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KALMANNET = KALMAN FILTER + DEEP LEARNING

0

1

2

3

4

5
6

7

8

x10-2 x10-4

9

10

0

5

10

15

20

25 Velocity norm
 (a.u.)

Ka
lm

an
 g

ai
n 

no
rm

 (a
.u

.)

Kalman gain vs. �nger velocity - Online

0 1 2 3
Time (s)

Velocity norm
 (a.u.)

Ka
lm

an
 g

ai
n 

no
rm

 (a
.u

.)

Kalman gain vs. �ngers velocity - O�ine

0

2

4

6

8

10

12

14

0

1

2

3

4

5

6
x10-2 x10-3

1s

1s

ρ=0.87

ρ=0.61

0

0

1s

1s

1s

1s

Kalman �lter KalmanNet

tcFNNLSTM

We tested all algorithms o�ine and used them to predict 2D �nger po-
sition and velocity. The Kalman �lter performed poorly in low and 
high velocity regimes, while KalmanNet, LSTM, and tcFNN matched 
pre-recorded kinematics better.

Across 9 days of o�ine testing, KalmanNet was comparable to the 
LSTM in predicting position and velocity. The order of performance 
between algorithms was the same when looking at correlation or MSE.

We tested the algorithms online on 4 di�erent days in an ABA manner: 
150 trials of algorithm A, 150 of algorithm B, and then 150 of algorithm A.

Throughput measures how fast a trial was completed, while taking into 
account its di�culty. Orbiting time corresponds to the time spent orbit-
ing the target.

Snippet of online 
trials of the Kalman 
�lter and Kalman-
Net. The Kalman 
�lter is worse at 
stopping at the tar-
gets, which gets 
translated into 
larger orbiting 
times around the 
target.

Tablet Here

KalmanNet’s perfor-
mance boost can be 
replicated in a KF by 
“cheating” and 
making the noise 
model covary with 
the velocity.
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Brain-machine interfaces (BMIs) allow patients with spinal 
cord injury to recover some independence by controlling ex-
ternal devices using the signals from their brains.

Decoding models, which take the brain signals and output 
a control signal, have �ourished in the past decades, with 
deep learning models showing good performance. Howev-
er, with physical systems (e.g., robotic arm), when the pa-
tients’ safety is critical, linear models are still the standard.

The Kalman �lter is an attractive linear model, as it can use 
knowledge about physics of the movement to improve de-
coding and still maintain an explainable structure. Howev-
er, as a linear model, it cannot accurately model the com-
plexity of the brain signals.

Here, we tested KalmanNet [1], an algorithm that combines 
the Kalman �lter with deep learning, to improve perfor-
mance with model mismatch while keeping an explain-
able structure. 

We implanted one monkey with a microelectrode array 
(96 channels) in the hand area of the motor cortex and 
trained him to do a two �nger movement task [2].

We tested algorithms o�ine (pre-recorded data) and 
online (real-time brain control) across multiple days.

KalmanNet di�ers from the Kalman �lter in 
that it uses a neural network to compute 
the Kalman gain, which guides how to 
merge the observations and the physics 
predictions.

It uses linear observation and trajectory 
models, learned through a calibration run 
using least squares.

The network is composed of a series of recur-
rent and feed-forward layers and is trained 
indirectly with the state prediction error.

In KalmanNet, the 
Kalman gain norm co-
varied with the �nger 
velocity, indicating 
that the model 
learned to trust the 
brain activity to 
generate high 
velocities.

During online trials, 
this phenomenon 
was also present: the 
Kalman gain covar-
ied with the output 
velocity.
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We demonstrated here that Kalman-
Net, an algorithm that combines the 
Kalman �lter and deep learning, can 
accurately predict movement from 
brain activity, and that it per-
formed better than the Kalman 
�lter and was comparable to other 
state-of-the-art decoders, in o�ine 
and online settings.

KalmanNet worked by modulat-
ing the trust of the system, in-
creasing trust in the brain mea-
surements for high velocities, and 
trusting the physics model for low 
velocities.

Next steps include implementing 
optimizations to improve per-
formance, and testing in di�erent 
tasks, such as with EMG decoding. 

COMPARISON TO OTHER 
DECODERS

We compared the performance of four dif-
ferent decoding algorithms: Kalman �lter, 
KalmanNet, tcFNN [3], and LSTM [4].

The tcFNN model uses time convolution 
and feed-forward layers to predict veloc-
ity, while the LSTM predicts position and 
velocity by maintaining a hidden state.
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