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4 Optical Signal Processing and Mode-coupling 
 
 
Goals of the chapter:     
 

• Theory of waveguide devices for signal processing (passive manipulation) of optical waves 
- filtering, wave splitting, mode-conversion, beam deflection and coupling, mirrors, etc. …  

• Processing requires conversion or coupling of optical modes by controlled passive or active 
dielectric functional “disturbances” of the WG  
(Modes without perturbation are orthogonal and can not interact) 

• Mode processing requires the solution of Maxwell’s-equations in complex coupled dielectric structures 
beyond simple, homogeneous waveguides 

• Development of a perturbation or coupled mode formalism to describe the interactions between 
different optical modes and functional dielectric disturbances 

 
 

Methods for the Solution: 
 

• Rigorous Solution of Maxwell’s equation for coupled dielectric longitudinal, transverse inhomo-
geneous WGs is difficult   approximate problem as scattering problem in the unperturbed system 

• Restriction to weak dielectric or geometrical “disturbances “ (Δn/n<<1, Δx/λ<<1), allows the use of the 
solutions of the unperturbed system as an approximation of the solution of the perturbed system 

• Mode Coupling Theory (MCT) describes energy exchange between modes in periodically perturbed 
structures 

• Demonstrate important applications of coupled wave devices:  WG-couplers and Bragg-Filters 
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4.  The concept of mode coupling for optical processing of waves 
 
Unperturbed lossless waveguides propagate modes without changing the number, the character and energy of 
propagating modes because modes are orthogonal  ( ) ( )*

i T j T T ijE r E r df = Δ∫ i  and do not interact (exchange energy). 
 
Functional transverse or longitudinal dielectric disturbances excite new modes in a controlled way by 
scattering and modify the exciting mode (by reflection, transmission, change of propagation direction, etc. ) by a: 

 

• change of dielectric properties  Δε, Δn 
• change of geometrical / spatial properties Δd, Δw 
 

 eg. spatial mode conversion 
    (eg. in Y-power splitters) 
 

 eg. frequency selective mode conversion 
     (eg. resonances for filters, resonators, etc.) 
 
 

Concept of controlled coupling: 
 

External RF EM-fields control  perturbations Δε, Δα 
by different physical effects leading to modulation 
of the propagating wave  (eg. optical modulator, chap.8): 
 

- electrical field E        Electro-Optic effect    Δn(E) 
- electrical field H        Magneto-Optic effect Δn(H) 
- acoustic stress field  Acoustic-Optic effect       

                                                                                            

- thermal field              Thermo-Optic effect  Δn(T)        Scattering of an incoming wave by a perturbation of the WG 
- current injection         Plasma effect           Δn(ncarrier) 

ng = 2.35 

ns = 1.57

na = 1.33 

Forward 
scattering 

Backward 
scattering 

Radiation 

Perturb-
bation 

WG 
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Multilayer grating: example for a fixed scattering / mode coupling process: 
 

• longitudinal perturbation (coupling), no transverse perturbation 
• dielectric interfaces nH-nL act as disturbance  
    (scattering:  reflection and transmission) 

• forward- and backward scattered partial waves  
are phase-coherent and modify the exciting wave 
by interference    coupling to the forward or backward 
propagating wave 

• applications:  antireflection coatings of surfaces 
                           filters coatings waveguide filters 
                           coupling free-space-to-waveguide …. 

 
Passive planar waveguides with local and distributed „perturbations“: 
 

• tranversal (and longitudinal) perturbation (coupling) 
 

 

(a) straight waveguide,  
(b) waveguide S-bend,  
(c) Y-branch, power splitter 
(d) Mach-Zehnder-Interferometer 
(e) directional coupler 
(f)  waveguide crossing 

ε ε+ Δ  
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Active Electro-Optic Mach-Zehnder Interferometer (MZI)waveguide Modulator: 
 
The coupling is modulated by an applied external electrical field VC  (see chap.8) 
 
Device structure:                                               Voltage Controlled Transmission Characteristic: 

1 2
L

constant
light input

control
voltage Vc

optical
data pulses

ΔΦ=π 
phase shift

electro-optic
waveguide 

transmission

extinction

VC

Δn(VC) --> ΔΦ=2πΔnL/λ

                 
 
 
Operation Principle: T(VC) 
- the RF Voltage VC at the electrodes changes the refractive index of the right interferometer branch Δn(EC) 
- Δn introduces a controlled phase difference ΔΦ between the 2 optical waves in the MZI arms 
- the combined waves at the output might change from constructive interference (transmission) to destructive 
interference (no transmission) 

VC 

T=Iout/Iin 
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Concept of Mode Coupling and Perturbation Calculation: 
 
 
 

• Disturbance couples exciting wave to the scattered waves 
 
 

• Scattered waves of the perturbed structure are expanded mathematically by sums of orthogonal wave  
solutions of the unperturbed structure  (approximation valid only for weak perturbations) 

 

 The solution of the perturbed problem can be expanded by the modes of the unperturbed problem, because 
these modes form a complete set of basis functions and are orthogonal. 
 

Functions form a complete set if any other function can be expanded by a sum of the functions of the 
complete set. 

 
 

• To solve the problem we have to determine the complex amplitudes of the modes of the complete set.  
 

 Coupled differential equations for these mode amplitudes can be obtained by the repeated applications of the 
orthonormality on the MX-equations. 

 
 

• For mathematical simplicity we consider the field as a scalar, neglecting the vector field continuity requirements at 
the disturbances 

 
 
 
Alternatives: Transmission Matrix-Formalism 
 

Longitudinal perturbations (eg. Bragg-Gratings) can also be described by transmission matrices A of each elementary 
perturbation and the total transmission- or reflection-function is obtained by the matrix-product of all elementary 
matrices. 
 

The method is flexible and applicable for relative strong perturbations, but leads less directly to analytic expressions, 
potential for numerical methods  (see eg. Lit. L. Coldren). 
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4.1  Theory of Perturbation and Mode-coupling (MC): 
 

1) Assuming a weak (Δε<<ε) disturbance, we represent the dielectric or geometrical disturbance by the addition 
of a „disturbance-polarization“ Ps excited by the unperturbed mode Ei:    Ps(Ei, Δε)  

 

2) The excited polarization of the disturbance Ps creates a complex scattered field mE∑  which superposes 

with the exciting field iE  to the total field i m
m

E E E= + ∑ . The perturbation Δε couples the modes. 
 

3) The possible modes Em are the unperturbed mode of the problem, forming a complete, orthonormal set  

i ijj
f f δ= , used to express the total field of the perturbed structure as i m

m
E E E= + ∑   ( mE  base- or 

expansion functions) 
 

4) The total field E fulfills Maxwell’s eq.  approximately - the perturbation polarization Ps(Ei) acts as  a source 
 

 
 
 
 
 
 
 
 

              exciting wave             disturbance                  scattered waves 
 
 

Limitations of the approximation:  Weak Perturbation 
 

The rigorous alternative is solving Maxwell’s-equation exactly for the perturbed problem ( 0εΔ ≠ ) – this exact 
solution might not be well expandable by base-functions of the unperturbed problem ( 0εΔ = ) precisely – therefore 
we require only weak perturbations ( ε εΔ << ) 

Ps(Ei)
Ei

Em

ε ε+ Δ

ε  

ε
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Mathematical formulation MC for a transversal 1D-perturbation (scalar field only): 
 

As generic perturbation situation we consider the weak transversal perturbation of a 3-layer WG(na, ng, ns, d) by an 
additional 4th layer (n2, (d2-d)<<d  “weak”) forming a 4-layer WG.   
 

Solution Idea: the 4th layer WG is a perturbation of a 3-layer WG ! 
 

 the field in the weakly “perturbed” 4-layer WG can be approximated by unperturbed modes of the 3-layer WG. 
 
Simplification:   1) modes are propagating and scattering only in the z-direction of a planar 3 layer waveguide. 
                             Off-axis scattering (transverse directions x, y) is neglected. 

2) only time harmonic fields with ( ) j tf t e ω=  
 
 
 
                                                        
 
 
 
 
     4-layer WG  (vertical disturbed 3-layer WG)                       3-layer WG (unperturbed)         perturbation (3 layer WG) 
 
 
Expansion of the total field E (perturbed): 
 
 

( ) ( )
( ) ( ) ( )

all possible
modes of 
the problem

, , ,

, m

j t

i z
m m

m

E x z t E x z e

E x z E z f x e

ω

− ⋅β ⋅

=

=

= ⋅ ⋅∑       

  Unperturbed mode m  Em: 
 

fm(x) = transverse mode profile (of eg. the EZ(rT)-component) 
 

Em(z) = slowly varying z-dependent field amplitude (envelope) 
of mode m 

 

βm(ω)= propagation constant of unperturbed mode m 

x

n 

ns 

na 

ng 

n2 

x

nu 

ns 

na 

ng 

x

δn

n2-na 

disturbance 

d2         d                                                    d                                                      d + 

Weak perturbation: 
 

n2-na <<n 
 
d2-d <<d2 

( ),E x z

( ) ( ) m
m

i z
mE z ef x − ⋅β ⋅⋅ ⋅  

X

( ) ( )mmE z f x⋅
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Concept of analysis procedure: what do we want to achieve ? 
 

The 4th layer is the perturbation (addition of the layer d2-d, n2-na) to the 3-layer structure, which we assume 
to be known at a frequency ω by it’s mode set (fm(x), βm). 
The modes (fm(x), bm) fulfill Maxwell’s -, resp. Helmholz equation. 
 

The 4th layer adds of course dielectric constant, resp. additional polarization PS~( n2-na) driven by the field E. 
 

1) We assume that the unknown field solution E(x,z) of the 4-layer structure is expandable by the complete 
set of 3-layer modes Em(x,z)=Em(z)fm(x)e-jβmz. Em(z) takes into account that the amplitude (envelope) of 
the modes might depend on the the propagation direction z: 

 

    ( ) ( ) ( ), mi z
m m

m
E x z E z f x e− ⋅β ⋅⋅ ⋅∑  

 

2) we use Maxwell’s equation in the polarization form, - the perturbing polarization difference (n2-na) of the 
4th layer is kept on the right side of the Maxwell’s eq. but not the unperturbed 3-layer dielectric structure 
itself (is lkept on the left side) !!! 

 

( ) ( ) ( ) ( )

2
2 a,

2 2
2 2

0 0 0 0
2

2 2

, ,

2

4th layer ,  n -n

pert
3

urbation term,

, ,

i

u u

g

s

i a su n
unperturb

a r
ed

l ye

nE k E z x k E z xP
t

E
t

n

= → δ− ε

⎛ ⎞∂ ∂
Δ − μ ⋅ = μ ⋅ → Δ + = − ⋅⎜ ⎟∂

δ
⎝

ε
∂⎠  

 

3) we insert E(x,z) on both sides of Maxwell’s eq. and obtain by using the orthonormality of 3-layer modes 
and the fact that all 3-layer modes fulfill their Maxwell’s eq.  the coupled mode differential equation for the 
field amplitudes of all modes Em(z): 

 

  
mi z

m m
m

E i E i E e
z

− ⋅δ ⋅

≠

∂
+ κ ⋅ = − ⋅ ⋅κ ⋅

∂ ∑        
( )
( )

2
20

2m m

k
f n f

ω
κ = ⋅ δ

β ω
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 We assume that dispersion βm(ω) and mode profile fm(x) for all possible modes m for the unperturbed 3-layer WG is known. 
  Convention: m>0 are right-propagating βm>0  ,  m<0 are assumed to be left-propagating β -m<0! 

 

     modes 1, 2                 unperturbed          perturbation 
 
 
 
Orthonormal base of unperturbed 3-layer modes:  (without proof) 
 

 ( ) ( )m n m n nm nm nmf x f x dx f f with for n m and for n m* 1 0
+∞

−∞

= = δ δ = = δ = ≠∫   

                                                                                            Base m:  only guided, normalized  modes   (must be proven!) 
 

Separation of dielectric disturbance:  n=√εr 
( ) ( ) ( )
( ) ( ) ( ) ( ) ( )2 2

refractive index:

dielectric constant:
u

u u

n x n x n x

x x x n x n x

= + δ

ε = ε + δε = + δ
        unperturbed nu(x) and perturbation δ n(x) 

 
Observe: 2 2 un n nδε δ δ= =  ! 

Mode coupling f2  f1 by a perturbed (n2-na)-layer 
planar film WG: 

(a) unperturbed film (thickness d) and core index ng.  
     Two unperturbed mode profiles f1(x) and f2(x) are 

considered as an example. 
 

     The perturbation is an additional film of thickness 
     d2 and index n2-na. 

(b) unperturbed index profile nu(x).  

(c) perturbation δn(x)=n2-na. 
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Key step: represent the perturbation by its polarization 
Diel. perturbation  nδ 2     creates driven by the exciting field E  an additional “perturbation polarization” sP  
 

              

( ) ( )

( )

u s

u
unperturbed perturbation
n n n d

E E P E definition

P P P
0

2
2 2,δ ≡

ε = ε +

= + (decomposition) 

 

Express disturbance by perturbation  2nδ   Disturbance Polarization Ps: 
 

               

( ) ( )
( )
( )

u s

s

u

u u

P

D E E P E E P P n

P n E unperturbe

n E perturbation

E

d

n
2

0

2

2

0

0

0

2
0

1→ =

= ε = ε + = ε + +

ε

→ =ε δ

−

=ε +δ

 

 

Inserting the assumed total polarization u sP P P= +  into Maxwell’s equations we get the for the total field E: 
 

Inhomogenous Helmholtz equation 

( )
2 2

0 02 2

(pertrurbation term)
excitation term,

u s

unperturbed

E P E
t t

⎛ ⎞∂ ∂
Δ − μ ε ⋅ = μ ⋅⎜ ⎟∂ ∂⎝ ⎠

 

For harmonic fields:  sj and with the linear perturbation polarization P n E
t

2
0

∂
= ω − = ε δ

∂
  (separation of space z and time t) 

( ) ( ) ( ) ( ) ( )2 2 2 2
0 0 0, , ,u u sE z x k n E z x P z xΔ + ω μ ε = Δ + = − ω μ ⋅         (2D:  x,z) 
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Using  ( ) ( )2 2 2 2 2
0 0 0 un k n for x dependent n x and n xω μ ε δ π= −    

( ) ( )2 2 2 2
0 0

) ) )

, ,u
a b c

k n E z x k n E z x
⎛ ⎞
⎜ ⎟Δ + = − δ ⋅
⎜ ⎟
⎝ ⎠

      inhomogenous Helmholtz equation  (with disturbance δn2) 

 
 

Assuming that the disturbance (c) is small and that we have analyzed the unperturbed (without corrugation  δn2=0) 
system for all fm(x,ω) and βm(ω), we express the perturbed field by a sum of unperturbed mode fields 
 
 
Insertion of the „Ansatz“ of the total “right propagating m>0” perturbed field  (x-z-separation) 
 

( ) ( ) ( ), mi z
m m

m
E x z E z f x e− ⋅β ⋅= ⋅ ⋅∑   (expansion by orthonormal unperturbed modes, Em(z) is the field amplitude at z of mode m) 

 

1) Determination of the 2D-Laplace-operator ΔE(x, z) ;   
2 2

2 2x z
⎛ ⎞∂ ∂

Δ = +⎜ ⎟∂ ∂⎝ ⎠
 

( ) ( ) ( ) ( ){ }
2 2

2
2 2 2

m m

m

i z i z
m m m m

m m

i z
m m m m m m m

m

E E z f x e E z f x e

E f f E i E e
x z z

− ⋅β ⋅ − ⋅β ⋅

− ⋅β ⋅

⎧ ⎫
Δ = Δ ⋅ ⋅ = Δ ⋅ ⋅ =⎨ ⎬

⎩ ⎭
⎧ ⎫⎡ ⎤⎛ ⎞∂ ∂ ∂⎪ ⎪= + ⋅ − β − β ⋅⎨ ⎬⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

∑ ∑

∑
      the 1.order differential term 

z
∂

∂
 remains ! 

 
 

    with the weak disturbance assumption: δ n2 << nu
2   the amplitude E(z) varies very slowly  ∂2/ ∂z2 << Iβm

2I  → 0 : 
2

2
2 2 − ⋅β ⋅⎧ ⎫∂ ∂⎡ ⎤Δ + ⋅ −β − β ⋅⎨ ⎬⎢ ⎥∂ ∂⎣ ⎦⎩ ⎭

∑ mi z
m m m m m m m

m
E E f f E i E e

x z
 (4.10). 

a) by insertion of E(x,z) 
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2 2 2 2
0 0

2 2 2 2
0 0

m

m

i z
u u m m

m

i z
m m

m

k n E k n E f e

k n E k n E f e

− ⋅β ⋅

− ⋅β ⋅

⋅ = ⋅ ⋅ ⋅

− δ ⋅ = − δ ⋅ ⋅ ⋅

∑

∑       and 

 

by using the homogeneous Helmholtz-equation for the unperturbed (δn2=0) mode m:   
 
 

 ( ) ( ) ( ) ( ) ( )
2

2 2 2
02

2 2

0 02 2

0

, , for all unperturbed mod 0es m :mz j t
u um u m m m mE x z t E z k nf x e e

t t
f x

x
−β − ω

=

⎡ ⎤ ⎡ ⎤∂ ∂
Δ − μ ε = Δ − μ ε⎢ ⎥ ⎢ ⎥∂ ∂

⎡ ⎤∂

⎣ ⎦ ⎣ ⎦
+ − β =⎢ ⎥∂⎣ ⎦

  

 

 we eliminate several terms from the inhomogeneous Helmholtz-eq. and get: 

 ( ) ( )2 2 2 2
0 0

2
2 2 2
02 2 m mi z i z

u m m m m m m
m

m m
m

u

perturbation

k n E E i E f e k n E f ek f
z

n
x

− ⋅β ⋅ − ⋅β ⋅⎧ ⎫∂
Δ + = ⋅ − β ⋅ ⋅ = − δ

⎡ ⎤∂
+ − β⎢ ⎥∂⎣ ⎦

⋅ ⋅ ⋅⎨ ⎬∂⎩ ⎭
∑ ∑       

( ) ( ) ( ) ( ) ( )2 2
02 m mi z i z

m m m m m
m m

i E z f x e k n x E z f x e
z

− ⋅β ⋅ − ⋅β ⋅∂⎧ ⎫⋅ β ⋅ ⋅ ⋅ = δ ⋅ ⋅ ⋅⎨ ⎬∂⎩ ⎭
∑ ∑       this equation depends on x by fm(x) 

2) remove the x-dependence and isolate a lE / z∂ ∂ -term by making use of the orthonormality of the modes by: 
    a) right-multiplying the equation by  fℓ(x)* and  
    b) subsequent integration in the transverse x-direction dx∫  using the  
    ortho-normality of the solution-base ( ) ( )m l mlf x f x δ= .  
 

( )n x2δ  may be a function of x (transverse coupling) and/or z (longitudinal coupling): 

   ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2

* 2 * 20 0

2 2
m

ll lm

i z
m m

mS S

self coupling l l mutual coupling l m

k kE E f x n x f x dx E f x n x f x dx e
z i i

− ⋅ β −β ⋅

≠

κ → κ →

∂
= ⋅ ⋅ δ + ⋅ ⋅ δ ⋅

∂ β β∑∫ ∫   

b) 
 
c) 
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with:   ( ) ( ) ( )
2 2

* 2 20 0

2 2m m m
S

k kf x n x f x dx f n fκ = ⋅ ⋅δ ⋅ = ⋅ δ
β β∫    as weighted transverse overlap integral 

 
 

  
mi z

m m
m

E i E i E e
z

− ⋅δ ⋅

≠

∂
+ κ ⋅ = − ⋅ ⋅κ ⋅

∂ ∑         Mode coupling equation for E(z)    (system of linear coupled diff.eq.) 

 

with the mutual coupling constant l m:   ( ) ( ) ( )
2 2

* 2 20 0

2 2 from
m m m m

S to

k kf x n x f x dx f n fκ = ⋅ ⋅δ ⋅ = ⋅ δ = κ
β β∫     and   

 

with the detuning:   m mδ = β − β =     (difference of propagations constants) 
 
 
 

Interpretation: 
 

The coupling constants κlm describes the z-dependent variation of mode l caused by mode m (energy transfer l → m) 
 

The coupling constants κlm is the overlap-integral of mode l and m weighted by the x-dependent perturbation δn2(x) 
 

( ) ( ) ( ) ( )
2 2

* 2 20 0

2 2m m mm
S

k kf x n x f x dx f n fκ = ⋅ ⋅δ ⋅ = ⋅ δ
β β∫  no function of z  (only transverse coupling) 

 

κlm measures the excitation of mode l by the evanescent field of mode m  (=overlap integral weighted by disturbance) 
 

κll  self-coupling measures the influence of the disturbance on the exciting mode l (slight modulation of El(z) ) 
 
 

The phase-function mi ze− ⋅δ ⋅
 in the mode coupling eq. describes the z-dependent spatial phase difference 

between the modes, resp. difference of the propagation constants of mode l and m. (eg.   inphase – anti-phase coupling) 

( ) ( ) ( )m mδ ω = β ω − β ω     phase-difference   (of the unperturbed modes) 

l= 1, 2, 3  ….. 
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Interpretation:   
 

δlm measures the difference of the phase-velocities (phase changes) of the interacting modes l and m.  
 

The mode coupling equations describes the change per unit length of the z-dependent field E(z) of mode l due to the 
interaction (scattering) to/from all modes. E(z) has the character of an amplitude-modulated envelop. 
 
Mode l and m couple only efficiently if the phase function  does not oscillate fast over the interaction length – otherwise 
the distributed coupling contribution cancel each other and are integrated out. For strong coupling  δlm →0. 
 
 

The role of Self-Coupling: κll 
 

κll describes the “self”-modification of the exciting mode l due to the dielectric perturbation.  
 

So it is useful to consider self-coupling and its solution alone to simplify the mode-coupling equation afterwards. 
 

For analysis purpose consider the hypothetical situation κlm=0 for l ≠ m (only self-coupling κll≠0): 

0E i E
z

∂
+ κ ⋅ =

∂
           (eq. contains no phase factor) 

 

This homogeneous MC-equation has a simple exponential solution for the E(z)-envelope by an exponential:  
 

 ( ) i zE z A e− ⋅κ ⋅= ⋅ ,    (Ai=const. )               resp. for the total propagating field 
j ze β−

: 
 

 ( ) ( ) ( ), i zE x z A f x e− ⋅ β + κ ⋅= ⋅ ⋅          Al= Amplitude value of mode l 
 
 

  Modification of mode propagation constant by self-perturbation of mode l:   
 

  'β β κ= +  (perturbed propagation constant) 
 

   The dielectric disturbance modifies the effective propagation constant of the original mode l  'β β→  
but leaves the mode energy constant. 
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Generalization for a generic solution: 
 
 

For the general case with mutual- and self-mode coupling we may assume a solution of the previous form for all the 
self-coupled coupled modes: 
 
 

Definition of Al(z) 
 

( ) ( ) − ⋅κ ⋅= ⋅ i zE z A z e       resp.     ( ) ( ) ( ) ( ){ }, , i z t
lE x z t A z f x e− ⋅ β + κ ⋅ −ω= ⋅ ⋅        (with a slowly varying amplitude  Al(z)) 

 
 
Inserting the assumed solution into the general MC-coupling equation we obtain for the spatial field amplitude Al(z) 
the simplified MC-differential equation: 
 

(system of coupled linear diff.eq. for field amplitudes) 
 
 

  
mi z

m m
m

A i A e
z

′− ⋅δ ⋅

≠

∂
= − ⋅ ⋅κ ⋅

∂ ∑     modified mode coupling equation for Al(t)     

 
                    coupling      detuning  at position z 
 
and for the modified phase difference δ 'ℓm we have    (all modes are characterized by their perturbed propagation constant 'β ) 
 

( ) ( )m m m mm m mm′ ′ ′δ = β − β = β + κ − β + κ = δ + κ − κ    modified phase deviation 

 
 

 
 
 

l= 1, 2, 3  ….. 



                                                                                                                                                                                                                                 K 4 
 

______________________________________________________________________________________________________________________________ 
 

Electronics Laboratory:   Optoelectronics and Optical Communications                                                                          19.02.2010 

4-17

Summarizing the formal procedure for the solution of mode coupling: 
 
 

• Unperturbed structure:  determine the Eigenfunctions  fm(x) and the Eigenvalues βm, characterized by the 
unperturbed profile of the refractive index nu(x). 

• Considering now the perturbation δn2(x):  Calculation of the coupling constants κℓ m, the self-coupling constant 
κ ℓ ℓ  (4.16), the modified propagation constant β’ℓ  , the phase deviations δ ℓ m  (4.17) resp. the modified phase deviation 
δ'ℓ m (4.23).  

• Solve the system of differential equations of the coupled modes using the direct or the modified mode coupling 
equations with the corresponding boundary and/or initial conditions. 

 
 
 

Concept of analysis procedure: what do we want to achieve ? 
 

For the following directional coupler we consider the coupling between to adjacent WG where the modes 
overlap and therefore couple. 
 
The system contains only 2 identical fundamental modes by design.  
 
In the coupling integral the adjacent waveguide acts as the perturbation and the modes are spatially 
separated in the 2 WGs. 
 
The MC-equation becomes a simple system of two coupled differential equations, which can be solved 
analytically. 
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4.2 Codirectional mode coupling  ––  the directional coupler 
 

Codirectional couplers consist of two closely spaced, homogenous in z-direction, single mode waveguides, which 
are so close that the transverse evanescent mode fields couple (overlap).  
WG width and separation distance are d, resp. w.  Both WGs are assumed identical β1=β2 und fundamental mode. 
 

  WG2 (1) is a perturbation to WG1 (2) and vice versa. 
 

 

                                        input:         uncoupled      z=0     coupling section    z=L         uncoupled    output: 
 
 
 
 
 
 
 

Considering WG2 as the disturbance for WG1 and vice versa WG1 is the disturbance of WG2: 
 

 

ng= “core” index 
 
ns= “cladding” index 
 

 
 
Coupling 1  2 
 
 
 
 
 
 
 
Coupling 2  1 
 
 

Excitation port 1   

x

z 

           unperturbed                          perturbation 

      WG1                WG2 

WG2                                                                              WG1

f1 

f2 

δn2(x) 

δn2(x) 

The system contains only 
2 identical right 
propagating modes 1, 2.  
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a) Analysis of the symmetric (β1=β2, κ12= κ21*   → δ '12 = 0 no detuning) directional coupler (DC) 
We assume that in the directional coupler only two codirectionally propagating modes exist (single mode waveguide)   
(WG1 and WG2 are assumed to be identical for simplicity). 

1
12 2

2
21 1

A i A
z
A i A
z

∂
= − κ ⋅

∂
∂

= − κ ⋅
∂

       modified coupled mode (MCM) equation for only 2 modes amplitudes A1(z) and A2(z) 

From the symmetry (f1(x)=f2(x)) of the 2 waveguides follows     real*
12 21κ = κ = κ =  

 
Differentiating one of the above equation and inserting into the other one leads to: 

2
2

2 0 ; 1, 2
⎛ ⎞∂

+ κ = =⎜ ⎟∂⎝ ⎠
lA l

z
          with  ( ) ( ) ( ) ( )

2 2
* 2 20 0

1 2 1 22
*

12 212 2S

k kf x n x f x dx f n f= ⋅ ⋅δ ⋅ = ⋅ δ =
β β

κ κ∫  

 

With the condition that the total power must be preserved in both WGs:       
 

( )
2 2 2 2 2

2 2* * * * *

1 1 1 1
constant 0m m m

m
A A A A A A A A i A A

z z z= = = = ≠

∂ ∂ ∂
= = → = + = − ⋅ κ − κ ⋅ =

∂ ∂ ∂∑ ∑ ∑ ∑ ∑  

 

We obtain as solution of the MCM-eq. for A1(z) and A2(z) harmonic functions (sin, cos(κz)):   
 

   
( ) ( ) ( )
( ) ( ) ( )

1

2

A z a sin z b cos z

A z c sin z d cos z

= ⋅ κ⋅ + ⋅ κ⋅

= ⋅ κ⋅ + ⋅ κ⋅
 

 

The boundary conditions (eg. input 1 with intensity I1, input 2 I2=0) of the DC define the unknown constants a, b, c, d:  
 

( )
( )

1 1

2

0 input

0 0 unidirectionality

A I b

A d

= =

= =
        d=0    
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and  from the mode-coupling eq.  ( ) ( )2 1
1 2

1 10 ; 0 0A c A aA b A
i z i i z i

∂ ∂
= − ⋅ = − = = − ⋅ = − =

κ ∂ κ ∂
   follows 

 

Solution of the mode coupling equation: 
 

c = – i·b and a = 0  leads to   
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1 2 1 1

2 1 2 1

0 0

0 0

A z i A sin z A cos z I cos z

A z i A sin z A cos z i I sin z

= − ⋅ κ⋅ + ⋅ κ⋅ = ⋅ κ⋅

= − ⋅ κ⋅ + ⋅ κ⋅ = − ⋅ κ⋅
 

 

In A-matrix-form for the general situation I1, I2 ≠ 0:  

( )
( )

( ) ( )
( ) ( )

( )
( )

( )
( ) ( ) ( )

( )
1 1 1 1

2 2 2 2

0 0
0 0

A z A A z Acos z i sin z
A z

A z A A z Ai sin z cos z
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ κ⋅ − ⋅ κ⋅ ⎤

= ⋅ = κ⋅ ⋅⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦− ⋅ κ⋅ κ⋅⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

The intensity distribution is calculated from  ( ) ( )i iA z I z2
∝ :  (Transfer characteristic) 

I1(z) = I1·cos2(κ·z)  and  I2(z) = I1·sin2(κ·z)                 For complete power transfer: κ·z=π/2  and  
 

 
Choosing the device-length z=L allows to functionalize the directional coupler at a particular frequency ω  ( κ=κ(ω) !). 

 

bar state L- =π/κ 

cross state  
Lx=π/(2κ) 

-3dB splitter 
 L.3dB=π/(4κ) 

~L 
cross state                                -3dB Power splitter 

( )A zκ⋅⎡ ⎤⎣ ⎦
( )
( )

1

2

0
0

A
A

( )
( )

1

2

z
z

A
A

 

Lx=π/(2κ) 

complete energy 
coupling 

complete energy coupling
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Summary: 
 

• In symmetric codirection couplers the field energy oscillates back and forth completely (!) between the two 
waveguides with the coupling length L=π/κ  only if δ'ℓ m = 0  (no phase difference). 

 

• The coupling length L=π/κ12  and the couple constant  ( ) ( ) ( ) ( )
2 2

* 2 20 0
12 1 2 1 222 2S

k kf x n x f x dx f n fκ = ⋅ ⋅δ ⋅ = ⋅ δ
β β∫ can be 

modified by changing the refractive index profile of the coupler n(x,C) by an external control mechanism C. C can 
be an electric or magnetic field, a thermal field, a stress-field etc. 

 

This allows to control the power in one WG or switch the light field between the two outputs of the coupler 
resulting in an optical modulator, see chap.8. 

 

• The MC-theory in this form is only valid for weak perturbations which do not modify the mode pattern strongly. 
(applicability of the unperturbed mode solutions as a base for expansion) 

 
Schematic of an Electro-Optic (EO) Modulator: 

signal 
voltage V 

The electro-optic effect induced by the electrical field E~V/d 
modifies δn2(E), resp. the coupling constant κ(E) between the 
2 WGs. 
 
The modulated coupling modifies the power ratio at the WG 
output  →  Electro-optic modulator (switching) 

δn2(E(t)) 

complete energy coupling 
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b) The asymmetric (β1≠β2, κ12≠ κ21* → δ '12 ≠ 0 detuned) directional coupler:      (self-study) 
The previous analysis can be generalized to the asymmetric directional coupler, where the two WGs are different. 
 

For the lossless asymmetric coupler the waves propagate at different velocities and are detuned.  
 

β1≠β2     δ '12 = – δ '21 = δ '≠ 0   detuning 
 

This leads to the general modified mode coupling equation for two modes: 

1
12 2

2
21 1

i z

i z

A i A e
z
A i A e
z

′− ⋅δ ⋅

′⋅δ ⋅

∂
= − κ ⋅ ⋅

∂
∂

= − κ ⋅ ⋅
∂

  by decoupling the eq.    
2

2
1,22 0i A

z z
⎛ ⎞∂ ∂′δ ⋅ + κ⎜ ⎟∂⎝ ⎠

± =
∂

     with  12 21κ κ κ=     (A1: + sign,  A2: - sign) 

 

Result:  Incomplete coupling between the asymmetric waveguides 
 

                       

Excitation 
in upper 
waveguide 

Bar state 
 
Cross state 

Intensity distribution in an 
asymmetric directional coupler   I1 

  I2  Incomplete coupling in asymmetric directional couplers 
    (eg. fabrication tolerances) 
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Derivation of coupling transfer matrix of the asymmetric codirectional coupler  (selfstudy): 

We want to find a solution to the equations:   

1
12 2

2
21 1

i z

i z

A i A e
z
A i A e
z

′− ⋅δ ⋅

′⋅δ ⋅

∂
= − κ ⋅ ⋅

∂
∂

= − κ ⋅ ⋅
∂

 

We are using a new definition of an effective phase difference:  2 24 / 2′δ = δ + ⋅κeff       

and the solution-„Ansatz“ for   A1,2(z) ∝ eqz  or e-qz   ;   q=propagation constant of the envelop 
 
Inserting A1,2 into the MC-equation leads to the 2.order characteristic equation for the propagation constant q: 
 

q2 ± i·δ 'q +κ2 = 0       2 solutions: q(δ’,κ)= q1, q2  
2 2

1 2 2 4 2 2, effq '/ i ' / '/ iδ δ κ δ δ= ± + = ±∓ ∓  
 

and finally finding for the solutions for A1(z) and A2(z):    (without details) 

( ) ( ) ( ){ }
( ) ( ) ( ){ }

2
1

2
2

i z

eff eff

i z

eff eff

A z a sin z b cos z e

A z c sin z d cos z e

′δ
− ⋅ ⋅

′δ
+ ⋅ ⋅

= ⋅ δ + ⋅ δ ⋅

= ⋅ δ + ⋅ δ ⋅
                    remark: additional phase terms compared to the symmetric case 

Definition of two possible excitation conditions at z=0: 
 

Excitation of WG1:                  Excitation of WG2: 

( )
( )

( )
( )

11 1

2 2 2

0 00
) )

0 0 0

AA I b
i ii

A A I d

=⎧ ⎧= =⎪ ⎪
⎨ ⎨

= = =⎪ ⎪⎩ ⎩
        

2 equations for   
21 A 0A 0

by elimination from A(z) a, b , c, d a, c
==

→  
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Determination of the constants a, b, c, d and matrix representation for the solution: 
 

From the the eq. for Ai(z) and the boundary conditions at z=0, L we get 
 

( ) ( )

( )
( )

( ) ( )
( ) ( )

( )
( )

1 111 12

2 221 22

0
0

⎡ ⎤ ⎡ ⎤⎡ ⎤
= ⋅⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦

A z AT z T z
A z AT z T z

A z = T A 0
 

( ) ( ) ( ){ }
( ) ( )

( ) ( )

( ) ( ) ( ){ }

12

21

2
11 2

2
12

2
21

2
22 2

eff

eff

eff

eff

i zi
eff eff

i zi
eff

i zi
eff

i zi
eff eff

T z cos z sin z e

T z sin z e

T z sin z e

T z cos z sin z e

′δ
− ⋅ ⋅′δ

δ

′δ
− ⋅ ⋅κ

δ

′δ
⋅ ⋅κ

δ

′δ
⋅ ⋅′δ

δ

= δ + ⋅ δ ⋅

= − ⋅ δ ⋅

= − ⋅ δ ⋅

= δ − ⋅ δ ⋅

 

The matrix T is a 2-port description of the amplitude and phase transfer properties of a section with length z 
of coupled WGs.  T depends on coupling, effective detuning and length L. 
 
Intensity distribution I(x)=IA(x)I2: 
 
 
 

    

( )
( ) ( ) ( )

( )
( ) ( ) ( )

2
2 22

21
1

2
2 21

11
1

0

1
0

eff
eff

eff
eff

I L
T L sin L

I

I L
T L sin L

I

κ
= = ⋅ δ

δ

κ
= = − ⋅ δ

δ

            (can be obtained by just squaring the expressions for A(z) 

 
 

Interpretation: 
 

δeff L   →  coupling period 
κ/ δeff  →  coupling amplitude 

with the definition from p.18:  ( ) ( ) ( ) ( ) ( ){ } ( )22 2 2
eff 1 2

1 1' 4 4
2 2

δ ω δ ω κ ω β ω β ω κ ω= + = − +  
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Conclusions: 
 
 

• Intensity transfer in asymmetric directional couplers is incomplete 
• The maximum transferred intensity is proportional to (κ /δeff)2 
• The cross-length L× = π /(2·δeff) and the bar-length L– = π /δeff  are shorter than in the symmetric coupler 
• The optical frequency ω  dependence of the cross-port is a bandpass-filter with a [sin(x) /x]2- characteristic 
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4.3 Contradirectional Mode Coupling – Bragg-Filters and Mirrors 
 
A second very important mode coupling structure is the longitudinally periodically disturbed waveguide used for 
integrated low loss mirrors, narrow band filters, single frequency laser diodes, multi-layer coatings etc.. 
 
 

The coupling is not by a transverse evanescent field in a homogenous (in propagation direction z) disturbance, but a 
localized, periodic (period Λ ) longitudinal disturbance δn2(z) of the WG, creating multiple, interfering 
reflections and transmissions, thus coupling back and forward propagating wave, by  

 

1) periodic variations of the refractive index n of the WG or by  
 

2) periodic variations of the WG geometry (eg. corrugation by variation of thickness d     2D-problem). 
 
Example of a disturbed (perturbation period Λ, corrugation dp) 3-layer fundamental mode film-WG consisting of the core ng 
with a unperturbed  thickness d , the refractive indices of the substrate and cladding are ns , resp. na.  
 
 

 
 
Schematic Representation of a waveguide grating (distributed Bragg reflector,  DBR) 

 
The z-periodic perturbation can be eg. a transverse geometry or longitudinal index perturbation acting as 
periodic local reflection centers. 

periodic geometric disturbance, period Λ 
creating partial reflections 

dp 

Definitions: 
 

Λ  perturbation period 
 

Top cladding:   refractive index na 
 

Unperturbed core:   ng with thickness d 
 

Bottom cladding (substrate):   nS 
 

Perturbation:  dp  or   δneff 

SM 
WG 
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Intuitive picture of the operation principle of the Distributed Bragg Reflector (DBR):   
Coherent additions of distributed reflections 
 
 
 
 
 
 
 
 
 
 
 
 
 
Possible technical realization of  a Bragg-Grating (BG) mirror:                 
 

Planar DFB-Laser with built-in waveguide core                       Vertical Surface Emitting Laser (VCSEL) with layered BG  
 
 
 
 
 
 
 
 
 
 
 

• for a particular frequency ωB (Bragg-frequency) the back-reflected wave from each local disturbances add up in 
phase (coherently) at the input  

 

     strong reflection , small transmission 
 
 

• the reflection phaseshift over the distance 2Λ must be a multiple i of 2π for constructive interference at the Bragg-
resonance ωB 

   2Λ= i λB/neff= I (2πc0/neff)/ωB   → ωB,i=i(πc0/neff/Λ) 
 
 

•  for ω ≠ ωB the reflections add up out of phase and interfere to zero distructive   
 

    transmission, small reflections 

 

Botto BG-mirror 

Top BG-mirror 
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Concept of analysis procedure: what do we want to achieve ? 
 

1) We modify the perturbation n(x,z) which is now 2-dimensional, transverse and longitudinal for the Bragg-
grating contra-directional coupler.  

 

2) We assume again that the WG is fundamental mode, meaning there is only 1 fore-ward and 1 back-ward 
propagating mode, which couple due to the periodic grating. 

 
3) MC-eq. is similar but contains an additional summation over the spatial harmonics p of the corrugation. 

The coupling coefficient are also similar but contain the x-dependent Fourier-coefficient of the corrugation 
cp(x) instead of the transverse index distribution. 

 

   In addition the phase-factor p
mδ contains the space vector of the grating 2 /GK = π Λ   

  
Coupling
effect coupling of all modes into l

including selfcoupling   

p
mi zp

m m
p m

E i E e
z

− ⋅δ ⋅

→

∂
= − ⋅ ⋅ κ ⋅

∂ ∑∑
       ( ) , 02 / /p

m m G m G i i eff ip K p K with n cδ = β − β − ⋅ = δ − ⋅ β ω = π λ = ω      

The shape of the corrugation determine the spectrum of spatial Fourier-coefficients cp(x) (eg. higher harmonics 
of KG due to sharp features). 
Observe the convention for the direction of mode propagation: 
Right propagating wave:  m >0  ,  βm>0 
Left propagating wave:   –m<0  ,   β-m<0 
p spatial harmonics, p>0, p<0 ??? 
 

For efficient coupling the detuning ( ) 0p
mδ ω →  should vanish – observe that β(ω) and ( )p

mδ ω  are 
frequency dependent and define the frequency dependence of the DBR-transmission/reflection (stop-band 
characteristic) 
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2D (transverse & longitudinal)-Corrugation Grating Model:   
 

( )2 ,n x zδ  is a mix of protrusions A and indentations B depending on x and y:   
 
 

Disturbance by geometrical dielectric corrugation of 
the WG interface: (periodic Λ in z- propagation direction) 
 
 

The Index-Profile δn2(x,z) is a rectangular function in z with period 
Λ, but the pulse width depends on x. 
 

Assumption of weak perturbation:  d >> 2·s  and using  2
r nε =  

 

Rectangular dielectric profile function at x: 
 

( ) ( )
( )

2 2
2

2 2

0 ,
,

0 ,
g a

a g

n n x z A
n x z

n n x z B
⎧ − > ∀ ∈⎪δ = ⎨ − < ∀ ∈⎪⎩

    

(observe:  ( )2 ,n x zδ   is dependent on x and z) 
 

Method of representation of ( )2 ,n x zδ :  spatial Fourier-transform 
 

• For a given x-coordinate the perturbation ( )2 ,n x zδ  is a bipolar (increase / decrease) rectangular profile function of z 
with a period Λ  and x-dependent “pulse length”. 

 

• As a simplification we assume that we can decompose ( )2 ,n x zδ  into a x-dependent spatial Fourier-series along z, 
meaning that the Fourier-coefficients cp(x) are x-dependent with respect to a variable duty-cycle. 

 

Spatial Fourier-Series representation (z-direction) of the rectangular ( )2 ,n x zδ -function: 

( ) ( ) ( ) ( ) ( ) ( )2

0

2 1 2, *, GG i pi p K z
p

K z
p p p G

p

and c x n x z e dz and c x c xn x z c x e K
Λ

− ⋅ ⋅ ⋅
∞

⋅ ⋅ ⋅

− ∞
−

=

π
= ⋅ δ ⋅ =δ ⋅ ∀

Λ
= =

Λ∑ ∫  

2s 

( )2δn x

x 

ng>nS, na 
Index increase 
 

Index depression 
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Observe:  the Fourier coefficient cp(x) are x-dependent.  
 
Definition :  KG =2π/Λ  is the spatial wave number of the periodic spatial perturbation (Λ).  
 

p is the number of the spatial grating harmonics  (p can be positive or negative). 
 
 

Mode Coupling Equation: 
 

Each x-dependent spatial Fourier-component cp(x) of the perturbation acts as a continuous sinusoidal perturbation in 
the    z-direction. 
 

We use the original 2D mode coupling equation (p.4-9 before x-integration) with the perturbation polarization of the 
corrugation and develop the right hand side scattering term: 
 
 

( ) ( ) ( )2 2
0

2 2
0

) ) )

, ,,u
a b c depends also on z

k nk n E z x z x E z x
⎛ ⎞
⎜ δ ⋅⎟Δ + = −
⎜ ⎟
⎝ ⎠

 

 
inserting ( )2 ,n x zδ : (p. 4-11) 

( ) ( ) ( ) ( )

( )

2 22
0

2
0

2 and replace  by its Fourier-serie, s

2

,

G

m m

m m

i z i z
m m m m m

m m

i pi z i zK
m m m

m

z

p
m m

m
p

i E f x e k E f x e
z

i E f e k E f e
z

n x z n x z

c x e

− ⋅β ⋅ − ⋅β ⋅

− ⋅β ⋅ − ⋅⋅ β⋅ ⋅⋅

∂⎧ ⎫⋅ β ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅⎨ ⎬∂⎩ ⎭

∂⎧ ⎫⋅ β ⋅ ⋅ ⋅ =

δ

⋅ ⋅ ⋅ ⋅

δ

⎛ ⎞
⋅⎜ ⎟

⎝
⎨ ∂ ⎠

⎬
⎩ ⎭

∑ ∑

∑ ∑ ∑
 

leading to:                                                                                                         phase term 

( ) ( )2
02 G mm i p K zi z

m m m m p m
m p m

i E f e k E f e
z

c x ⋅ ⋅ −β ⋅− ⋅β ⋅∂⎧ ⎫⋅ β ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅⎨ ⎬∂⎩ ⎭
∑ ∑∑  
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As before we  1) multiply again both sides with fℓ(x)* and  2) integrate dx∫ ...  using a) the orthonormality relation 
m l mlf f δ=  of the mode profiles f(x) and   3) making use of the weak perturbation assumption s<<d: 

 
 

   ( ) ( )
2
0

( ) (mod )
2

m Gi p K z
m p m

p m
perturbation es

E ki E f c x f e
z

− ⋅ β −β − ⋅ ⋅∂
= − ⋅ ⋅ ⋅ ⋅

∂ β∑ ∑        

 
and introducing the new parameters for:   
 

the coupling constant κ pℓ m between mode l and m due to the pth Fourier-component and the 
phase difference δ pℓ m we write the above equation: 

( ) ( ) ( ) ( )
2 2

*0 0

2 2
κ = ⋅ ⋅ ⋅ = ⋅ = ω

β β∫p
m p m p m

S

k kf x c x f x dx f c f f     

 

Definition:  coupling constant between mode l and m due to the pth component of the perturbation 
 

Using p p
ml lm *κ κ− =   

 
p
m m G m Gp K p Kδ = β − β − ⋅ = δ − ⋅     

Definition:  phase factor between mode l and m   
 

   mode coupling equation  (only z-dependent equation) 
 

Coupling
effect coupling of all modes into l

including selfcoupling   

Coupling origin

p
mi zp

m m
p m

E i E e
z

− ⋅δ ⋅

→

∂
= − ⋅ ⋅ κ ⋅

∂ ∑∑
       Mode coupling (MC) equation  (including self-coupling)          (4.45), 
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coupling is only effective if  δp
lm 0  (synchronization of the modes) 

 
 

For a sinusoidal grating: p= 0, ±1 and fundamental mode operation of the WG: l= -m= -1 (left), m=1 (right propagating).  
 

The MC-eq. simplify to: 
 

p
mi zp

m m
p m

E i E e
z

− ⋅δ ⋅∂
= − ⋅ ⋅ κ ⋅

∂ ∑∑  

 
 
 

Interpretations: 
 

• m  represents all possible modes of the unperturbed WG  (guided and potentially unguided, scattered modes) 
• p   represents the pth spatial harmonic of the corrugation. cp spectrum depends on 2D corrugation shap. 
• for the waveguide Bragg-reflector we assume for simplicity that only guided modes are relevant  (off-axis scattering 

is neglected) and that the WG is fundamental mode. 
• for the Bragg-reflector we assume that only one propagating (m) and one contra-propagating (-m) mode coupling 

exists  m=±1 

• p
lmκ   is a measure of the strength of the coupling between mode m and l due to the p-harmonic of the perturbation 

    p
lmκ   is a function of ω and is approximately ~ω 

• ( )p
lmδ ω   is a measure of the detuning between the forward and backward wave and the grating, resp. in the 

frequency domain the difference between the signal ω and the Bragg-resonance frequency 0
B

eff

c
n
πω =

Λ
 of the grating 

• if higher harmonics of cp (p>1) are present, then the grating might also resonate at harmonics of 0
B,p B

eff

cp p
n
πω ω= =

Λ
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Elimination of explicit self-coupling in the mode coupling equation: 
 

As the core thickness d of the corrugated core is not uniquely defined in the corrugated area, we can always adjust d 
mathematically in such a way that d  d’ in order to eliminate the self-coupling coefficient term 0

llκ  → 0 (assumption only) 

( ) ( )
2

0 0
0' ' 0

2
κ = ⋅ ≡

βm m
kd f c d f      for l=m      → d’ 

Remark: the above equation delivers an equation for the determination of d’. 
 
 
Illustration of Coupling in Bragg-Reflectors for the pth spatial harmonic of the corrugation: 
 

                               
 
 

Graphical illustration of the coupling between exciting, forward propagating wave A, which undergoes self- and mutual 
coupling and could excite a multitude of the possible partial waves of the problem.   
 

forward propagating 
excitation A 

backward propagating 
reflection B 

forward propagating 
transmission 

possible partial 
waves of the problem

possible partial 
waves of the problem 

             +m 
 
 
 
     Kp            K -p 
 
 
 
 
           l= -m 

A
 
 
 
 
 
B
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Assumptions, conventions and definitions:  
 

-  for simplicity we assume that in the Bragg-reflector only one coupled backward propagating wave (B≡l) is excited. 

-  forward propagating modes (A≡m) are described by positive mode indices m>0 and positive propagation constants βm 

-  backward propagating modes (B) are described by negative mode indices l<0 and negative propagation constants βl 
-  coupling in the MC-eq.  for coupling A→B is only effective by the term p

m,lκ +   (p>0) and for coupling B→A is only 

effective by the term p
m,lκ −   (p<0). 

-  we assume a sinusoidal corrugation p=±1 of the grating with a spatial vector 2 /GK = π Λ  
 
Conditions for energy exchange: 
 

In order to realize an energy exchange between forward and backward propagating modes we must request: 
1. Synchronization:   
     Directional coupling m → l  (backward mode couples into forward mode): 

for maximum energy exchange m → l  the phase difference p
mδ should be 0 (resp. independent of z) for co-propa-

gating modes 

0

because

2 0 0, . !

p
m m G m G

m m

m
p

mm
p

m m G

p K p K

l m we have

p K has only solutions for p re is effectisp vp e
−

− −

δ = β − β − ⋅ = δ − ⋅ →

= − β = β = −β

δ = β − ⋅ = > + → κ
             m → l  (forward 

propagating) 
   Interpretation:  for maximum positive interference the partial reflections at p/Λ  should have a 2π phase difference. 

 
2. Contra-directional coupling m ← l  (forwardward mode couples into backward mode) 
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     the desired coupling should be between forward and backward propagating mode of the same type l 

0

because

2 0 0, . !

p
m m m m G m m G

m m

p
m

p p
m m mm m mG is effecti

p K p K

l m we have

p K has only solutions for p res vep p

− − −

−

−
−

− −

δ = β − β − ⋅ = δ − ⋅ →

= − β = β = −β

δ =− β − ⋅ = < − κ→ κ = −
 

m m m−β =β = −β → β        (design goal) 

3. Grating resonance of order p:  both mode are of the same type, except opposite propagation direction 

i) m= −   ,   m−β = β  

ii) we consider only a particular harmonic p  cp  of the grating periodic corrugation 

1. – 3. result in the condition for the phase difference for synchronization 
 

  

( )
, ,

, ,

, 0

0
,

,

2 0 ;

: / 2

2 / ; 2 / /

p
m m m m G m G

m B B p G B p

G m m eff m

B p B
eff m

p K p K

Bragg condition p K Bragg resonance frequency

with K n c

cp p
n

− −δ = δ − ⋅ = ⋅β − ⋅ →

→ − β = β ω = ⋅ ω = −

= π Λ β = π λ = ω

π
ω = = ω

Λ

   → 

We use the definition of the effective refractive index of the mode:  0eff mn c /β ω=  
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For the pth Bragg-resonance the grating constant Λ must be p-times the half wavelength λm/2 (in the medium of mode m) 
 
 
 

   ,
, ,

,

2
2

B p
B p eff m

eff m

p n
n p

λ Λ
⋅ = Λ → λ = ⋅

⋅
   Bragg-Resonance wavelength λB,p of order p     

High p-order Bragg-grating at a given corrugation Λ length are more difficult to fabricate than 1.order 
grating because Λ~p.  
High p-order Bragg-grating at a given wavelength λm are easier to fabricate than 1.order grating.  
 
(In addition higher order Bragg-gratings can couple to radiation modes – this may be a desirable device feature) 

 
 
 

Summary of the pth Bragg-resonance wavelength λB,p and frequency ωB,p: 
 
 B,p eff ,m B,p o eff G o eff2 n / p ; p c /(n ) pK c / 2nλ ω π= ⋅ Λ = Λ =  
 
 
 
Remark:  sinusoidal gratings have only one Bragg-resonance, where as rectangular or triangular gratings have a 
large number of corresponding Bragg-resonances due to the high number of spatial frequencies. 
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Determination of the forward and backward propagating modes in the Bragg-Reflector: 
 

Because Bragg-reflectors are very important in many applications (mirrors and filters) we derive additional design 
equations explicitly. 
 
From the original mode coupling equations we get for only 2 contra-directionally coupling waves: 

forward propagating mode m
  backward propagating mode -m

m

m

A E
B E−

=

=
    

( )

( )

,

,

,

,

, 0

, 0

p
m m

p
m m

i zp
m m

i zp
m m

back coupling p

forward coupling p p

B i A e
z
A i B e
z

−

−
−

− ⋅δ ⋅
−

− ⋅δ ⋅−
−

>

= − <

∂
= − ⋅ ⋅ κ ⋅

∂
∂

= − ⋅ ⋅ κ ⋅
∂

      

                                                                      CM equation for modes m, -m, and p, -p 
Simplifications: 
 

1) for the back-propagating mode –m (B) synchronization and high coupling with the grating occurs for –p leading to: 
 

p·KG  →  – p·KG    (only  p and –p spatial frequencies couple) 
 
and   δ m,–m = – δ –m,m   (only co- and counter-propagating modes with opposite propagation vectors couple)  
 

  (δ –m,m – p·KG)     →    (– δ m,–m + p·KG)       δ –p
m,–m = – δ p–m, m 

 

 
 

2) for lossless materials with real δ n2 we get per definition of cp: 
 

c–p = c*
p   because   〈 f–m | c*

p | fm 〉 = 〈 f–m | cp | fm 〉* 
 

3) again per definition of κp
l,m  we have the relation for back and forward coupling constants (as a consequence of 2)): 

 

κ p–m,m = – κ pm,–m. 
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With these relations resulting from the symmetry of the problem for forward (m) and backward (-m) propagating modes: 
 

     

* p

p

i z
p

i z
p

A i B e
z
B i A e
z

⋅δ ⋅

− ⋅δ ⋅

∂
= − ⋅κ ⋅ ⋅

∂
∂

= ⋅κ ⋅ ⋅
∂

   simplified MC differential equation for right-propagating A(z) , left-propagating B(z) 

 

with  – κp = κ p–m, m  ,  p p
ml lm *κ κ− =  and   δp = δ p–m, m=2βm-pKG   and the  

 

boundary conditions:  eg.    ( ) ( ) ( )
( ) ( ) ( )

00 0 ; 0

0 ; 0 0

A I A input at z A L

B L no input at z L B

= = = ≠

= = ≠
  for single right propagating exciting wave 

 
Skipping details of the non-trivial solution of the mode coupling differential equations we obtain the following solution of 
the differential equation for A(z) and B(z) in T-matrix-form (see appendix p.4-51): 

( )
( )

( ) ( )
( ) ( )

( )
( )

11 12

21 22

: :

0
0

out in

A z T z T z A
B z T z T z B

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= ⋅⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

     

( ) ( ) ( ){ }
( ) ( )

( ) ( )

( ) ( ) ( ){ }

*

2
11 2

2
12

2
21

2
22 2

p
p

eff

p
p

eff

p
p

eff

p
p

eff

i zi
eff eff

i zi
eff

i zi
eff

i zi
eff eff

T z cosh z sinh z e

T z sinh z e

T z sinh z e

T z cosh z sinh z e

δ
⋅ ⋅δ

κ

δ
⋅ ⋅κ

κ

δ
− ⋅ ⋅κ

κ

δ
− ⋅ ⋅δ

κ

= κ − ⋅ κ ⋅

= − ⋅ κ ⋅

= ⋅ κ ⋅

= κ + ⋅ κ ⋅

  Transmission-Matrix T 

using  p p eff, , , zδ κ κ  

and defining the new effective coupling constant κeff 

( )eff p pT z , ,κ δ κ  
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effective coupling constant κeff: 

( ) ( ) ( ) ( )
2

2* 21 4
2 2

p
eff p p p p f

δ ω⎛ ⎞
κ ω = κ κ ω − = ⋅ ⋅ κ − δ = ω⎜ ⎟

⎝ ⎠
    with δp = δ p–m, m=2βm-pKG 

 

   κeff describes envelope functions A(z), B(z)  containing hyperbolic functions of (κeff z) ! 
 
 

Observe that κeff  can be real or imaginary depending on detuning δ resp. ω ! 
 
 
Conclusions: 
 

1) the envelop amplitude functions A(z) and B(z) contain the exponentials phase terms of the type  

( ) ( )
p

eff
i z z2 phase detuning coupling strengthe and e
δ

κ± ±        from the sinh-, cosh(κeffz) -envelop functions 
 

2) the field functions Em(z) are related to the envelop functions Am(z), Bm(z)  by spatial mi ze β±   
     (spatial carrier wave) 
 

 the total wave vectors β of the propagating and counter-propagating waves 
2

eff m
i z k z i z2

carrierenvelope
~ e e e

δ
β± ± ±

 are:   
 
 

   ( ) 2p 2G G
eff m eff p p

K K ii 4
2 2 2 2

δ
β ω κ β κ κ δ= − + + = + = ± −      (complex   growth/attenuation) 

 
 

  ( ) ( ) i z i t
mE z,t E z e eβ ω+ + −=      (example of right propagating wave) 
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Assuming that κp is frequency independent around the Bragg-resonance ωB  we get as an approximation for the 
propagation constant  β(ω)  in the grating: 
 

( ) ( ) ( )eff
p B

0

2n4 22 p p
c

π πδ ω β ω ω ω
λ

= − Κ = − = −
Λ  

 

( ) ( )
2

2 2G eff
p B

0
real

real or complex

K 2ni 4
2 2 c

β ω κ ω ω
⎛ ⎞

± − −⎜ ⎟
⎝ ⎠

    Dispersion relation of the Bragg-Grating close to resonance 

 
 
Discussion of β(ω):  (for detailed discussion see p.4-50) 
 
β(ω) can become real or complex, depending on detuning, resp. frequency ω: 
 

a) a complex propagation constant β, ω → ωB means a decaying or not propagating wave inside a transmission 
stop-band (formation of a bandgap,  with a high Bragg-reflection) of spectral width Δω~κp (coupling constant, 
independent of length L) 

 

b)  a real propagation constant β, ω >> ωB+Δω/2 or ω << ωB- Δω/2, gives rise to a propagating wave in the pass 
bands. 

 
 
 
Remark: 

( ) ( )
x x x xe e e esinh x ; cosh x

2 2

− −− +
= =  



                                                                                                                                                                                                                                 K 4 
 

______________________________________________________________________________________________________________________________ 
 

Electronics Laboratory:   Optoelectronics and Optical Communications                                                                          19.02.2010 

4-41

Properties of the Bragg-Reflector:  Reflection and Transmission 
1)  Reflection coefficient 
 
 

Motivation: Bragg reflector are narrowband, virtually loss-less dielectric mirrors, much better than their broadband 
metallic counterparts. 
 
For the reflection behaviour of the Bragg-Grating of length L we assume an incoming (x=0) forward propagating 
wave A and a reflected backward propagating wave B with no input at x=L: 

( ) ( )
( ) ( ) ( )
( ) ( )

00 input

0 ; A 0 transmitted wave

0 ? reflected wave

A I A

B L L

B

= =

= ≥

=

 

Using the BR-Transmission-Matrix 
( )
( )

( ) ( )
( ) ( )

( )
( )

11 12

21 22

0
0

A z T z T z A
B z T z T z B

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= ⋅⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
  we obtain from the second boundary condition: 

( ) ( ) ( ) ( ) ( ) ( ) ( )21 0 22 0 21 220 0 0 /B L T L A T L B B A T L T L= ⋅ + ⋅ = → = − ⋅  

This equation allows the determination of the reflected wave amplitude B(0) at the input, resp. the field 
reflection coefficient r: 

( ) ( ) ( )
( )

( )
( ) ( )

21

0 22 2

0
p

p eff
i

eff eff eff

i sinh LB T L
r

A T L cosh L sinh Lδ

⋅κ ⋅ κ
ω = = − = −

κ ⋅ κ + ⋅ κ
     Bragg-Reflection Coefficient  (stop-band characteristics) 

 

The field reflection coefficient depends only on the product ( )eff Lκ  and the detuning δp: 

( ) 2 21 4
2eff p pκ ω = ⋅ ⋅ κ − δ   and  ( ) ( )eff

p B
0

2n
c

δ ω ω ω= −  
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At the Bragg-Resonance (δ p → 0)  we obtain for r: 

( )
( ) ( ) ( )0 ;

2

p eff p

p

p eff
B pi

eff eff

tanh L
r i r i tanh L

tanh L
δ → κ → κ

δ

κ ⋅ κ
= − ⋅ ⎯⎯⎯⎯⎯⎯→ ω = − ⋅ κ ⋅

κ + ⋅ κ
 

 

The Bragg-Resonance (δ p → 0) can be expressed as an optical frequency ωB or wavelength λB: 

0
,

,

2
B eff B B

eff B

p cn
p n

⋅ π ⋅
λ = ⋅Λ ⋅ ←⎯→ ω =

Λ ⋅
 

 
For the intensity (power) reflection R(ωB) at the Bragg-resonance R = r·r* depends on the grating length L: 

 

 

• The power reflection coefficient R depends only on the product ( )p Lκ  
 

• For ( )eff Lκ <1   ( ) ( )2

B pR Lω κ ⋅∼  
 

A Bragg-grating where the condition 
 

 | κp |·L ≈ 3  
 

is fulfilled, reflects more than 99 % of the in-
coming radiation and is a very good mirror.  
 

Metallic mirrors @1550nm reflect only ~80-90%. 
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• Strong coupling κ   (large corrugation) allows short length L 

• Narrow bandwidth Δω and low losses can be achieved by small κ  

• High total reflections are possible with small reflections form small corrugations or dielectric contrasts between 
sequences of of different materials 

• Bragg-mirrors are widely used in planar single-frequency laser diodes, VCSELs and anti-reflection coatings 
 
 
 
The previous discussion of the transmission/reflection properties of the DBR with the propagation constant β(ω) of 
the two counter propagating wave is only very qualitatively and not sufficient for any filter design. 
 

 detailed discussion of R(δp), R(ω) resp. T(δp), T(ω)  is required. 
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Spectral dependency of the intensity reflection coefficient R(δp):   
Bandstop-Characteristic, frequency selective mirrors 
 

Bragg mirrors show a high reflectivity at the Bragg-resonance (stop-band), but are otherwise almost 
transparent (pass-bands). 
 

 
                                    

p p2δ κΔ =
←⎯⎯⎯⎯→  

     passband                stopband                passband 
 

transparent                 phase coherent                 quasi-random  
                                   constructive reflections      destructive reflections 
 
Transformation of detuning δp into optical frequency ω or wavelength λ: 
 

( ) ( ) ( ), , , ,

, 0 0 0

4 2 2 222 m eff m eff m eff m eff
p m G B B

o m

n n n n
p K p

c c c
π π

δ ω = ⋅β ω − ⋅ = − = ω − ω = ω − ω
λ Λ

 

Numerical Simulation of the Spectrum of the 
power reflection factor R(ω) and the power 
transmission factor T(ω)=1-R(ω)  
 

of a Bragg-grating with  | κp |·L ≈ 1.84  versus detuning L·δ p. 
 
At the Bragg-resonance δp=0, resp. ω=ωB 
 

  ideal for mode-selection filter in lasers¨ 
 
   undesired side-lobe  

Lδp/2 Lkp  (=1.84) -Lkp 

Keff  imaginary               Keff real               Keff imaginary 
                                     stop band 
                                     band gap 
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                                                                                        Bandpass filter characteristic  (large  | κp |·L ) 
For strong (rectangular, no side lobes) bandpass filtering  
Characteristic we see by directly going back to the  
transmission matrix T: 
 
a necessary condition is:  | κp |·L >> 1 
 

  strong coupling (large κp ) and large length L  
     for large reflection R 
 

  strong coupling (large κp ) 
      for large filter bandwidth Δω  (independent of L !!!) 

 
 

 
Trade-off:  large  | κp |·L –values produce large side-lobe amplitudes close to the main-lobe. 
 
 
2)  Transmission coefficient 
 

The power transmission coefficient T can be calculated from R by applying the energy conservation argument: 
 

T = t·t* = 1 – R        ( ) ( ) ( ) ( ) ( ){ }11 22 12 21
22

1t T L T L T L T L
T L

= ⋅ ⋅ − ⋅  

Kp 

 

| κp |·L = 3 

+

+
+

 
sidelobes
 
 
 
 
 
 
zeros

( ) ( ) ( )

( )

1
0 0

0

2 2
4

2 4

eff eff
p p db B

p
eff

n n
L L L L

c c
c

Bandwidth B f L
n

κ δ ω ω ω ω

ω κ

−= Δ = − = Δ →

= Δ = ≠

KeffL=0 
 

δp=2κp 

Zero: 
sinh(KeffL)=0 
for complex Keff 
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Stopband-Charcteristics vers. ( |κp |·L ): 
 

Stopband-Flatness (desirable) for large  |κp |·L , but high side-lobe reflection (undesirable → filter x-talk) for 
large |κp |·L 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
large  | κp |·L –values produce large side-lobe amplitudes close to the main-lobe 
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Basic properties of Bragg-Bandpass filters:          (self-study) 
 

1) Reflections: 
 

For large products | κp |·L = 3 the Bragg-mirror reflects strongly in the stop-band. In the middle of the stop band  
R = tanh2( | κp |·L ) = tanh2(3)~0.99. 
 

( ) ( ) ( ) 2
2* 21 4

2 2
p

eff p p p p

δ ω⎛ ⎞
κ ω = κ κ ω − = ⋅ ⋅ κ − δ⎜ ⎟

⎝ ⎠
 has zeros at δ p= ± 2·| κp | (bandwidth). Therefore κeff(ω)  for Iδ pI > 2·|κp |   

becomes imaginary in the pass band, resulting in a decaying oscillatory behaviour of R(δp)  (side-lobes).  
 
We approximate the bandwidth Δω=Bδ p by the first two zeros of κeff(ω)  → κeff(ω)=0 →   R=0     
 

  Filterbandwidth:  Bδ p ~4·| κp |   (independent of L ! as discussed qualitatively from β(ω)) 
 

  Reflections coefficient at Filterbandwidth edges:  δ p = 2·| κp | 

( ){ } ( )
( )

2

20
lim 2

1κ →

κ ⋅
δ = ± κ

+ κ ⋅eff

p
p p

p

L
R

L
     (4.78). 

 
 
2) Spectral properties: 
 

a)  Bandwidth:  inspecting the expression for the field reflection coefficient r 
 

( ) ( )
( )

( )
( ) ( )

21

0 22 2

0
p

p eff
i

eff eff eff

i sinh LB T L
r

A T L cosh L sinh Lδ

⋅κ ⋅ κ
= = − = −

κ ⋅ κ + ⋅ κ
       we see that the function has a first zero at  
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2

2* 21 4 0 2
2 2

~ 4 (detuning at the bandedges)

p
eff p p p p p p

p p

δ⎛ ⎞
κ = κ κ − = ⋅ ⋅ κ − δ = → δ = ± ⋅ κ⎜ ⎟

⎝ ⎠

Δδ = ⋅ κBandwidth

                   Bδ p = 4·| κp |    

 

using the relation:   
( ), , ,

0 0 0

0

,

2 2
2

2

m eff m eff m eff
p m B p m p p

p p
m eff

n n n
B

c c c
cB

n

δ

δ

δ = ω − ω → Δδ = Δω → κ =

= κ
 

 
 
b)  Side-lobe Maxima and Reflection Zeros: 
 

For filters with low crosstalk the out-of-band reflection should be very low , the side-lobes must be small. 
 
Reflection Maxima: 
 

Most filter applications require low side-lobes  (small cross-talk) 
 

Investigating the expression for r(κeff·L ) we find (without prove) the reflection maxima at imaginary κeff· (!) 
 

Maxima-requirement:   κeff·L = i·(q  + ½)·π,   ∀ q = 1, 2,…   
 

expressed in detuning, leads to:  δ p = ± 2·{| κp |2 + (q  + ½)2·(π/L)2}½ 

 qth Power-Reflection-Maxima R = r·r*:    
( )

( ) ( )

2

2 22 21
2

1; ~p
q p

p

L
R

qq L

κ ⋅
= κ

+ ⋅π + κ ⋅
∼     with  q = 1, 2,…  

for large q (large side lobe order)  Rq~1/q2 
 

R1<0.1   if | κp |·L < π  /2    (without proof) 

DBR Frequency-Bandwidth  ≠f(L), depends only on κp 
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Reflection Zeros: 
 

Zero-requirement:   δ p = ± 2·{| κp |2 + (q·π/L)2}½,   ∀ q = 1, 2,…   
 

for large q the zeros occur at  δ p = ± 2 (q·π/L),   resp. at   Lδ p = ± 2π q 
 

Envelope of R:     

2

2

4
2

2

Passband

1 Stopband

⋅ κ δ

δ

δ

⎧ ∀ > κ⎪= ⎨
⎪ ∀ < κ⎩

p p

p

p

p
enveloppe

p

R        (red curve in Fig. on p4-34) 

 
 
Design procedure:  Trade-off for Bragg-Grating design: 
 

1) if the grating κp is given, then the bandwidth Bδp is determined independent of L 
2) long length L increases the stopband reflection 
3) long length L increases the density of the passband maxima, therefore the hight of the first sidelobe tends to 

increase too 
 

       reduced first side-lobe suppression  (trade-off) 
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Field distribution and Dispersion Characteristics of Bragg-Gratings: 
 

Inside the Bragg-grating we have a superposition of a forward and backward propagating wave forming a standing 
wave. 
 
From the solution of the transmission matrix of the coupled mode equation we get for the field envelop functions  
A(z) and B(z) in general: 

( )
( ) ( ) ( ) ( ) ( ){ }

( )
( ) ( ) ( ) ( ) ( ){ }

11 22 12 21
0 22

21 22 22 21
0 22

1

1

A z
T z T L T z T L

A T L

B z
T z T L T z T L

A T L

= ⋅ ⋅ − ⋅

= ⋅ ⋅ − ⋅
 (4.81). 

 
Close to the Bragg-Resonance ω~ωB in the middle of the stop band (δ p → 0)  the above equations for A and B simplify 
to hyperbolic functions: 
 
 
 
 
 
 

wave envelopes: 
 
right propagating wave:          left propagating wave: 

( ) [ ]( )
( )

( ) [ ]( )
( )0 0

;p p

p p

cosh L z sinh L zA z B z
i

A Acosh L cosh L

κ ⋅ − κ ⋅ −
= = − ⋅

κ ⋅ κ ⋅
 for ω~ωB ,  λ~λB 
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Envelope-Field distribution A(z) and B(z) close to the Bragg-resonance: 

 

Perturbed wave 
guide  
section 

Perturbation 
creates mode-
coupling 

Hyperbolic 
envelopes 

( )

( )

2

2

x x

x x

e esinh x

e ecosh x

+ −

+ −

−
=

+
=

 

film WG 

reflection 
transmission 
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Dispersion relation β(ω) in periodic structures    
 

Generic prototype for Bragg-gratings, Photonic Crystals and Electrons in atomic crystals 
 
 

For the complete spatial field amplitudes Em(z) and E - m(z) we include the eliminated spatial carriers mi ze− ⋅β ⋅  and get 
for β(ω): 
 
Stopband propagation (low detuning): 

( ) ( ) ( ) ( )
( )

( ) ( ) ( )

2
22

0

2
4

22

2

0 0
eef

p p B
eff m p

pm

G p
pm

np ii z pi z i i zc L grossi z
m

pp K p i ii z i z L grossi z
m

E z A z e A e A e e

E B z e B z e B z e e

⎛ ⎞⎛ ⎞⋅π⎜ ⎟δ⎛ ⎞ − ⋅ ⋅± κ − ω−ω ⋅π⎜ ⎟ ⎛ ⎞⎜ ⎟− ⋅ −κ +β ⋅ − ⋅ − ⋅ κ ⋅⎜ ⎟ Λ⎜ ⎟ ⎜ ⎟⎝ ⎠ κ ⋅ →− ⋅β ⋅ Λ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
∝

⋅π⎛⋅ ⋅π ⋅ + ⋅ κ⋅ ⋅ ⋅ ⋅ κ ⋅ →⋅β ⋅ ΛΛ
− ∝

= ⋅ = = ⎯⎯⎯⎯⎯→

= ⋅ = ⋅ = ⋅ ⎯⎯⎯⎯⎯→
z⎞⋅⎜ ⎟

⎝ ⎠

 (4.84) 

 
 

In the band center δ=0  p
p iβ =
⋅π

+ κΛ   contains an imaginary (damping) and a real (oscillatory) part.  
 

 
Passband propagation (strong detuning): 
 
 
 

β(ω) can be real (propagating wave, band) or complex (attenuated wave, bandgap) 
 
 
 
 
 
 

damped 
 
oscillatory
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Nonlinear Dispersion-Relation β(ω) and bandgap formation (stopband) 
 
 
 
 
 

( ) ( )

( )

2
2 2G eff

p B
0

eff
p B

G 2 e
p

0

real, constant
real or imaginary

if the second term under the square root is smaller than the first

KRe

K 2ni 4
2 2 c

n2 complex

2n1Im
22

,
c

4;

β ω κ ω ω

κ ω

β

ω

κ

β

β

⎛ ⎞
± − −⎜

=

⎟
⎝ ⎠

⎛ ⎞
>

−

⎝ ⎠

=

− →⎜ ⎟ Stopband

( )

( )

( )

2
2ff

B

2
22G

0

eff
B

p

p
0

eff
B

0

;

if the second term under the square root is lager than the fir

K 2n1Re 4
2 2 c

st

n2 real ,
c

c

0; Im ;

ω ω

β ω ω

ω

κ ω ω β

ωκ β
⎛ ⎞

= ± − −⎜

⎛ ⎞
−⎜ ⎟

⎝ ⎠

=⎟
⎝ ⎠

⎛ ⎞
< − →⎜ ⎟

⎝ ⎠
Passband

 

 

β

Im
Re

ω

ωΒ

λΒ=ΚG/2=π/Λ

β real

β real
propagating wave

β complex
damped wave

Im 

Re 

Δω=4IKpIc0/neff

bandgap

stopband

 
pass- 
band 
 
 
 
 
 
 
 
pass- 
band 

2B G / /β π= Κ = Λ

Bragg-Resonance 

Re β(ω)

Re β(ω)

Im β(ω) 

( ) ( )eff 0 unperturbed wave guiden / cβ ω ω=  

vgr=0 
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Interpretation:   
Creation of Propagation Bandgaps (stop band) by Bragg-Resonance 
 

• Bragg resonance (strong synchronization) creates a photonic band gap (propagation stop band) Δω  
    →  strong reflection 

• The stronger the coupling κp, the wider the bandgap (stopband) Δω, independent of length L 

    Inside the stop band the wave envelop decays exponentially p ze κ−∼   by coupling to the reflected wave. The fast 

field amplitude oscillated with KG  (no propagation). 

• In the transmission bands, far from the band gap the wave propagates unattenuated as in the unperturbed film 
waveguide with almost the same dispersion characteristics β(ω), resp. neff.  

    The back-reflected wave disappears and shows only some small oscillations of the envelop (loss of synchronization). 

• At the band edge the group-velocity 
1

grv β
ω

−
⎛ ⎞∂

= ⎜ ⎟∂⎝ ⎠
 becomes zero, meaning the envelope signal does not propagate 

      “slow light effects”, stopping of light 
 
• This formation of a photonic stop-band for wave-propagation in periodic structures is of generic interest, 

because the matter waves of electrons in a periodic atomic 3D-crystal exhibit a similar characteristic for the 
electronic band gap. 
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Comparison Photonic Crystal and Solid State Crystal: 
 

Bragg-Gratings behave like a 1-dimensional dielectric crystal for photons (EM-waves) similar to the 1-dimensional 
atomic crystal lattice for electrons (matter waves). 
 
    Photonic Crystal:                                              Atomic Crystal Lattice 
 

Optical Frequeny  ω  Energy  E=ћω 
Propagation vector β  Momentum vector k 
Grating periode Λ  Lattic constant a 

Dielectric constant ε(z)=n2(z)  Potential V(z) 
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  The mode coupling analysis is an approximation in many respects: 
• Our analysis is a scalar field representation, neglecting the vector field characteristics (the vector analysis 

can be included by modifications of the scalar formalism (4.46)). 
• The mode coupling analysis does not include any boundary conditions of the field components. 
• The mode coupling analysis is a relative analysis as a function of detuning δℓ m. 
• The mode coupling analysis is very efficient due to the modest mathematical theory in comparison to a full 

field calculation! 
• Due to the assumption of the perturbation calculation of a small disturbance the dielectric variations can 

not be too strong violating the normal mode decomposition. Small disturbances provide better, resp. a 
more precise analysis. 

• Nevertheless, as demonstrated empirically, the mode coupling analysis is rather robust even for strong 
(grating) perturbations  (δn2~20%). 

• Mode coupling theory plays an important role in the following applications: 
-  narrow band optical filters and reflectors 
-  multi-layer optical coatings 
-  Single frequency laser design (chap.6) 

     Conclusions and summary: 
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Appendix 1:    (self study) 
 

Solution of the coupled mode equation for Bragg-Reflectors 
 
Starting from the contradirectional coupled mode equation 
 

* p

p

i z
p

i z
p

A i B e
z
B i A e
z

⋅δ ⋅

− ⋅δ ⋅

∂
= − ⋅κ ⋅ ⋅

∂
∂

= ⋅κ ⋅ ⋅
∂

 

 
Using the variable transformation R(A, δp), S(B, δp)    (phase shift by detuning along z): 

[ ]
2

2

( )

p

p

i z

i z

R A e R A
z

S B
S B e

δ
− ⋅ ⋅

δ
⋅ ⋅

= ⋅ ⎡ ⎤ ⎡ ⎤
→ = Γ ⋅⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
= ⋅

          with        [ ]
2

2

0
( )

0

p

p

i z

i z

e
z

e

δ

δ

− ⋅ ⋅

⋅ ⋅

⎡ ⎤
⎢ ⎥Γ =
⎢ ⎥
⎣ ⎦

 

 
Introducing R(A) and S(B) in the coupled mode equation leads to: 

*
2

2

               
no function of z

A

p

p

i
p

i
p

iR R
S Sz i

⋅δ

⋅δ

⎡ ⎤− − ⋅κ⎡ ⎤ ⎡ ⎤∂ ⎢ ⎥= ⋅⎢ ⎥ ⎢ ⎥∂ ⋅κ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
             formal vector representation:   

( ) [ ] ( )

( )0 0

f z A f z
z

f f boundary condition

∂
= ⋅

∂
=

 

Spatial Laplace transformation L(s) of the system of differential equation: 
 

( )f sf f
z -1

L
L

0∂
+

∂
           s=spatial frequency 
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( ) [ ] ( ) ( ) ( ) [ ] ( ) ( )

( )
[ ] [ ]{ } ( ) ( )

( ) [ ] [ ]{ } ( ) ( ) ( ) ( ) [ ] [ ]{ }

0

1 1

initial condition0 ; 0

0

1 0

1 0 0 ; using 1

Lf z A f z s f s f A f s f
z

f f

s A f s f

f s s A f s f s s A
− −

∂
= ⋅ − = ⋅ =

∂
=

− ⋅ =

→

= − = Φ Φ = −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

 

 
As a next step we have to carry out an inverse L-trafo back into the spatial z-domain: 
 

( ) ( ) ( ) ( ) ( ) ( )

( ) [ ] [ ] ( )

1

11

0 0

.

?

L

L

f s s f f z z f

resp

s s I A z

−

−−

= Φ = Φ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

⎡ ⎤Φ = ⋅ − Φ =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦

 

 

with the previous definition of [A]:   [ ]
*

2

2

A
p

p

i
p

i
p

i

i

⋅δ

⋅δ

⎡ ⎤− − ⋅κ
⎢ ⎥ =

⋅κ⎢ ⎥⎣ ⎦
    we arrive at: 

[ ] [ ] ( )
*

2

2

p

p

i
p

i
p

s i
s I A s

i s

⋅δ

⋅δ

⎡ ⎤+ ⋅κ
⎢ ⎥⎡ ⎤⋅ − = = Φ⎡ ⎤⎣ ⎦⎣ ⎦ − ⋅κ −⎢ ⎥⎣ ⎦

   

 
Calculating the inverse of [ ] [ ]s I A⎡ ⎤⋅ −⎣ ⎦ for ( ) [ ] [ ] 1

s s I A
−

⎡ ⎤Φ = ⋅ −⎡ ⎤⎣ ⎦ ⎣ ⎦    with the help of matrix relation  [M]–1 = adj[M] / det[M] 
 
Without going through the detailed calculation, we obtain: 
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( ) [ ] [ ] ( ) ( )
( )

*
1 2

*
2 2 2

1 p

pp p

i
p

ii i
p p p

N s

s i
s s I A

s s i s

⋅δ
−

⋅δ⋅δ ⋅δ

⎡ ⎤− − ⋅κ
⎢ ⎥⎡ ⎤Φ = ⋅ − = ⋅⎡ ⎤⎣ ⎦ ⎣ ⎦ + ⋅ − − κ κ ⋅κ +⎢ ⎥⎣ ⎦

 

 

For ( ) ( ) ( ) ( ){ }2
* 2 * 2 2

2 2 2
p p pi i

p p p p effN s s s s s⋅δ ⋅δ δ= + ⋅ − − κ κ = − κ κ − = − κ  

 
Making use of the following elementary L-trafo-pairs: 

( )

( )

1

1

2 2

2 2

1 1L
eff L

eff eff

L
eff L

eff

sinh z
s

scosh z
s

−

−

⋅ κ
κ − κ

κ
− κ

 

we get for [Φ(z)] in the spatial domain: 

( )
( ) ( ) ( )

( ) ( ) ( )

*

2

2

p p

eff eff

p p

eff eff

i i
eff eff eff

i i
eff eff eff

cosh z sinh z sinh z
z

sinh z cosh z sinh z

⋅δ ⋅κ
⋅κ κ

⋅κ ⋅δ
κ ⋅κ

⎡ ⎤κ − ⋅ κ − ⋅ κ
⎢ ⎥Φ =⎡ ⎤⎣ ⎦ ⎢ ⎥⋅ κ κ + ⋅ κ⎣ ⎦

 

Using the inverse 1−Γ  we get back to the original variable A(z) and B(z): 

( )
( ) ( ) ( ) ( ) ( )

( )
1 0

z z 0
0

T

A z A
B z B

−

⎡ ⎤
⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡ ⎤
= Γ ⋅ Φ ⋅ Γ ⋅⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎣ ⎦ ⎣ ⎦
 

( )
( )

( ) ( )
( ) ( )

( )
( )

11 12

21 22

0
0

A z T z T z A
B z T z T z B

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= ⋅⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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Functions: 
 
 

Hyperbolic functions: 
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Technical examples of photonic devices based on coupled mode theory: 
 

2 µm long Micro-Laser Diode with an etched single and a Bragg-reflector mirror     
(Forchel et al) 

                                                                                            3rd order Bragg mirror (air-semiconductor) 

                                 
 

Wavelength Tunable laser diode at 1500nm with overgrown  InGaAsP/InGaAs-Bragg-
mirrors: 
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Add-drop Mach-Zehnder Interferometer with SiO2/SiN4-Bragg-gratings: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In order to reduce the height of the side-lobe maxima the Bragg-grating is apodized, meaning that the perturbations 
are periodic , but the strength of the perturbations is a spatial function of z. 
 


