed, it is written on a specific output file. While MaX-1 is 
running, the optimizer waits for the output file. As soon as this file 
is present, the optimizer reads and deletes it. After that it generates 
a new model while MaX-1 is waiting for the new input file. 
Since the model analysis is by far more time-consuming than the 
model generation of the optimizer, this procedure can easily be 
extended for parallel processing or for computer networks. 
Note that the choice of the optimizer and its speed depends very 
much on the quality of the forward solver, i.e., of the field analysis 
tool. The numerical inaccuracy of the latter can be considered as 
some noise that can heavily disturb the optimizer. Efficient 
optimizers therefore require accurate field solvers, whereas slow 
optimizers that are close to random search strategies may be best 
suited when an inaccurate field solver is used. Namely simple 
finite differences solvers often generate fitness functions with 
some stair-case behavior that is very inconvenient for most of the 
optimizers. This behavior considerably disturbs even robust 
stochastic optimizers such as evolutionary strategies and genetic 
algorithms. Even when the optimizer does not use gradient 
information of the fitness function, it will work more efficiently 
when the first (or even higher) derivative of the fitness function is 
continuous. Together with an optimizer, a slow but accurate 
forward solver therefore may outperform a fast forward solver with 
limited accuracy. Therefore, it makes not much sense to compare 
the speed of different forward solvers without linking them to an 
appropriate optimizer, when one wants to obtain an efficient 
synthesis package. 
Although current personal computers are not fast enough for the 
efficient optimization of complicated structures, we expect that the 
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numerical optimization will soon be very important for the design 
of new structures and devices, namely for finite photonic crystals 
that are very promising but often counter-intuitive. 

3. Applications 

The range of applications of MaX-1 and MMP is very wide. 
Although these codes are mainly used in computational optics, 
they may also be applied to computational electromagnetics at 
much lower frequencies, even down to electrostatics. However, in 
the following, we focus on applications in the optical regime. 
First of all, there are two classes of applications for Maxwell 
solvers: Scattering and eigenvalue problems. The former are 
characterized by an inhomogeneous system of equations, where the 
excitation or incident field defines the right hand side or 
inhomogenity of the system. The latter is characterized by a 
homogeneous system. As we have already seen, one can introduce 
fictitious excitations in eigenvalue problems in order to transform 
them into a scattering problem. 
Beside the excitation, the geometric symmetries play an important 
role and allow one some classification. For computational optics, 
three types of symmetries are most important: 1) cylindrical 
symmetry, 2) rotational symmetry or axi-symmetry, 3) periodic 
symmetry in 1, 2 or 3 directions of space.  
Cylindrical symmetry is very natural for waveguides such as 
optical fibers. Furthermore, this symmetry is often assumed in 
simplified models, because it allows one to work on 2D models. 
This especially holds for photonic crystals. Realistic 2D photonic 
crystals consist of arrays of cylindrical rods of finite length or of 
cylindrical holes in a plate of finite thickness. Obviously, all 
realistic "cylindrical" objects must have some finite length. 
Therefore, cylindrical (2D) models are always idealized models 
that ignore the effects caused by the finite length. Codes for 
scattering at cylindrical structures often assume that the incident 
wave propagates in a direction perpendicular to the symmetry axis. 
This is an additional assumption that leads to an additional 
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simplification of the codes. Since this does not allow one to 
consider oblique incidence and cannot be used for solving 
eigenvalue problems, the MMP implementation of MaX-1 
considers the more general case of cylindrical symmetry with an 
electromagnetic field that is not constant in the longitudinal 
direction. 
Although the theoretical handling of rotational symmetry is similar 
to cylindrical symmetry, its implementation is considerably more 
demanding for the following reason: In scattering problems, the 
excitation is most frequently assumed to be a plane wave. The 
longitudinal (z) propagation of a plane wave in the cylindrical case 
is simply described by the function exp(ikzz), where kz is the 
longitudinal component of the wave vector. This longitudinal 
dependency of the incident plane wave matches perfectly the 
symmetry decomposition exp(iγz) of cylindrical problems, where γ 
is the propagation constant. For axisymmetric problems, the 
symmetry decomposition in angular (ϕ) direction (about the z axis) 
is described by exp(inϕ), where n is an integer number. This 
essentially is a Fourier decomposition in ϕ direction. The fact that 
n is an integer number, whereas γ is real or even complex (in lossy 
problems) simplifies the procedure, but the angular dependency of 
a plane wave is not described by exp(imϕ) in general. Therefore, 
one must first decompose the incident plane wave with an angular 
Fourier series and solve the problem for each Fourier component. 
For reasons of simplicity, one often considers the special case of 
axisymmetric scattering problems with an incident plane wave 
propagating along the z axis. Such a wave has only one angular 
Fourier component of the form cos(ϕ) or sin (ϕ), i.e., m=±1. For 
each Fourier component of the field one can find a set of basis 
functions with the appropriate symmetry. For multipole expansions 
located on the symmetry axis, this symmetry decomposition is 
trivial. Since we also want to use off-axis multipoles, we must 
decompose them, which leads to the concept of ring multipoles [6]. 
As an alternative to ring multipoles, complex origin multipoles [6] 
may also be used, but these are restricted to non-toroidal topology 
and have not been implemented in MaX-1. 
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A spatial Fourier decomposition of the field is also used for 
periodic symmetries that are present in grating applications and in 
models of perfect photonic crystals. Since these models are 
infinite, they are idealizations that approximate realistic gratings 
and photonic crystals. There are several methods for handling 
periodic symmetries. First of all, one could proceed as for 
axisymmetric problems, i.e., one could implement symmetry 
adapted, periodic multipole expansions. This leads to convergence 
problems. Therefore, periodic symmetries are handled in MaX-1 
with an alternative method, by the definition of periodic boundary 
conditions [6, 8]. These are very important for the modeling of 
gratings and photonic crystals. 

3.1. Scattering and antenna 

A standard scattering problem is defined by a set of domains with 
the corresponding material properties and the incident wave. In 
most cases, the incident wave is considered to be a plane wave. It 
is well known that realistic waves generated by an antenna are not 
plane waves, but at a sufficient distance from the antenna and 
within a sufficiently small area, the antenna field may be 
approximated very precisely by a plane wave. As an example, we 
consider the scattering of a plane wave at an array of 6 times 6 
cylindrical dielectric rods. This configuration may be considered as 
a finite 2D photonic crystal. Of course, the response of this 
structure depends not only on the orientation of the incident plane 
wave, but also on the material properties of the rods and on the 
size and spacing of the array. As one can see in figure 20, the block 
of 6 times 6 rods behaves very much as a square dielectric block, 
i.e., one can describe it quite well by some kind of "macroscopic" 
dielectric model that ignores the geometry of the crystal. However, 
when we sweep the frequency, we find that there are some 
frequency ranges where the block behaves like perfect conductor 
and totally reflects the incident wave for all angles of incidence as 
shown in Figure 21. 
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Since we know that the incident plane wave is a part of an antenna 
field, we would like to know how to model an antenna, although 
this term usually is not used in optics. A standard antenna is a 
more or less complicated structure with some waveguide that feeds 
the antenna. Antenna design programs often do not explicitly 
model the antenna feed. Instead of this, some impressed current 

     
 
Fig. 20: Finite photonic crystal consisting of 6 times 6 dielectric rods, illuminated by a 
plane wave. Left hand side: low frequency, right hand side high frequency solution, time 
average of the Poynting vector field.

     
 
Fig. 21: Finite photonic crystal consisting of 6 times 6 dielectric rods, illuminated by a 
plane wave. Frequency within the band gap. Left hand side: perpendicular incidence, 
right hand side: diagonal incidence.  
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usually acts as the source of the field. This concept is not 
appropriate in optics. Here, we prefer the correct modeling of the 
feeding waveguide. As a simple example of an optical antenna, we 
can consider a finite photonic waveguide that contains a defect 
waveguide (see Figure 22). The defect waveguide acts as the 
antenna feed and it is considered to be infinitely long. MaX-1 
allows us to compute the modes of such waveguides with different 
methods that will be outlined below. Once the modes of the 
waveguide are known, one can pack the expansions that describe 
the field of a mode in a connection. This allows us to truncate the 
infinite feeding waveguide and to model only a short section of it. 
Note that not only the mode that shall excite the antenna must be 
modeled, but also the modes that are reflected back into the 
waveguide feed. In addition to the guided modes, one may also 
have evanescent, higher order modes. When the waveguide section 
that is explicitly modeled is long enough, all evanescent modes 
will be damped sufficiently well in this section and need not be 
modeled by connections. On the other hand, in order to reduce the 
model size, one can also compute the relevant evanescent modes 
and pack them in connections. 

 
 
Fig. 22: Time average of the Poynting vector field for a simple photonic crystal antenna 
fed by a single mode defect waveguide. 
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3.2. Axisymmetric structures 

The handling of axisymmetric structures is relatively simple, when 
these structures have the same symmetry as one of the Fourier 
components of the angular symmetry decomposition. Such a 
symmetry is obtained when a plane wave is incident along the axis, 
but also when the structure is fed by a circular waveguide structure 
(for example, an optical fiber) along the axis. Typical examples for 
this are found in Scanning Nearfield Optical Microscopy (SNOM). 
Standard SNOMs use optical fibers with a metallic cladding and 
with a small tip or aperture. The fundamental fiber mode is the 
HE11 mode that has cos(ϕ) symmetry. This mode is much damped 
by the cladding [17]. In classical electromagnetics, a strong field 
confinement is obtained with simple multiconductor transmission 
lines. Such structures cannot be fabricated in the optical regime 
because metals lose their conductivity. However, at optical 
frequencies, some of the metals may be described by a complex 
permittivity with a negative real part, which can cause surface 
plasmons. When the imaginary part of the permittivity is small 
enough, one can use this for obtaining interesting waveguides and 
resonators. Figure 23 shows a concept study of a metallic resonator 
with a sharp tip illuminated by an axisymmetric light source. At 
some frequency range, an extremely bright spot is observed near 
the tip. The macroscopic model that was used shows no limitations 
concerning the spot size – provided that the radius of curvature 
near the tip is small enough. Therefore, the spot size will probably 
only be limited by atomic effects that cannot be handled with a 
pure Maxwell solver. 
The MMP solution of such axisymmetric models is very efficient, 
because only a 2D section of the 3D object is modeled. More 
precisely, only 1D boundary lines are discretized. Therefore, one 
can work with small matrices of a few hundred unknowns even 
when the object is not small compared with the wavelength. For 
example, the model shown in Figure 23 has been computed with 
252 unknowns. The average error is 0.05% and even at the most 
critical sections, the relative error is in the order of 1%.  
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Since the MMP matrix is small, one can easily perform extensive 
studies that show the dependence on the frequency, on the 
illumination, on the material properties, and on the geometric 
shape. 
Another interesting structure is the axisymmetric, circular 
sinusoidal grating shown in Figure 24. As one can see, it generates 
a nice beam when it is illuminated by a plane wave along the axis. 
For this example, 521 unknowns were used and a relative error of 
0.2% in the average along the boundary was obtained. The 
maximum relative error is in the order of 1%. 
Although axisymmetric problems can usually be solved with small 
MMP matrices it should be mentioned that the matrix setup time is 
much longer than the matrix setup time for cylindrical MMP 
models because the computation time of ring multipoles is much 
longer than the computation of cylindrical (2D) multipole 
expansions. 

 
 
Fig. 23: Concept study of a resonant, metallic SNOM tip with an extremely localized 
electric field near the tip. The rotational symmetry axis is on the bottom of the figure. A 
special window with a finer grid and another scaling has been introduced around the tip 
in order to show the strength of the confinement together with the overall field 
distribution that is much weaker.
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3.3. Periodic structures 

It has already been mentioned that periodic structures are handled 
with periodic boundary condition s in the MMP implementation of 
MaX-1. This allows one to separate a single cell of the structure. 
Once this has been done, the field inside the cell may be modeled 
exactly as the field in any other domain. For this purpose, one can 
use standard multipole expansions, Bessel expansions, and all 
other expansions available.  
A special modeling is required for gratings that may be periodic in 
one or two directions. Typically, one has a sandwich-like 
geometry. On top and bottom, one has a half space and the grating 
structure is somewhere in between as shown in Figure 25. When 
the grating is illuminated by a plane wave incident in the top half 
space, the field in this half space will also contain the reflected 

 
 
Fig. 24: Axisymmetric, finite sinusoidal grating illuminated by a plane wave incident 
from the left hand side. Time average of the Poynting vector field. The symmetry axis is 
on the bottom of the figure.  
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waves that may be expanded by special harmonic expansions, so-
called Rayleigh expansions or Floquet modes. Similarly, the 
transmitted waves in the bottom half space may be modeled with 
Rayleigh expansions. Such expansions are available in the MMP 
code for 2D and 3D models. Figure 25 shows a 2D example. An 
example of a 3D model with a grating that is periodic in two 
perpendicular directions has already been given in Figure 18. 

 
Note that the half spaces of a grating must usually be separated 
from the grating structure itself by fictitious boundaries [6, 8] 
because the Rayleigh expansions alone are not complete when the 
half space is not limited by a planar boundary. 
Perfect photonic crystals are a class of periodic problems that is 
different from gratings because they cover the entire space. In fact, 
there is no excitation when perfect photonic crystals are studied, 
i.e., these structures are considered as eigenvalue problems 
whereas gratings are handled as scattering problems. Therefore, we 
first consider eigenvalue problems before we return to photonic 
crystals. 

   
 
Fig. 25: 2D blazed grating illuminated by a plane wave. Left hand side angle of incidence 
–25o, right hand side: +25o. Time average of the Poynting vector field. Green lines: 
fictitious boundaries that separate the upper and lower half space, white line: fictitious 
boundary with periodic boundary conditions.
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3.4. Guided waves and resonators 

Guided waves and resonators are typical eigenvalue problems. The 
resonator problem is simpler because the resonance frequencies are 
the eigenvalues that are characteristic for the modes, whereas the 
guided waves are characterized by the frequency dependency of 
the propagation constants of the modes. As we have seen, the PET 
is well suited for speeding up the calculation of the frequency 
dependency. Furthermore, we have seen that different methods 
may be used for defining eigenvalues. Within MaX-1, several 
methods are available, which provide a high degree of freedom. 
This is important because eigenvalue problems turn out to be very 
tricky when the geometry is not very simple, when many modes 
are present, and when losses are present. In order to illustrate, we 
consider a so-called holey optical fiber consisting of 6 circular 
holes on a hexagonal lattice. Figure 26 shows the first quadrant of 
this structure. 

The fundamental mode of the holey fiber resembles the HE11 
mode of the circular step index fiber, but the classification of the 
modes is extremely difficult because the holey fiber does not 
exhibit rotational symmetry. A partial classification might be 
obtained from the symmetry that is still there: The holey fiber has 

   
 
Fig. 26: Holey optical fiber. Left hand side: Electric field of the fundamental mode. Right 
hand side: Eigenvalue search function for the modes that exhibit the symmetry of the 
fundamental (pseudo HE11) mode.  
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6 symmetrical axes, i.e., diedric D6 symmetry. The symmetry 
decomposition for D6 is not very difficult, but it is not trivial as 
well, because the corresponding symmetry group is two-
dimensional. Furthermore – as most codes for computational 
electromagnetics – the MMP implementation of MaX-1 does not 
allow one to take D6 symmetry into account. It only considers up 
to 2 perpendicular symmetrical axes, i.e., D2 symmetry. When we 
only consider D2, we obtain an incomplete symmetry 
decomposition, but this will still allow us to distinguish four 
classes of modes with different symmetrical properties. This 
considerably simplifies the detection for the following reasons. 
Assume that 100 modes are present. Without symmetry 
consideration, one will have to perform a rough search with at least 
10000 search points, because some of the modes can have very 
similar eigenvalues. When D2 symmetry is considered, each of the 
four classes of modes will have about 25 modes and the distances 
between them will be considerably bigger. Therefore, 4 times 1000 
search points should be sufficient. Furthermore, the size of the 
matrix that describes the modes is considerably smaller (N/4 times 
M/4 instead of N times M) when D2 symmetry is considered. 
Therefore, the computation time for the rough search will be 
reduced by a factor of approximately 160. 
As one can see from Figure 26, the eigenvalue search function 
exhibits extremely sharp minims that characterize the modes 
mainly near the right hand side of the diagram. In order to 
accurately compute the field of the corresponding mode, we must 
explore the corresponding minims with a high precision. For 
example, the rightmost minimum that corresponds to the 
fundamental mode goes down to 1E6.  
The minims that characterize higher order modes are more flat and 
high. Although this simplifies the search for the corresponding 
modes, it also indicates that an insufficient accuracy will be 
reached because the orders of the multipoles and Bessel 
expansions are not high enough for a good approximation of these 
modes with their complicated field patterns. 
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3.5. Perfect photonic crystals 

Perfect photonic crystals are structures that are periodic in up to 
three directions in space. For reasons of simplicity, we focus on 
cylindrical 2D crystals that are periodic in two directions of the xy 
plane that is perpendicular to the cylinder (z) axis. Such crystals 
usually consist of dielectric rods or holes in a dielectric, but 
metallic rods may also be considered [15, 16]. For the analysis of 
photonic crystals, methods known from crystallography are 
applied.  
Its special symmetries are first explored. For the MMP analysis, 
fictitious boundaries are introduced for separating a single cell of 
the original lattice. Along these boundaries, periodic boundary 
conditions are imposed. Here, it is important to note that the 
fictitious boundaries may be straight lines – which seems to be 
natural – but curved lines are admitted as well. If one already has 
some idea about the field pattern of the mode to be analyzed, it is 
reasonable to define the fictitious boundaries in an area where the 
field is relatively smooth because this will minimize the model 
size. As shown in Figure 27, only a single original cell of the 
original lattice must be modeled explicitly. Since this cell often 
exhibits additional symmetrical axes, it would be possible to model 
only a part of it and to apply appropriate symmetry decomposition, 
but this has not been implemented in the current MMP version. As 
a consequence, one may encounter degenerate modes that cause 
some numerical problems. 
In the second step, the reciprocal lattice space is introduced which 
is essentially obtained from a spatial Fourier analysis. This space is 
illustrated in Figure 28. It is spanned by the components of the 
wave vector. Because of the symmetry, it is sufficient to analyze 
the modes only over a finite part of the reciprocal space, the 1st 
Irreducible Brillouin Zone (IBZ) as shown in Figure 28. For the 
most frequently used square and triangular (hexagonal) lattices, the 
IBZ is a triangle. 
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In order to compute the band gap that is of highest interest for 
photonic crystals, it is sufficient to explore the borders of the IBZ 
only, i.e., to find the resonance frequencies along the lines in 
Figure 28 from Γ to X, from X to M, and from M back to Γ. Figure 
29 shows a typical band diagram. 
 

     
 
Fig. 28: Reciprocal lattice space (left hand side) and 1st Irreducible Brillouin Zone (IBZ) 
for the case shown in Figure 27.

     
 
Fig. 27: Simple 2D photonic crystal with a square lattice. Right hand side: MMP-MAS 
model with the square original cell, periodic boundary conditions imposed along the 
fictitious boundaries shown by thick lines, and fictitious excitation of the MMP-MAS 
eigenvalue search.  
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As one can see, the band gaps are zones or frequency ranges 
(vertical direction in Figure 27) where no mode exists. When a 
finite photonic crystal is illuminated by a wave incident from an 
arbitrary direction, it will totally reflect the wave. This interesting 
and useful effect is only obtained when the dielectric contrast 
between the rods and the background si sufficiently high and when 
the rods are sufficiently big. Furthermore, the geometric shape of 
the rods and the symmetry of the lattice play important roles.  
Since the band gaps define the working area for photonic crystals, 
the main reason for the computation of the band diagrams is to find 
crystals with a sufficiently wide bandgap around the desired 
frequency range. This is a rather difficult optimization task, 
especially because the computation of the band diagram exhibits 
several numerical difficulties. Fortunately, one usually works in 
the lower band gap. In order to find it, only the lowest order modes 
need to be considered. These modes have a relatively simple field 
and can be computed with relatively low computational effort. 
MaX-1 provides all tools required for the efficient computation of 
band diagrams and for dealing with numerical difficulties. 

     
 
Fig. 29: Band diagram for the model shown in Figure 27.
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3.6. Waveguides in photonic crystals 

Although it is nice to fabricate a photonic crystal that totally 
reflects all waves within a certain frequency range, defects make 
photonic crystals much more attractive and promising. In fact, 
photonic crystals were first proposed as an optical counterpart of 
semiconductor crystals [19]. As we know, doping makes 
semiconductors really interesting. Since the cells of photonic 
crystals are much bigger than the atoms of a semiconductor, one 
can "dope" photonic crystals very precisely by changing the 
geometry and material properties of one or several cells. For 
example, when a photonic crystal consists of a set of dielectric 
rods on a square lattice, one can remove all rods along a line [20, 
21]. As a result, a simple defect waveguide is obtained as shown in 
Figure 22. Note that it is very easy to obtain many different types 
of waveguides simply by modifications of the cells of a photonic 
crystal along one or several parallel lines [22]. This gives one 
much freedom in the design of waveguides, but it also poses a 
problem to design and optimize waveguides with desired 
properties, which is a hard synthesis problem. 
The standard approach to compute waveguides in photonic crystals 
is the so-called super cell approach [23, 24] that considers an array 
of parallel waveguides instead of a single one. When the 
waveguides are separated by sufficiently many cells of the 
photonic crystal and when one operates sufficiently well within the 
band gap, there is almost no interaction of the waves in 
neighboring waveguides. Therefore, one essentially obtains the 
same field distribution as in the single waveguide. The set of 
infinitely many parallel waveguides may be considered as a bigger 
periodic structure with an original cell that contains several cells of 
the former, undisturbed photonic crystal. Figure 30 shows an 
example of a super cell with a defect waveguide in the center and 
four rods on each sides of the channel, i.e., neighboring channels 
are separated by 8 rows of rods. 
As one can see in Figure 30, each of the modes of the undisturbed 
crystal on both sides of the band gap splits in several modes. The 
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number of modes increases with the size of the super cell, i.e., with 
the number of rods on each side of the channel. Therefore, the 
computational effort is drastically increased, which makes the 
super cell method inefficient. 

 
Beside the split modes, one also observes a completely new mode 
within the original band gap in Figure 30. This is the defect 
waveguide mode. Note that this mode  is not completely within the 
band gap, but it covers a wide area of it. Depending on the model 
parameters, one can obtain single mode waveguides as in Figure 
30, but multimode waveguides as well. 
Although the super cell method allows one to use the same 
procedures as for the analysis of perfect photonic crystals, this 
method is obviously neither very realistic nor numerically 
efficient. A more realistic waveguide model would consist of a 
channel with a finite number of rows of rods on both sides, i.e., 
one might simply remove the fictitious boundaries on top and 
bottom of the super cell shown in Figure 30 and keep the left and 
right fictitious boundaries. When one does this, the structure is no 
longer periodic in the vertical direction, but it is still periodic in the 
horizontal direction. Thus, one obtains a one-dimensional lattice 

     
 
Fig. 30: MMP model of the super cell (left hand side) of a defect waveguide and band 
diagram of the modes near the lowest band gap of the undisturbed crystal.
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space and a one-dimensional reciprocal space as well. The 
reciprocal space now essentially is the space of the propagation 
constant of the waveguide, i.e., the wave number in horizontal 
direction. This makes the eigenvalue search much easier. 
When one removes the fictitious boundaries that separate the super 
cell from the neighboring cells with the parallel neighboring 
waveguides, one should recognize that the resulting waveguide 
with finite walls may radiate in the upper and lower half space. 
When the number of rows of rods on both sides of the channel is 
big enough, one may expect that the radiation is weak and may be 
neglected. In order to obtain information about the radiated power, 
we must take it into account. Within our MMP model, we can 
easily do this by a model similar to the grating model that 
separates the upper and lower half space by fictitious boundaries. 
Therefore, we can re-introduce the fictitious boundaries on top and 
bottom of Figure 30. Instead of imposing periodic boundary 
conditions, we match all field components and model the radiated 
field in the top and bottom half space with simple multipole 
expansions. 
The radiation losses have an important consequence: the 
propagation constant now must be complex even if all dielectrics 
are loss-free. This requires a complex eigenvalue search instead of 
a real search. When the radiation loss is not very high, one can first 
ignore it and perform a real eigenvalue search. As soon as the field 
of the mode is known, one can also compute the radiated power 
and the total power transmitted along the channel. From these data, 
one can easily approximate the attenuation constant of the mode. 
In order to illustrate the procedure, we consider a defect waveguide 
with only one row of rods on each side of the channel as shown in 
Figure 31. Obviously such a waveguide must exhibit the strongest 
possible radiation. Therefore, we perform a complex eigenvalue 
search. In order to get an overview over the eigenvalue search 
function in the complex plane (see Figure 32), we start the rough 
search on a rectangular grid defined on the complex plane. When 
we want to have a fine resolution, this is time-consuming. Note 
that this is not necessary in general because there are not many 
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different eigenvalues of interest, i.e., eigenvalues with a reasonably 
small propagation constant. Therefore, we could also start with a 
rough search along the real axis and perform the fine search from 
the resulting start points into the complex plane, which would be 
numerically much more efficient. 
 

     
 
Fig. 31: MMP model of a defect waveguide with only one row of rods on each side of 
the channel. Right hand side: Time average of the Poynting vector field of the 
fundamental mode. Note that a logarithmic scale is used here, because the field is much 
weaker outside the waveguide. With linear scaling the area outside would be almost 
black.  

 
 
Fig. 32: Left: MMP eigenvalue search function in the complex plane. The minimum 
that characterizes the mode is near the lower right corner. The green line is the trace of 
the eigenvalue for varying frequency. The black + marker shows the lower end of the 
band gap. The upper end of the band gap is out side the clip area. Right: Complex 
eigenvalue trace for waveguides with 1, 2, 3 layers of rods on each side of the channel.  
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As soon as we have found the desired eigenvalue that characterizes 
the fundamental (radiating) mode, we may compute and plot its 
field (see Figure 31) and we may track its frequency dependency in 
the complex plane using the PET (see Figure 32).  As one can see, 
the attenuation constant (vertical direction in Figure 32) drastically 
grows when the frequency is reduced and it is quite big when the 
lower end of the band gap is reached. Furthermore, we can trace 
the mode also outside the band gap although this makes not much 
sense for practical applications. However, we observe that the 
behavior of these photonic crystal waveguide modes is similar to 
the behavior of lossy fiber modes [17] although the former exhibit 
radiation loss whereas the latter exhibit Ohmic loss in the coating. 
From the practical point of view, it is important to know that one 
should not operate near the lower limit of the frequency band in 
order to avoid strong attenuation due to strong radiation loss. Of 
course, we may drastically reduce the radiation loss by adding one 
or several rows of photonic crystal cells on both sides of the 
channel (see Figure 32). 
When the radiation loss is not very high, the complex eigenvalue 
search can be avoided. When we first assume that the attenuation 
constant is zero, we can perform a real eigenvalue search (along 
the real axis of the complex plane) and obtain a real valued 
approximation of the complex propagation constant, i.e., an 
approximation of the phase constant. As one can see from Figure 
33, a good approximation is obtained even in the worst case with a 
single layer of rods on both sides of the channel. As soon as the 
phase constant is known, one can also compute the electromagnetic 
field and from this, one can estimate the power loss along the 
guide due to radiation. From this, one can easily obtain an estimate 
of the attenuation constant that is also shown in Figure 33. As one 
can see, the estimation is quite good - even for the worst case - 
over the entire frequency range of the band gap. Obviously, the 
error is higher for lower frequencies. It should be mentioned that 
the defect mode considered here has a cutoff near the lower end of 
the band gap. One can see this from models with a sufficiently 
large number of layers on both sides of the channel. Note that the 
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cutoff frequency of any waveguide mode is strictly defined only in 
the loss-free case. When Ohmic losses or radiation losses are 
present, some sort of smooth transition is observed as shown in 
Figure 32. 
 

3.7. Discontinuities in photonic crystals 

Although it is important to have waveguides in photonic crystals, 
the existence of such waveguides would not make the photonic 
crystal concept sufficiently attractive for fabrication although such 
waveguides may be smaller than traditional waveguides used in 
integrated optics. The photonic crystal concept shows its huge 
potential when one studies discontinuities of waveguides. 
Theoretically, periodic discontinuities might be studied with the 
super cell method. As we have already seen, this method is not 
efficient at all. Therefore, we search for an alternative approach. 

     
 
Fig. 33: Frequency dependency of the real and imaginary (x markers) part of a radiating 
defect waveguide with only one layer of rods on each side of the channel. The square 
markers indicate the results obtained from a real eigenvalue search with an estimation 
of the attenuation constant obtained from the radiated power computation. 
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Although finite photonic crystal waveguide discontinuities are 
somehow different from the discontinuities of traditional 
waveguides, we may use the same concept for a study with MMP 
[25, 26]: 1) Essentially all waveguide discontinuity problems 
consist of at least one input waveguide and usually of one or 
several output waveguides. These waveguides are assumed to 
extend to infinity. The modes in these waveguides can be analyzed 
using the MMP eigenvalue solver. 2) The waveguide sections may 
be separated with fictitious boundaries from the discontinuity 
region. The fictitious boundaries play the role of reference planes 
known from measurement. Let us call them ports. In each port one 
has a finite number of propagating modes and an infinite number 
of evanescent modes. The field in the discontinuity region can be 
modeled by a standard MMP expansions. It is linked to the 
waveguide modes by the fictitious boundaries at the ports. The 
field inside the discontinuity region is excited by the incoming 
modes and it excites the outgoing modes. In MMP, fictitious 
boundaries and connections allow one to easily link the field with 
the modes (see Figure 34). 
 

     
 
Fig. 34: Defect waveguide with two sharp 90o bends. The green lines indicate fictitious 
boundaries that describe the input (left hand side) and output ports. Multipoles are 
indicated by crosses. The black crosses indicate the multipoles used for the connections 
that describe the waveguide modes.
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Since the evanescent modes are excited in the discontinuity region 
and decay exponentially, one can omit them when the waveguide 
port is sufficiently far away from the discontinuity. Moving ports 
away from the discontinuity increases the size of the discontinuity 
region that is explicitly modeled and this considerably increases 
the computation time. Therefore, it is sometimes more reasonable 
to move the ports close to the discontinuity region, where the 
lowest evanescent modes are still strong. If this is done, the field in 
the waveguides must be approximated by a superposition of the Ng 
guided waves and of the first Ne evanescent modes. As we have 
seen, the MMP eigenvalue solver can find all guided waves of an 
infinite waveguide, even when it is lossy. Since MMP can search 
eigenvalues in the complex plane, it also can find evanescent 
modes. Once a waveguide mode is known, one can pack the 
expansions that model its field in a connection. One then can 
model the field in each port with Ng + Ne  connections. This allows 
one to match the field at the ports with a high precision in such a 
way that almost no reflections at the ports are observed. Figure 35 
illustrates that for a simple case. 
 

 

     
 
Fig. 35: Poynting vector field of a defect waveguide with two sharp 90o bends.  
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As soon as one knows how to handle waveguide discontinuities, 
one can start designing interesting structures in photonic crystals, 
for example, multiplexers [27], resonators, filters [28], etc. It is 
well known that the device synthesis is much more demanding 
than the analysis of an existing device or structure. The main 
problem in the photonic crystal design is that almost no design 
rules are currently available. For example, we know that we can 
obtain filters, but we don't have rules how to design a filter with 
specified characteristics. In order to illustrate a possible design 
procedure, we now consider a filtering T junction with one input 
port and two output ports [27]. We would like to design this 
structure in such a way that it transmits almost all energy from the 
input port to the first output port at one frequency f1 and to the 
second output port at another frequency f2. 
First, we select a perfect photonic crystal with a sufficiently wide 
bandgap that contains both frequencies f1 and f2. Since we would 
like to have waveguides in two perpendicular directions, we use a 
square lattice. Furthermore, we consider a crystal consisting of 
dielectric rods rather than of holes in a dielectric. Note that the 
latter would be better for some practical reasons, but the former is 
numerically simpler and we already used it in the examples shown 
above. 
In the second step, we design three different single mode 
waveguides that shall be used for the three ports. When the input 
waveguide propagates at all frequencies of the entire band gap, 
whereas the first output port mode only propagates within a limited 
frequency band around f1 but not at f2, we can expect that most of 
the power is transmitted to the first output port at f1. Similarly, we 
can design the second output waveguide in such a way that most of 
the power is transmitted to the second output port at f2. Figure 36 
shows results obtained with this concept. 
Although the design with three different waveguides is promising, 
we do not want to have structures with different waveguide types. 
When we want a filtering T junction with three identical 
waveguide ports, we can use the model above and connect the two 
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output waveguides with waveguides of the same geometry as the 
input waveguide after a certain length.  

 
It is obvious that this will cause some additional reflections at the 
transitions between the different waveguides and that the quality of 
the T junction will considerably depend on the lengths of the two 
output waveguides. Since the main goal of photonic crystals is 
miniaturization, we try to make the T junction as small as possible. 
Figure 36 shows such a T junction that is obtained after some 
optimization of the two output sections. The main ideas of this 

 

  
 
Fig. 36: Filtering T junction with three different waveguides. Top: Waveguide mode 1) 
red: input port (from top), 2) blue: left port, 3) green: right port. Bottom: Poynting 
vector plots for the two transmission frequencies.
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optimization are that the propagation constants of the modes of the 
input and first output section should be the same at f1. Furthermore, 
the group velocities of these modes should be similar at f1. The 
same shall hold for the second output section at f2. Finally, we 
know that the evanescent field of the undesired mode will reach far 
into the wrong output port when one operates close to the cutoff 
frequency. Therefore, the cutoff frequency of the second output 
mode should not be close to f1 and vice versa. Figure 37 shows the 
resulting structure. 

 
With this simple design, a rather good performance (approximately 
89% transmission to port 1 for f1 and 93% to port 2 for f2) is 
obtained with a simple tuning of the waveguide sections. In order 

 

  
 
Fig. 37: Filtering T junction with identical waveguide ports. Top: Waveguide mode 1) 
red: input port (from top), 2) blue: left section, 3) green: right section. Bottom: Poynting 
vector plots for the two transmission frequencies.
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to obtain even better performance, one must either increase the size 
of the T junction or one must perform more comprehensive 
optimization of the entire T junction area, which is numerically 
very time consuming.  
Obviously, the left channel that is similar to a coupled cavity 
waveguide structure is geometrically more complicated and also 
considerably longer than the right channel that simply consists of 
three thick rods. In order to obtain a more compact design, we 
replace the left waveguide section by a waveguide section similar 
to the right waveguide section as shown in Figure 38. 
 

 

 

  
 
Fig. 38: Compact filtering T junction. Top: Waveguide mode 1) red: input port (from 
top), 2) blue: left section, 3) green: right section. Bottom: Poynting vector plots for the 
two transmission frequencies. 
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The new structure is considerably more compact, but its 
performance is considerably worse. We now try to improve it with 
a simple optimization of the transition region. In fact, there would 
be many model parameters (size and positions of all rods in the 
transition area) that might be optimized, but such an optimization 
in a high-dimensional parameter space would be too time-
consuming for our personal computers. Therefore, we select only 
two important parameters and optimize them. These parameters are 
the distances of the rods in the two output sections. Since the 
minimum reflection coefficients and the maximum transmission 
coefficients for the two output ports at f1 and f2 are obtained for 
different values of the two distances, we must find some 
compromise. The resulting design is shown in Figure 39. This 
optimization allows us to increase the transmission from 63% (Fig. 
38) up to 88% (Fig. 39) for both channels, i.e., the new T junction 
is almost as good as the one shown in Figure 37, but it is much 
more compact and easier to fabricate. 

 
When we optimize a photonic crystal structure, we see that some 
of the model parameters may be rather critical. In our filtering T 
junction, the size and locations of the rods in the transition area are 
quite critical. This means that a precise fabrication is required. 
Otherwise the performance of the junction might be considerably 
worse. Although this may cause problems for the fabrication, it is 
also interesting for tuning. It is well known, that photonic crystals 
may be tuned [29, 30], for example, with an external electrical 
field, when appropriate materials are introduced. When the 

   
 
Fig. 39: Compact filtering T junction optimized. Poynting vector plots for the two 
transmission frequencies.  
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material properties in the transition area are modified or when the 
sizes of the rods in this area are modified, essentially the same 
effects are obtained. Therefore, it should be possible to tune the 
properties of the filtering T junction with external electrical field, 
i.e., we may obtain also optical switches [31] with a similar, 
compact T-junction design. 

Conclusions 

We have presented a powerful method for the accurate and 
efficient full-wave analysis of electromagnetic waves that is very 
useful for the analysis and design of novel structures for ultra 
dense integrated optics, namely for photonic crystal structures. 
Furthermore, we have presented several technique for speeding up 
the analysis of sequences of similar models and for obtaining 
efficient and precise eigenvalue solvers. Due to its high reliability 
and accuracy, our code is very well suited for future optimizations 
of novel photonic crystal structures. 
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