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Goals of the chapter:     
 

• Investigate dielectric structures to guide and propagating waves and confine them transversally 

• Description of light propagation in dielectric waveguide structures by mode fields ( ) ( )k kE r, t ; H r, t
   and 

propagation constant βk(ω) assuming frequency independent dielectrics 
• Relation of the guided wave properties, mode fields and propagation constant of the kth mode 

( ) ( ) ( )k k kE r, t ; H r, t and β ω  to the geometric and dielectric structure of the waveguide 

• Typical properties of dielectric waveguide structures for optical communication 
• Frequency dependence of βk(ω) and  related dispersion effects (pulse broadening)  
 
Methods for the Solution: 
• Propagation of “classical” light is described as a electromagnetic (EM) wave obeying Maxwell field and 

material equations 
• Solve Maxwell’s equation with lateral dielectric boundary conditions of the waveguide using the 

Helmholtz equation (eigenvalue problem) and longitudinal and transversal decomposition (variable reduction) 
     modes are eigenfunctions (time- and space dependent EM vector fields ( ) ( )k kE r, t ; H r, t     ) and the 

propagation constant βk(ω) the corresponding eigenvalue 
• Find modal dispersion Dmode,k(ω) from βk(ω) for harmonic waves and pulse broadening effects 

¨ 
 

Remark: Repetition 
All material of Chap.3 on Maxwell’s equations and dielectric waveguides has been treated in “Fields and Components II” by Prof. R.Vahldieck /    
Dr. P.Leuchtmann  (p.147-162) !!! 

 

 

( ) ( )k kE r, t ; H r, t  

( ) ( )k kE r, t ; H r, t
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3 Guides Waves in optical Waveguides 
 

In chapter 2 we considered unguided, unconfined plane-waves in homogeneous dielectrics influenced by the carrier 
dynamics of dipoles. 
 

Communications needs longitudinally guided and transverse separated (confined) waves in loss less dielectrics. 
 

Laterally confined plane waves without dielectric guiding broaden laterally by diffraction !  
 
 
 

3.1 Guiding Lightwaves – Historical Overview 
 

Highly directed transport of light in free space is limited by attenuation and beam broadening due to diffraction and 
source spatial coherence. 
 
1) Lens waveguides:  (Gobau 1960) 
 

Light beams can be formed and propagated by lens and mirror systems counteracting transversal diffraction 
 
 
                                                                                                                               ∅A 
 
 
 

 but, light beam in free space are broadened by diffraction (beam widening) and need to be periodically   
refocused by lenses. Diffraction effects in light beams increase with decreasing beam diameter A. 

 
2) metallic waveguides:  
 

Possible conceptually, but free carrier losses in metals at optical frequencies are too high for long distances. 
Waveguide dimensions on the μm-scale are a technological challenge. 

 

focusing     diffracting 
         regions 
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3) dielectric waveguides: (1966 – today) 
 

Very low absorption and scattering losses achieved in ultra pure glasses as dielectrics 
Fabrication of km-long wave guides with dimension  ~ the optical wavelength λ ~1μm is feasible 

 
Conceptual idea of light guiding by total reflection in dielectric structures:   
(ray optic and total reflection picture) 
 

use lossless total reflections at interfaces of 2 dielectrics with refractive indices n2 and n1 where 
 
 
 

a) planar dielectric Film WG  (1D-guiding)                                          
 
 
 
 
 
 
 
 
 
 
 
 
 
Zig-zag ray propagation by total reflection requires n1>n2  (for details see chap.3.2) 
 
Length difference of different zig-zag paths creates substantial modal pulse broadening at the fiber end 
 
Thin core and small critical angle of total reflection θC resp. (n1~n2 ) reduces dispersion effects 

 
 

 
 
 
cladding 
 
 
core  n1>n2 
 
 
cladding 

n2 
 
n1 
 
 
n2 

Loss less total 
reflection  θ >θC

Lossy reflection and 
refraction θ <θC
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b) cylindrical glass fiber WG (2D-guiding) 
 
 
 
 
 

- Glass fibers (after 1970) 
 
                                           cladding 
 
 
 
 
                                             
 
                                            cladding                 Multi-Mode Fiber  ∅core~50μm      Single-Mode Fiber  ∅core~8μm 
                             n1>n2 
 
 
Glass fiber fabrication:  drawing process 
 

draw large diameter preforms into small fibers by local heating to the glass transition  
 
 

                      

n2 
 
 
n1 

n2 
 
 
n1 
 
 
 
~200μm 

n2 

 
n1 

 
n2 

core 
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Principle:  Collapse a large perform by “softening” (heating to glass transition temp.) and drawing a 1000 x 
 

1) Preform fabrication:    ∅ 10cm, L~1m                              ∅ 250μm, L~ km    2) Fiber drawing and coating 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Re 
 
quirements for optical glass fibers: 
 

• Ultra pure materials for low light absorption below – 0.2 dB/km (glass) 
 

• Precise geometry control low 0.1μm of ~5-10μm core diameter 
 

• Homogenous and precise material composition 
 

• High interface quality, low interface roughness, low scattering 

 

 

 

collapse heated perform, cm ∅ 
 
to fiber dimension, ~100um ∅ 
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Overview of different types of technical dielectric waveguides: 
 
For fabrication technical reasons dielectric optical waveguides are often realized by: 
 
a) planar deposition  (evaporation, spinning, sputtering, epitaxial growth) of dielectric films (glass, SC) on a substrate: 
 
                                                                                                              
 
                                                                                                              Lateral structuring by etching, local diffusion etc. 
 
 
 
 
 
b) Extrusion (collapsing) of a dielectric fiber from a heated layered cylindrical perform: 
 

    Very complex quasi-cylindrical fiber cross-sections are possible. 
 
 
 
 
 
 
 
 
 
 
 
 
 
            

 

Photonic Crystal Fiber                                   Polarization Maintaining Fiber 

n1>n2 

n2 

n1 

n1 
n2 

n1>n2 
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Loss mechanisms in silica optical glass fibers: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                                                       Low water content fibers have a continuous band 
                                                                                                              from 1200-1700nm  (communication bands) 
 
 
Absorption and loss mechanisms: 
 

• Absorption by impurities, mainly OH-radicals at 0.95, 1.23 and 1.39μm wavelength 
• Sub-wavelength density fluctuations (Δl<λ)    Raleigh-Scattering  ~1/λ 

• UV-Absorption by electron excitation in the SiO2-complex at ~0.3μm 
• IR-absorption by Si-O-vibrations at ~5μm 
• Geometrical form fluctuations (Δl>λ), Mie-Scattering, microbending 
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3.2 Ray Optics of total reflection 
 
Light propagation in fibers with core diameters d much larger than the optical wavelength λ (d>>λ) can be 
approximated by the propagation and refraction of light beams (rays) at a dielectric interface n1/n2. 
 
Total Reflection at the interface between fiber core (n1) and cladding (n2):   lossless Zig-Zag-Transmission 
 
 

Refraction                        Total reflection 
and reflection  
 
 
 
 
 
 
 
 
 
 

Snell’s Law of refraction and reflection:   
 
 
 

( ) ( )2 1 1 2 1 2cos / cos n / n 0 and n / n 1ϕ ϕ = > <     (observe angle convention of ϕ !  ∠surface - beam  ) 
 
 

Critical Angle ϕc for total reflection (ϕ2=0, cosϕ2 =1) at a dielectric interface with refractive indices n1>n2: 
 

   

( )

( )

c c c

c

c

n n
n n n n nar
n n n n

total reflection no refractionlosses
reflection and refraction

1 2
2 2 1 2

1 1 1 1

1

1

~cos 1 ; cos ~
⎛ ⎞ ⎛ ⎞− Δ

ϕ = < ϕ = ⎯⎯⎯→ ϕ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

ϕ < ϕ →
ϕ > ϕ →

 

n2

n1

ϕ2

ϕ1 ϕc ϕ1 ϕ1

  ϕ1>ϕc               ϕ1>ϕc         ϕ1<ϕc

lossy 
reflection

lossless total 
reflection 

n1>n2 
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Acceptance Angle ϕa at the critical angle for total internal reflection  ϕ1=ϕc 
 
 
 

At the entrance interface (no, n1) of the fiber the incoming beams (ϕ0) are mainly refracted according to Snells-Law: 
(reflection at the air/glass interface is only ~4%). n0 is the refractive index of the medium at the entrence. 
 
 
 

( ) ( ) ( )o a cn n n n n n nϕ = ϕ = − = −2 2 2
1 1 2 1 1 2sin sin 1 /     (limiting situation for total reflection ϕ0=ϕa) 

 

                                                                                   (angle convention:  ∠surface normal – beam) 
 
 

All beams with an entrance angle ϕ0<ϕa are propagated lossless by total reflections through a straight fiber. 
 

Beams with ϕ0>ϕa suffer refraction losses into the cladding and are attenuated by refraction losses. 
 
For fiber characterization the numerical aperture NA is defined as a figure of merit: 
 
 

( ) n
a

n n nNA n n with
n n n

0 12 2 1 1 2
1 2

0 0 1

1sin 2= −
= ϕ = − ⎯⎯⎯→ ≈ Δ Δ =  

 
Δ relative refractive index difference between core and cladding 
 
 

 small Δn gives a small NA which is more difficult to couple light into, but modal dispersion from zig-zag propagation 
is less (trade-off) 
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Conclusions from the simple ray-model of the optical fiber: 
 
 

• All light beams entering the straight fiber within the cone (ϕ<ϕa) defined by the NA are transmitted lossless by total 
reflections and exit the fiber within the NA-cone 

 

• Large index differences Δ between core and cladding result in large ϕC and NAs and high coupling efficiency 
between light source and fiber. 

    Time delays Δt (dispersion) between the different Zig-Zag-paths becomes large    trade-off  Δ, d   Δt 
 

Multimode (MM) step index fiber:       Δ = 1 – 3%             NA~0.4 
Single mode (SM) step index fibers:  Δ = 0.2 – 1%          NA=0.1-0.2,  ϕa=12.2o mit n1=1.5 and Δ=1% 

 
• Strong bending of the fiber can result in a violation of the total reflection condition at the bends and the light beams 

can exit the fiber core (bending losses) 
 
 
The ray model fails if λ~d (modes in SM-fibers) and does not provide the light intensity distributions (mode intensity profiles) 
correctly and also the longitudinal propagation constant becomes wrong. 
 

 needed: vector wave description of light propagation in cylindrical or rectangular 
dielectric structures governed by Maxwell’s equations.  
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single mode fiber:             multi-mode fiber:    graded index MMF: 

n2

z

x

y

n1

 

single mode fiber:             multi-mode fiber:    graded index MMF: 

3.3 Wave propagation in cylindrical optical waveguides 
 
Waveguides for signal transmission must propagate a wave longitudinally in the z-direction (βZ(ω)) and should 
confine the wave (resonance-like) in the transverse T-direction (x,y-plane). 
 
 

Question: how will the transverse confinement (n1,n2) of the wave influence the propagation in the z-direction  
βZ(ω, diel. geometry) ? 

 
 dielectric optical fibers have often a cylindrical structure, with  

 

   1) a homogenous refractive index n in the longitudinal  z direction → n(x,y) ≠ n(z).  
 

   2) a inhomogeneous refractive index profile in the transverse plane n(x,y) for lateral confinement (high index core). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Goal:  
find all EM-modes ( ) ( )i iE r t H r t, , ,  and their propagation constant βi at a given frequency ω supported by the 
cylindrical WG-structure with a transverse index profile n(x,y) by solving Maxwell’s equations. 

n1>n2 
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Concept of analysis procedure: what do we want to achieve ? 
 

We are considering lossless dielectric structures where the refractive index distribution n(x,y,z) does not 
change in the propagation direction z but only has a distribution in the transverse directions x,y   n(x,y) 
 

The transverse distributions n(x,y) consists of areas where the refractive index is different but constant. 
 

 it can therefore be expected that the transversal field profile does not change transversally 
 we restrict our investigated mode solutions to only the z-guided modes and do not consider any other 
possible solutions of Maxwell’s equations. The time dependence is assumed to be harmonic with ω. 

 

      ( ) ( ) ( ) ( ) ( )z zjk z j t jk zj t j t
T TE r ,t E r e E r e e E r e right propagating E waveωω ω− −= = = −  

 
Next we will show that the 6 vector components of E and H are related and only 2 components are 
independent – we can restrict the solutions further by assuming that 1 component should be zero 
 
Separating the space vector r and the field vectors E, H in longitudinal (z) and transverse components (T) we 
will show that the field in a homogeneous region of constant refractive index n obeys a Helmholtz-
Eigenvalue equation with the transverse propagation constant kT as Eigenvalue: 
 

( ) ( ) ( )( ) ( )E r t k n E r t Helmholtz equation2 2 2
0, , 0Δ − μεω = Δ − ω = −  

 

( ) ( )

( ) ( )
T T T T z

T T z T

k E r with k k k

k E r

2 2 2 2

2

0

0

Δ + = = −

Δ + =
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3.3.1  Maxwell’s-Equations for EM-waves in cylindrical dielectric WGs: 
 

Goal:  Simplify Maxwell’s equations for cylindrical coordinates by 
            → transversal (x,y) – longitudinal (z) field decomposition,  
            → use of minimum of independent vector components 
 

Assumptions: 
 

- dielectrics are free of fixed space charges, 0ρ =  
- there are no convection currents flowing in the dielectric (isolator), j E= σ = 0   
- the dielectrics are isotropic, r r scalarε = ε ε ε =0 ;  

- the dielectrics are non-magnetic, rμ = μ μ =0 ; 1 
- consider only guided modes in the z-directions (incomplete set) 
 
 

1) Separation of the longitudinal (z) and lateral (T), (x,y) geometry: 
 

( ) T z T z z

T z T z

r x y z r r r r e
r and r are orthogonal r r

= = + = +

=i
, ,

: 0  

 
2) Maxwell Vector-Field Equations (MW) in a homogeneous dielectric:  
    rotational symmetry around z 
 

E H H E
t t

E H

;

0 ; 0

∂ ∂
∇ × = −μ ∇ × = −ε

∂ ∂
∇ = ∇ =

             with  x y z
, ,⎛ ⎞∂ ∂ ∂

∇ = ⎜ ⎟∂ ∂ ∂⎝ ⎠
    and ( )X X r ,t≡  

 
 

 
       x 
 
 

                 r                   Tr  
 
 

                   Zr                                               z 
 
                    y 

π/2
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3) Materials Equations: 
 

r

r

r

D E E

B H H
0

0 0
1μ =

= ε = ε ε

= μ μ = μ       6 field variables: ( ) ( ) ( ) ( ) ( ) ( )x y z x y zE r t E r t E r t and H r t H r t H r t, , , , , , , , , ,     

Question:  how many are independent ? 
 
 
Elimination of one field variable from MW’s equations leads to the  
 

Homogeneous Vector Wave Equations:   (derivation see Dr. Leuchtmann: F&K I) 
 

( ) ( )E r t H r t with
t t x y z

2 2 2 2 2
2

2 2 2 2 2, 0 ; , 0
⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂

Δ − με = Δ − με = Δ = + + = ∇⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠
   μ, ε ≠ f(r) 

 
 
 
 

Assuming that the fields are excited by sources with a harmonic time dependence i te+ ω  leads to 
 
 

4) Harmonic field solutions with a separation of space r and time t dependence: 
 
 

( ) ( ){ } ( ) ( ) ( ) ( )

( ) ( ){ } ( ) ( )

i t i t i t

i t i t i t

E r t E r e E r e E r e X r complex Phasor of the vectorfield X r t

H r t H r e H r e H r e conjugate complex c

spatial only

c

*

*

1 1, Re ; , ,
2 2
1 1, Re ; * , .
2 2

ω ω − ω

ω ω − ω

= ≡ + =

= ≡ + =  

 
 

5) Homogeneous Helmholtz Equation (eigenvalue equation) for the spatial Functions ( ) ( )E r ; H r : 
 

For the harmonic time dependence eiωt  the time-derivation operators transform as  
 



                                                                                                                                                                                                                                 K 3 
 

______________________________________________________________________________________________________________________________ 
 

Electronics Laboratory:   Optoelectronics and Optical communications                                                                           19.02.2010 

3-16 

i
t t

2
2

2;∂ ∂
⎯⎯→ + ω ⎯⎯→ − ω

∂ ∂
    

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )E r H r k E r k H r

Def k(ω)
k (ω) n0 2 22 2

2 2
2 2

0; 0 0 ; 0

.:

Δ + μεω = Δ + μεω = ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→ Δ + ω = Δ + ω =

μεω =
=

 
 
                                                                                                                 Helmholtz Equation (eigenvalue equation) 
 

Eigenvalue equation with the eigenvalue k and the eigenfunction ( ) ( )E r , resp. H r  and a generic  
 

plane wave solution:                                  with the propagation vector k and k 2 /π λ=  
 
Spherical waves would be an other simple solution. 
 
Question: do we have to solve the Helmholtz-Equation for all 6 field component ? 
 
 
For a simplification the cylindrical geometry (homogeneous in the z direction) suggests a formal decomposition of the 
vector operators into spatial z- (longitudinal) and T - (transversal, x,y) operators and vectors: 
 

Definition:   T zx y z x y z

2 2 2 2 2 2

2 2 2 2 2 2

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
Δ = + + = + + = Δ + Δ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 

( ) ( )
( )

( ) ( ) ( ) ( )

T z T z

T z

T z T z T z T z

k E k H

formal decomposition k k k scalar

k k E r k k H r
T Z

2 2

2 2 2 2

2 2 2 2

k , k  is not defined yet

0 ; 0

:

0 ; 0

Δ + Δ + = Δ + Δ + =

= + = μεω =

Δ + Δ + + = Δ + Δ + + =

 

( ) jk rE r ~ e−
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Solution-“Ansatz” for the Helmholtz-Equation for a  z-guided wave: 
 
 

Transverse field pattern is propagated in the z-direction 
 

Guided wave “Ansatz”:  ( ) ( ) ( ) ( ) ( )z zjk z j t jk zj t j t
T TE r ,t E r e E r e e E r e right propagatingωω ω− −= = =  

 
Inserting the guided wave into the Helmholtz-equations: 
 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )( )
z

z z z z z z

jk zj t
T z T

jk z jk z jk z jk z jk z jk z
T T z T T T T z T T

k E r k H r

k E e E r E r e

E r e E r e k E r e E r e k E r e k E r e

2 2

2

2 2 2

0 ; 0

0 dropping and using the assumption 

0

−ω

− − − − − −

Δ + = Δ + =

Δ + Δ + = =

Δ + Δ + = Δ − + =

 

 

( ) ( ) ( )( ) ( ) ( ) ( )zjk z
T z T T z T T

z TDef
k k E r e k k E

k k
r k E r

k

2 2 2 2 2

2 2 2.:
0−Δ + − = Δ + − = Δ + =

− =
 

 
longitudinal (z) and Transverse (T) Helmholtz-Equation for cylindrical waveguide:  
 

(similar procedure for the H-field) 
 
 

    

( ) ( )

( ) ( )
T T

T T

z T

k E r

k H r

k k k

2

2

2 2 2

0

0

Δ + =

Δ + =

− =

 

 

The Eigenfunctions ( ) ( )E r k resp H r k, , . ,   are called the modes of the field. 

Eigenvalue problem for kT and kz with  
 

the Eigenfunctions ( ) ( )E r k resp H r k, , . ,     
( ) T T

T
ik rSolution : E r ~ e

nontrivial  



                                                                                                                                                                                                                                 K 3 
 

______________________________________________________________________________________________________________________________ 
 

Electronics Laboratory:   Optoelectronics and Optical communications                                                                           19.02.2010 

3-18 
 

Resp. :   
( ) ( )

( ) ( )
T T T

T T T z T

k E r

k H r with k k k

2

2 2 2 2

0

0

Δ + =

Δ + = − =
 

 
 
For the z-dependence we have assumed: 
 

  ( )T T zwith k r k k
2 2 2 2= ω με = +       

 
 
 

Solution space of the eigenvalues kT and kz for a given k(ω): 
 

k is per definition real and positive ! 
 
1) kz = real    z-propagating wave  (desired) 
    kT  real or imaginary   transverse oscillatory or decaying wave 
 
2) kz = complex    z-decaying wave 
    kT  real or imaginary   transverse oscillatory or decaying wave 
 
3) general case:  kz and kT are imaginary fulfilling ( ) z Tk k k2 2 2ω = +  
 
See the discussion for planar film WG in chap.3.4.2. 
 
 
 
 
 

   ( ) z zikE r ~ e  
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                                                                  1D  

                                      n1                                1B  

                                         ne  
                                                                            z 
 
 
                                2D                   n2 

                                                2B  

The eigenvalue equation for H and E are decoupled, but the 2-fields are related by boundary conditions ! 
 

 
In addition the solutions must fulfill from Maxwell’s eq. the transversal  
 

boundary continuity conditions at the transverse interfaces 
 
 

)
( ) ( )

)
( ) ( )

n n F

n n F

a Normal components B D are continuous

e B B e D D

b Tangential components E H are continuous

e E E e H H j

2 1 2 1

2 1 2 1

: ;

0 ; 0

: ;

0 ; 0

⊥ ⊥

− −

− = − = σ =

× − = × − = =

 

 

(no proof) 
 
 

 Total guided z-propagating plane wave solution: 
 

The total time- and spatial dependent solutions for the E (H)-field of cylindrical, transverse inhomogeneous WGs from 
the solution of the Helmholtz-equation becomes: 
 
 

 Right (left) propagating wave: ( ) ( ) ( ) ( )( ) ( )( )zT Ti t k r i t k zi t ik r
TE r e E r e Ee eω ω ω ω+ ω = =

∓ ∓
          

 

  with the phase velocity ( ) ( )ph z zv k, /ω = ω ω  
 
                                        standing transverse wave like            z-propagating wave 
                                        Eigenfunction (transverse mode) 
                                                                               
The eigenvalues kT and kZ are not independent but coupled to k(ω) for a given ω. 
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Reminder: 
 

The above plane wave solutions with standing waves in the transverse direction do not represent not all possible wave 
solutions in the WG structure. 
We assumed guided waves along the z-axis in the “solution-Ansatz” reducing the solution space of the problem artificially. 
 
 
Interpretation of the solutions: 

• the transverse Helmholtz-Eq. defines an Eigenvalue-problem for the propagation vector kT(ω) resp.  kz(ω) 
• kZ describes the spatial dependence in the z- , kT the transverse direction 
• the longitudinal propagation constant kz(ω) is influenced by the transversal solutions kT , resp. by the 

transverse dielectric WG structure, because T zk k k= +2 2 2  must hold.   

  But k(ω) is also a material property. 
• kz(ω) and kT(ω) will define the frequency dependence of the propagation properties  
    mode-dispersion relation kz(ω) 
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3.3.2 Separation of Longitudinal and Transversal Field components: 
 

The next step is to see if we have to solve the Helmholtz equations for all 6 vector components or if there are 
relations between them reducing the number independent variables. 
 

The solution of the EM-vector field has 6 vector components (Ex, Ey, Ez, Hx, Hy, Hz), which are not all independent. 
 

  
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
T T i T T i

z z i Z z i

k E r k H r i x y z

k E r k H r

2 2

2 2

0 ; 0 , ,

0 ; 0

Δ + = Δ + = =

Δ + = Δ + =
     Helmholtz-equations 

 

Question: Possibility to solve for a fraction of components (eg. 2 out of 6) and derive the rest by mutual relations ? 
 

                  What is the minimum number of independent field components ? 
 

Without prove (appendix 3 B) we state that any vector field v  satisfies the following 2 universal vector relations 1) , 2): 
 

            )
)

T Z T Z z

T z z

z z z z

v v v v v e
v e v e

e v e v e

1

2

= + = +

= × ×

= ⋅ ⋅

 

 

The equations 1) and 2) define relations between longitudinal and transversal field components  T Zv v v,  allowing 
the reduction of the number of independent field components. 
 

T- and z-decomposition of the vector-fields: 
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

0 0 0T Z x y z

T Z

E r E r E r E ,E , , ,E

H r H r H r

= + = +

= +
 

 
              x 
 
 

         TE E  
 
 
 

                           Z ZE k                z 
 
                      y 

π/2
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T- and z-decomposition of vector-operations: 
 

Expressing the vector-operations in Maxwell’s-equations for a field decomposed into transversal and longitudinal 
components T Z T Z zv v v v v e= + = + :  (without proof, appendix 3 B) 
 

, , , ,0 0,0,

:

T Z

T z

x y z x y z

grad s s e s
z

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
∇ = = ∇ + ∇ = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∂
∇ = ∇ + ⋅

∂

  

( )( )

:

:

T T z

T T z z T z T z

div v v v
z

rot v v e e v v e
z

∂
∇ ⋅ = ∇ ⋅ +

∂
∂⎛ ⎞∇ × = ∇ ⋅ × ⋅ + ∇ − ×⎜ ⎟∂⎝ ⎠

    

 
1) replacing the vector operators T Z∇ = ∇ + ∇ in Maxwell’s-equations, eg. for E  leads to: 
 

( )( ) ( )T T z z T z T z z TE E e e E E e i H i H H
z

∂⎛ ⎞∇ × = ∇ ⋅ × ⋅ + ∇ − × = − ωμ = − ωμ +⎜ ⎟∂⎝ ⎠
 

 

2) separating into transversal (T) and longitudinal (z) components: 

( )

( ) ( )

*

**

T z T z T

T T z z

E E e i H t
z

E e i H l

∂⎛ ⎞∇ − × = − ωμ⎜ ⎟∂⎝ ⎠

∇ ⋅ × = − ωμ
 

3) vector multiplying  ez × (*) and using ez × vT × ez = vT   and applying  ∂/∂z → – i kz  gives: 
 

                  ( )z T T z z Tk E i E e H− ∇ = −ωμ ×  
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4) from the second equation (**) by using  vT × ez = – ez × vT , we obtain: 
 

( )T z T ze E i H∇ ⋅ × = ωμ  

Applying the same transforms to the H-field results in the 
 
 

Maxwell’s-equation separated by transversal and longitudinal vector-operators: 
 
Vector relations transversal and longitudinal field components 
 
 

( )
( )

( )
( )

.1

.2

.3

.4

z T T z z T

z T T z z T

T z T z

T z T z

k E i E e H eq

k H i H e E eq

e E i H eq

e H i E eq

− ∇ = −ωμ ×

− ∇ = ωε ×

∇ ⋅ × = ωμ

∇ ⋅ × = − ωε

         (3.41)-(3.44).       

 

 
 
 
 
 

Solution-Procedure for Maxwell’s equations: 
 

Concept: 
 
Solve Helmholtz-Eigenvalue equations (if possible) for the longitudinal EZ- and HZ-components and the determine 
the transversal components ET and HT by the relations  (eq.1-4). 

Interpretation: 
 

• 4 relations between transversal and longitudinal field components 
    4 relations and 6 variable   
      only 2 independent field variables 
• the 4 other dependent field variables can be derived from the 2 

independent ones 
 we chose the longitudinal components Ez, Hz as 

       independent field variables 
 



                                                                                                                                                                                                                                 K 3 
 

______________________________________________________________________________________________________________________________ 
 

Electronics Laboratory:   Optoelectronics and Optical communications                                                                           19.02.2010 

3-24 
 

1) Elimination of the 4 transversal field components (ET, HT)   Ez and Hz are independent field variables (no proof) 
 

         
( ) ( )
( ) ( )

2

2

0

0

z TT T

T T z T

E r

H r

k

k

Δ + =

Δ + =
   2-dimensional Helmholtz-Equation for longitudinal EZ, HZ  (eigenvalue equation for kT) 

 
 
 

2) Solve for  EZ, HZ and kT(ω)    kT , EX, HX, EY, HY from the eigenvalue equation obtained from the matching of the 
boundary continuity conditions 

 
3) Express transversal field components ET, HT by the longitudinal Ez, Hz: 
 
 

        

( ){ }

( ){ }

2

2

1

1

T z T z z T z
T

T z T z z T z
T

E k E e H
ik

H k H e E
ik

= ⋅∇ − ωμ × ∇

= ⋅∇ + ωε × ∇
     longitudinal z  (kZ, EZ, HZ)  transversal T Transform  (kT, ET, HT) 

 
 
4) Using the relation between k, kT, kZ provides the calculation of the longitudinal propagation constant kZ: 
 
    Making use of the continuity equations for the transversal and longitudinal fields gives an Eigenvalue equation for: 
 

 2 2 2 2 2( )T z T zk k k r k= − = ω με −     (3.30)       ( ) ( )2 2
z Tk k kω = ω −  

 
 
5) matching the source boundary conditions will provide the absolute values for Hz and Ez 
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Categories of Wave Solutions  (Modes): 
 
 
 

• TM-Wave (transverse magnetic wave) or E-wave  Ez ≠ 0, Hz ≡ 0:  
Guided wave with only longitudinal E-field and a purely transverse magnetic field.  
For the solution we need only to solve the Helmholtz-equation for the Ez-component. 
 
 
 

• TE-Wave (transverse electric wave) or H-wave  Hz ≠ 0, Ez ≡ 0:  
Guided wave with only longitudinal H-field and a purely transverse electric field. For the solution we need only 
solve the Helmholtz-equation for the Hz-component. 
 
 
 

• Hybrid EH- or HE-Wave (transverse electric wave) or H-wave Ez ≠ 0, Hz ≠ 0: 
Guided wave with both longitudinal E- and H-fields (EH: Ez is dominating, HE: Hz is dominating). For the solution we 
need solve both Helmholtz-equation for the Ez- and Hz-components. 
 

 
 
 

• TEM-Wave (transverse electromagnetic Wave)  Ez ≡ 0, Hz ≡ 0:  
Guided wave with only transversal E- and H-fields. We can not solve the Helmholtz-equation for the Ez- and Hz-
components. For TEM-waves we must directly solve the Helmholtz-equation for the transverse components. 
 

( )2 0T T Tk EΔ + =  

TEM-wave often occur in weakly guiding WGs with small index difference between core and cladding. 
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Summary: Solutions for cylindrical waveguides 
 

• For waveguide the Helmholtz-equations define the eigenvalue-problem with eigenvalue  kT  resp. kz, being 
the transverse and longitudinal propagation constants and the Eigenfunction of the transversal field 
distribution E(rT), H(rT). 

• The longitudinal Helmholtz-equations for the longitudinal components Ez and/or Hz are formulated for the 
reduction of field variables. Using the field boundary conditions the solutions are evaluated. 

 

• Depending on the selection of the field components – only Hz , only Ez  or Ez and Hz combined – the 
corresponding mode-type is determined (TE-, TM-, or hybrid HE- bzw. EH-modes). 

• The transversal components ET and HT are calculated from the primary solutions of EZ and HZ . 

• Enforcing the boundary conditions for the longitudinal z- and for the corresponding transversal T-components 
provides the necessary Eigenvalue-equation for the propagation constants kT and kz. 

• TEM-Waves are solutions of the simple transversal potential problem alone.  
   This type of wave modes occurs in dielectric waveguides with very small index differences between core and 

cladding or in metallic multi-conductor waveguides. 

• Hybrid modes are the most general solution for transverse inhomogeneous dielectric waveguides. 

• Each transverse inhomogeneous, dielectric waveguide has transverse Eigensolutions,  TE- or TM-Modes      
(no proof). 

 
 
Observe that we only considered the the z-guided, confined modes by the chosen solution-Ansatz. 
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Concept of analysis procedure: what do we want to achieve ? 
 
 

Before we derived the Helmholtz-equation of the Eigenvalue-type for a homogeneous region 
 
In the following we will match the Eigenfunctions of the Helmholz-equations of the different dielectric regions i 
of a given waveguide structure for a common z-propagation vector kZ  at all interfaces of all regions. 
 
The matching conditions provide a nonliner eigenvalue equation for the common propagation constant 
kZ(ω) for a given ω.  
 
The in general nonlinear function kZ(ω) is the dispersion relation of the WG describing the influence 
(modification) of the geometrical dielectric guiding structure on the linear material dispersion relation k(ω). 
 
The simplest wave structure is the symmetric planar film waveguide n1-n2-n1 which we solve in detail to 
demonstrate the solution procedure and the classification of the different modal solutions. 
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3.4 Planar Film Waveguides               (Repetition 4.sem F&K II) 
 
For optoelectronic devices fabricated by planar IC-processes the generic dielectric planar slab waveguide consists 
of a 2-D core slab of a high refractive index n1 and thickness 2d covered in the x-direction by two “infinitely” thick 
cladding layers of refractive index n2, n3. 

 

Wave guiding occurs only in the yz-plane, - the wave is confined only in the transverse x-direction. 
 

We choose the z-direction as the propagation direction. The problem is homogeneous in the y-direction: y/ 0∂ ∂ =  
 
 

3.4.1 Symmetric planar slab (film) waveguide , n2=n3 
 

For a lossless propagating wave e±jβz (mode) 
kz=β and ki must be real with the restriction: 
 
 
 
 

 kT,i can be real (oscillatory solution in the core) or  
imaginary (decaying solutions in the cladding) 

 

a) Guided TE-Modes  Ez ≡ 0 (assumption), Hz ≠ 0 
 

1)  solve the 1D-Helmholtz-Equation for the  
   Hz(x)-component in the loss-less medium: 

 

( )
2

,

2
2 2 2
T i2 0

T i

T z z

k

k H k H
x

⎛ ⎞
∂⎜ ⎟Δ + = + − β =⎜ ⎟∂⎜ ⎟

⎝ ⎠

       with the longitudinal propagation constant  kz=β   and ni (∀ i = 1, 2) 

 

Ey 

k 
 
EZ, HZ 

( )2 2 2 2 2
T ,i z ,i T ,i i ik k k kβ ω+ = + =  
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0 0 0 0
i 0

2 20 ;i
i i i

nk k n k
c

π π
= ω⋅ με = = ω= > = ω⋅ μ ε =

λ λ   (vacuum propagation constant) 

 
1) Solve the Helmholtz eq. for the core and cladding layers separately and match boundary conditions at interfaces 
 

2) Hz(x) must be symmetric or anti-symmetric in the x-direction leading to harmonic solutions of the Helmholtz-
equation (plane waves) of the form  Tijk xe∓   with the transverse wave number  kTi

2 = ki
2 – β 2 resp. β 2 = ki

2 – kTi
2  for 

the medium i.   β  must be the same for all layers (core and cladding). 
 

3) Useful optical wave for signal propagation require a transverse confined mode therefore kT must be imaginary in 
the cladding for a decaying transverse cladding field Hz(±∞)=0.  

 

     The field in the core can be oscillatory and kT real. 
 

       eigenvalue kz(ω)=β(ω) must fulfill the interval inequality (solution space): 
 

           ( )1 0 1 2 0 2 k   k ·n    k   k ·nβ ω= > > =         resp.       ( ) ( )0 1 0 2z/ c n k / c nω β ω ω ω> = >  
   decaying cladding wave         symmetrie condition 
 
Interpretation:  the resulting mode field distribution must “balance” the different phase velocities of core and cladding. 
 
 
Solutions of the transverse Helmholtz-equation: 

• core area :  n = n1 ,   k1 > β ,   | x | < d    oscillatory solutions 

( )
( )

2 2
1

2 2
1

sin
( )

cos
z

x k
H x A

x k

⎧ ⎫⋅ − β⎪ ⎪= ⋅ ⎨ ⎬
⎪ ⎪⋅ − β
⎩ ⎭

   ;   EZ=0                    A, B are arbitrary unknown amplitude constants 
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• Top cladding :  n = n2 ,   k2 < β ,   x > d    exponential decaying solution 
( ) 2 2

2( ) x d k
zH x B e− − ⋅ β −= ⋅      ;  EZ=0                      field decay constant  k2 2

21 / β −   

• Bottom cladding :  n = n2 ,   k2 < β ,   x < – d    (+ for the cos-solution in the core)  exponential decaying solution 

( ) ( ) 2 2
2( ) x d k

zH x B e + ⋅ β −= − + ⋅      ;  EZ=0                         (3.58). 

2) Boundary conditions at the core-cladding-interface requires the continuity of the tangential field 
components, that is the continuity of Hz and also for Ey with EZ=0.  
 

These equations couple the core and cladding field together (constants a A and B). The transverse field 
components are obtained by the relations with EZ=0: 

 

                                                                                              (1-D and EZ=0)   
( )

2 2

2 2

; 0 ; 0

; 0 ; 0

ωμ ∂
= ⋅ = =

− β ∂

− β ∂
= ⋅ = ← ≠

− β ∂

y z X z
i

x z y Z
i

iE H E E
k x

iH H H H x
k x  

 
 

Using the basic assumption for the TE-mode Ez ≡ 0 leads to the conclusion that Ex - , resp. the Hy -component vanish 
because the y-components are constant ( y/ 0∂ ∂ = ). 
 
 

The E-field of the TE-mode has only a Ey -component and the H -field has only a Hz -and a Hx -component. 
 
Remark: 
 

It can be shown, that the continuity of Ey also fulfills the continuity of Hz by using the relation: 
 

( ) ( )X Z2 2

jH x H x
k x

β
β

∂
= −

− ∂  

T , 0, 0
x y z

⎛ ⎞
⎜ ⎟
⎝ ⎠

∂ ∂ ∂∇ = = =
∂ ∂ ∂  

( ){ }

( ){ }

2

2

1

1

T z T z z T z
T

T z T z z T z
T

E k E e H
ik

H k H e E
ik

= ⋅∇ − ωμ × ∇

= ⋅∇ + ωε × ∇
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Tangential continuity conditions for Hz at the interfaces x= ±d  relates A and B:     ( (+) for the cos-solution) 
 

( )
( )

( )
2 2

1

2 2
1

sin
( , )

cos
z

d k
H d A B

d k

⎧ ⎫± ⋅ −⎪ ⎪± = ⋅ = ± +⎨ ⎬
⎪ ⎪⋅ −
⎩ ⎭

β
β

β
 (c1).       B=B(A) 

Tangential continuity conditions for Ey at the interfaces x= ±d:  ( (±) for the cos-solution Hz) 
 

( )
( )

( )
2 2

1
1 2

2 2 2 22 2
1 21

cos
( , )

sin
y

d ki A i BE d
k kd k

⎧ ⎫⋅ −ωμ ⋅ ωμ ⋅⎪ ⎪± = + ⋅ = + ±⎨ ⎬
− β −⎪ ⎪⋅ −

⎩ ⎭

β
β

ββ∓
   (c2) 

Hz -field distribution of the fundamental mode of the 
symmetric slab waveguide: 
 
decaying 
 
 
oscillatory 
 
 
decaying 

                       x   
 
                                      H                 z 
 
                 Hx 
  y                                   Hz 
          Ey 
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3) Eigenvalue-Equation for the longitudinal propagation constant β:   
 

the continuity equations (c1) and (c2) must be fulfilled simultaneously and for non-magnetic dielectrics μ1 = μ2 = μ. 
Eliminating A and B by a division of eg.(c1)/(c2) leads to the eigenvalue-eq. for β: 

 
 

For the sin-function (symmetric, even for Ey) in the core:  

( )( ) ( )
( )

2 2
2 22

1 22
1

tan
k

d k
k

β −
⋅ − β ω =

−

ω

β ω
         (3.63)   Transcendental Eigenvalue Equation for β(ω)= ? 

and for the cos-function (anti-symmetric, odd for Ey) in the core: 

( )( ) ( )
( )

2 2
2 22

1 22
1

cot
k

d k
k

β ω
β

−
− ⋅ − ω

− β ω
=        (3.64)   Transcendental Eigenvalue Equation for β(ω)= ? 

which are only relations between: 
 

- the propagation constants β(ω) and ki(ω)  (containing ω and ni) and  
- geometrical parameters (d). 
 
 
 
 
 
 
For a graphical solution of the Eigenvalue-equations we substitute the functions  ξ, η: 

( )
( )

2 2 2
1 1

2 2 2
2 2

0

0

T

T

d k d k

d k d k

ξ ω = ⋅ − β = >

η ω = ⋅ β − = >
    (3.65)-(3.66)     solutions for η,ξ>0  are in the 1.quadrant of the η-ξ-plane 

 

  Solutions for real β (undamped propagation in in z-direction) exist only if   2 1k < β < k  
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( ) 2 2
1 1/ξ ω = − β = Td k k    is the transverse wave number kT1 of the core n1  

( ) 2 2
2 2/ Td k kη ω = β − =    is the inverse field decay constant in the claddings n2 

 
 

The transcendental Eigenvalue-equations for β(ω) have the generic forms: 
 

           ( ) ( ) ( )( ) ( ) ( ) ( )( )sin : tan ; cos : cotη ω = ξ ω ⋅ ξ ω η ω = −ξ ω ⋅ ξ ω    (3.67            1. equation containing η , ζ 
 
 
 

For the graphical solution we define the structure parameter V(ω): 
 

( ) 2 2 2 2 2 2 2 2 2 2
1 2 0 1 2 0 1 2 1 22 / /V d k k k d n n d n n c n nω = ξ + η = ⋅ − = ⋅ − = π λ ⋅ − = ω ⋅ −    (3.69).     2. equation containing η , ζ 

 

V combines only the structural parameters of the waveguide d, n1, and n2 with the wavelength λ0, resp. ω of the EM wave 
 
For a given optical frequency ω (resp. wavelength λo) 1) the eigenvalue equations and 2) the condition V(ω) have to be fulfilled 
simultaneously in the ξ − η -plane: 
 
 

 1) ( ) ( )tan cotη = ξ ⋅ ξ η = −ξ ⋅ ξ        →  ( )η ξ -tan or cot-curves      (tan and cot are periodic in p !) 
 

 2) ( ) 2 2 2 2
1 2V n n

c
ω

ω = ξ + η = ⋅ −                →  circles with radius V(ω) 
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   SM !                                                                          even symmetry mode  •              odd symmetry mode  • 
 
Graphic solution:    ( ) ( ) ( )andξ ω η ω β ω  
 
- For large ω resp V many odd and even modes exist  -  multimode operation 
 

- For small ω resp V only one even modes exist  -  singlemode (SM) operation ! 
 

- small core diameter d or small index difference favour singlemode operation 
 

- cut-off:  η=0   β=k2=n2k0  (“cladding mode”) 
 

- asymptotic behaviour:  ω → ∞   V → ∞   ( ) 2 2
1/ d k finiteξ ω = − β =  →  β=k1=n1k0   (“core mode”) 

Graphical representation of the two eigenvalue 
equations and the circles for constant V(ω): 

 

Each intersection (• ; •) represents the ,η ξ-solution values for 
a particular odd or even propagating TE-mode at a given  
frequency ω. 
 

 ( ) ( ) k k
d d

2 2
2 2
1 2, ξ η⎛ ⎞ ⎛ ⎞β ω = β η ξ = − = +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
  

        Dispersion-Relation 
 
           zero-frequency cut-off !                             finite frequency cut-off 

V(ω)=constant 

even      odd       even         odd 

ω→∞

• 
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What do we learn:  Existence and Propagation of Modes 
 
• Guides modes are z-propagating wave with planar phase fronts in the transverse x-y-plane and a confined 

field variation in the transverse x-direction (the y-direction is homogenous) 
 
• The field distribution in the transverse direction (x) must be such that a real propagation constant β(ω) 

results, which is the “same” for core and claddings (qualitative). 
 
• The structure parameter V(ω) determines  
 

1) if there exists no, one or multiple modes (solutions, intersections= number of modes)  and  
2) the values of the corresponding propagation constants β(ω). 

 

Large values of V, resp ω often allow multiple modes to coexist (depending if they are excited by a source) 
 

For small values of V<<1, resp. ω (small radius of V) only one mode can propagate, the TE1-mode, resp. H1-mode. 
This mode exists even for ω  0  (mode without a cut-off) 

 
 
• Dispersion of the modes:   

 

Modal dispersion:  βi(ω) 
 

if V(ω), resp. ω changes then the propagation constant β(ω) and the phase propagation velocity ( )phv ω = ω β/ (ω) 
varies, - a particular mode can travel at different velocities, depending on its frequency ω. 
If β∼ω the phasevelocity is constant  (dispersion free, no modal pulse broadening) 
 
Intermodal dispersion:  βi(ω) ≠ βk(ω) 
 

if multiple modes i coexist with different propagation constants βi(ω) then each mode may propagate at a different 
phase velocity vph,I and the total field of all modes may show large dispersion. 
(excitation of multiple modes) 
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Dispersion curves of modes:  β(ω) and neff(ω) 
 

Definition: of the modal effective index of refraction neff: 

 ( ) ( ) ( ) ( ) ( )eff eff effk n n 0

0

2
2

π λ
β ω = ω = ω → ω = β ω

λ π  

                                                                                                                                                                     
 
 
 
 
 
 

 
 
 
 

Transformation:
β(ω)     neff(V) 
 
V ~ ω 
 

neff= β(ω)/ωc0 
 
             

forbidden propagation 

Unconfined modes 

even                            odd         

n1 
 
 
 
 
 
 
 
 
 
 
 
n2 

neff=β/k0 

Schematic propagation constant β(ω) versus  
optical frequency ω  (Dispersion relation) 
β(ω)    provides information about dispersion 

Effective index of refraction neff(f) of the symmetric slab WG 
vers. optical frequency f for the modes TE1 (H1), TE2 (H2) and TE3 
(H3) 
 

neff(ω)    provides information about dispersion 
 

(corresponding mode fields at 600 THz see next foil). 

E

β(ω

core: β=k1(ω)=n1k0 
 
         cladding: β=k2(ω)=n1k0
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Interpretation of neff and β: 
 

• Dispersion curves show that modes exist in general in a frequency range from ωmin,i (cut-off frequency) to infinity ω→∞. 
 

 

• At cut-off β approaches k2 , resp. neff approaches n2 of the cladding of the cladding – the decay of the cladding field 
becomes small and the mode field mostly propagates in the cladding. 
 

At high frequencies above cut-off,  β  k1 and neff   n1  
the decay of the cladding field is strong and the mode is 
 almost completely confined to the core. 
 

• neff   ∈ [n2,  n1], 

                    

0 0

2 1

0 2 0 1

2 1k keff

k k
k n k n
n n nβ β

≤ β ≤
⋅ ≤ β ≤ ⋅

≤ ≤ → =
 

 
• The eigenvalue equation in the η − ξ -plane show 

that for  ξ=jπ/2 , j=0, 1,2, 3, ...  →  η=0. 
 

These are the cut-off points where V(ω)= ξ=jπ/2 and β=k2. 
 
p=even  (p=0, 2,4, ..)  symmetric even modes, Hp+1 
 
p=odd   (p=1, 3, 5, ..)  asymmetric odd modes Hp+1 
 
p is the mode index (see next section) 
 

(p-1) is the number of nodes of the mode E-field 
 

Normalized transversal field distributions  (a) Hz(x) and (b) Ey(x) or 
the modes TE1 (H1), TE2 (H2) und TE3 (H3) at 600 THz. 
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Mode classification (mode number) and mathematical formulation of the eigenvalue problem: 
 

a) Guided TE-Modes  Ez ≡ 0, Hz ≠ 0 
 

Replacing η by V(ω) in the eigenvalue equation we obtain for the variable ( )ξ ω : 

( )
( )

2 2 tan
cot

V
⎧ ξ ⋅ ξ

− ξ = ⎨−ξ ⋅ ξ⎩
 (3.71). 

Using the addition theorem for tan- / cot-functions  (periodicity of tan, cot: π) : 
( )
( )

cot :
tan

tan :2
⎧− α ∀⋅π⎛ ⎞α − = ⎨⎜ ⎟ α ∀⎝ ⎠ ⎩

p oddp
p even       (3.72)    p is the mode index 

we eliminate the cot-function in the eigenvalue equation and combine both equations to. 

2 2 tan
2

pV ⋅π⎛ ⎞− ξ = ξ ⋅ ξ −⎜ ⎟
⎝ ⎠

         p=0, 1, 2, …             (3.73), 

Solving the eigenvalue equation for the eigenvalue ξ : 

2

2Arctan 1
2

V p⎛ ⎞ ⋅π
ξ = − +⎜ ⎟⎜ ⎟ξ⎝ ⎠

       p=0, 1, 2, ...  = mode index         alternative form:  C(β,ω)=0 

  p serves as a counting index to classify the modes TEp+1- resp. Hp+1-modes.  
 
With ξ(ω) we calculate β(ω) using ( ) ( ) ( )2 2

1d kξ ω = ⋅ ω − β ω  

 

Repeating the previous procedure we can investigate also the TMp+1- resp.  Ep+1-modes. 
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b) Guided TM-Modes  Hz ≡ 0, Ez ≠ 0       (self-study) 
 

Repeating the Helmholz-equation for the longitudinal Ez-field component Ez(x) ≠ 0, Hz ≡ 0:  
2

2 2
i2 0zk E

x
⎛ ⎞∂

+ − β =⎜ ⎟∂⎝ ⎠
      Ez(x) 

Using the similar formal solutions for the longitudinal component Ez(x), we can determine the transverse 
field components from the derivation of Ez: 

2 2

2 2

x z
i

y z
i

iE E
k x

iH E
k x

− β ∂
= ⋅

− β ∂
− ωε ∂

= ⋅
− β ∂

         Ez(x)   Ex(x), Hy(x) 

We assumed already Hz ≡ 0  and again the Ey -, resp. the Hx -components vanish, because the field components in 
the y-direction are constant, resp. ∂ /∂y → 0.  
 

 The H-field of the TM-modes has only one Hy -component and the corresponding E-field is composed of only the 
an Ez- and Ex -component. 

 
The field continuity boundary conditions between core and cladding lead again to the formulation of the eigenvalue 
equation: 

• Continuity of the Ez -component:   ( (+)-sign for the cos-solution) 

( )
( )

( )
2 2

1

2 2
1

sin
( )

cos
z

d k
E d A B

d k

⎧ ⎫± ⋅ − β⎪ ⎪± = ⋅ = ± +⎨ ⎬
⎪ ⎪⋅ − β
⎩ ⎭

 (3.78). 
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• Continuity of the Hy -component:   ( (±) –sign for the cos-solution for Ez) 

( )
( )

( )
2 2

1
1 2

2 2 2 22 2
1 21

cos
( )

sin
y

d ki A i BH d
k kd k

⎧ ⎫⋅ − βωε ⋅ ωε ⋅⎪ ⎪± = − ⋅ = − ±⎨ ⎬
− β β −⎪ ⎪⋅ − β

⎩ ⎭
∓

   (3.79). 

 

For the TM-modes ε1 = n1
2 ≠ ε2 = n2

2 we write the eigenvalue equation slightly in a different way as for the TE-mode: 

( )

( )

2 2
2 2 21

1 2 2
2 1

2 2
2 2 21

1 2 2
2 1

tan

cot

k
d k

k

k
d k

k

β −ε
⋅ − β = ⋅

ε − β

β −ε
− ⋅ − β = ⋅

ε − β

 (3.80)-(3.81). 

Using the same substitutions for ξ(ω) and η(ω) and introducing υ we obtain: 
2

2 2 2 2 1 1
1 2 2

2 2

nd k d k
n

ε
ξ = ⋅ − β η = ⋅ β − ϑ = =

ε  (3.82)-(3.84) 

eliminating η by using the definition of V(ω) results in the eigenvalue equation for the TMp+1- resp. the Ep+1-modes: 

2

2Arctan 1
2

V p⎛ ⎞ ⋅π
ξ = ϑ ⋅ − +⎜ ⎟⎜ ⎟ξ⎝ ⎠

 (3.85), 

 

• It can be shown that only one eigenvalue exist for each TM-mode if V > p π / 2 
 

• TE- and TM-modes are degenerated for symmetric slab waveguides at cutoff, meaning that a TM and TE-solution with 
the same β exist at the cutoff-frequency ! 
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3.4.2  Asymmetric planar slab waveguide  (self-study, exercise) 
 

Real film waveguides are often asymmetric in the sense that the top-cladding has a refractive index n3 which is 
different from the index n2 of the bottom-cladding ( eg. substrate). 
 

The waveguide core has an index n1 > n2, n3 and a thickness d (not 2d as before !). 

 

Asymmetric plane film waveguide .(n2 ≥ n3) with propagation direction z. 

Applying the same formalism as for the symmetric WG it is useful to define 2 structure parameters V(ω) and ( )V ω  because 
the asymmetric slab-waveguide has 2 different dielectric interfaces n1-n3 and n1-n2  (2 different conditions for total reflection). 

( ) ( )2 2 2 2
0 1 2 0 1 3;V x k d n n V x k d n n= ⋅ − = ⋅ −  (3.86)-(3.87). 

1-2 Interface                               1-3 Interface 

k3=k0n3         top cladding 
 
 
 
 
 
 
k1= k0n1        core 
 
 
 
 
k2= k0n2         bottom cladding 
                     (eg. substrate) 

Assumptions: 
 

• Propagating guided wave 
in z-direction 

 
• Layer structure in the  
     x-direction 
 
• Homogeneous in the 

y-direction 
0

y
∂

=
∂  
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a) Guided TE-Modi   Ez ≡ 0, Hz ≠ 0 
The Helmholz-equation for the Hz –component becomes: 

2 2
2 2 2 2 2 2
i Ti Ti i2 2 0 withz zk H k H k k

x x
⎛ ⎞ ⎛ ⎞∂ ∂

+ −β = + = = − β⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
          i =, 1, 2, 3 

The general harmonic solutions in the transverse direction x have the form:  ( )Tii k xe± −Ψ
 

 

The new phase parameter ψ takes into account that the solution may be asymmetric in the x-direction 
 
Typ of transverse mode solutions: 
 

Depending on the value of β relative to ki , resp. on the value of kTi we distinguish 
 

• kTi = real  (β < ki , eg. in the core with k1=k0 n1)    undamped oscillatory solution (oscillatory standing transverse wave) 
 

• kTi = imaginary  (β > ki , eg. in the claddings with eg. k2=k0 n2)     damped exponential (decaying standing transverse 
wave) 

 

For guided (confined in the x-direction, decaying in the cladding) waves the eigenvalues β must lay in the intervall   
 

( )2 3 1max k , k kβ< <  
 

To characterize the refractive index properties at the two interfaces we define again as before: 
2 2

1 1 1 1
2 2

2 2 3 3

;n n
n n

ε ε
ϑ = = ϑ = =

ε ε  (3.92)-(3.93). 

Again we introduce the abbreviations and,ξ η η for the eigenvalue equations:  
2 2 2 2 2 2

1 2 3; ;d k d k d kξ = ⋅ − β η = ⋅ β − η = ⋅ β −  (3.94)-(3.96), 
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2 2 2 2 2 2
1 1 2 2 3 3; ;T T Tk k k k k k= − β = β − = β −     (Observe the interchanged definition of kT2 and kT3 compared to kT1!) 

 
Transverse Hz-field profile of z-propagating TE-Modes  (without proof):  
 

From the solution of the Helmholtz-equation: 

• Core :  n = n1,   k1 > β,    x < d 

( )
( )

1

1

sin
( )

cos
T

z
T

k x
H x A

k x
⎧ ⋅ − ψ ⎫

= ⋅ ⎨ ⎬⋅ − ψ⎩ ⎭
                                       (3.97);     oscillatory harmonic function 

• Bottom Cladding :  n = n2,   k2 < β,   x > d 

( )
( )

( )2
sin

( )
cos

Tk x d
zH x A e− ⋅ −⎧ ξ − ψ ⎫

= ⋅ ⋅⎨ ⎬ξ − ψ⎩ ⎭
                               (3.98);    decaying (oscillatory) exponential 

• Top Cladding :  n = n3,   k3 < β,   x < 0 

( )
( )

3
sin

( )
cos

Tk x
zH x A e ⋅⎧ ψ ⎫

= ⋅ ⋅⎨ ⎬ψ⎩ ⎭
                                         (3.99);    decaying (oscillatory) exponential 

Appling the boundary conditions (continuity eq.) at the two interfaces for the Hz - and the transverse Ey -components 
leads to the  
eigenvalue equation for the TEp+1 -  resp. Hp+1 -mode: 

2 2

2 2Arctan 1 Arctan 1V V p
⎛ ⎞⎛ ⎞

ξ = − + − + ⋅π⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ξ ξ⎝ ⎠ ⎝ ⎠
  (3.100)  mode index:  p=0, 1, 2, ...alternative form:  C(β,ω)=0 
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Solving for ξ(ω) we get finally the propagation constant β(ω) of mode p+1:   
 

  ( ) ( )p k
d

2
1,

ξ ω⎛ ⎞
β ω = − ⎜ ⎟

⎝ ⎠
 

 
 
Cut-off-Condition:   (η(ω)=0) 
 

In view that we have 2 structure parameters ( ) ( )V and Vω ω  for the top- and bottom core-cladding interface it is 
obvious that the interface with the smaller index difference violates the total reflection condition first (one-sided 
leakage of the mode into the corresponding cladding). 
 
 

The detailed discussion of the cutoff-condition Vp for TEp+1 -  resp. Hp+1 -modes becomes  (without proof) 

1Arctan
1pV V p

⎛ ⎞ϑ − ϑ
> = ⋅ + ⋅π⎜ ⎟

⎜ ⎟ϑ −ϑ⎝ ⎠
 (3.101). 

Asymmetric film waveguides with ϑ ≠ ϑ  and subsequently V > Vp>0 can not guide the fundamental mode p=0, TE1 
for ω=0. (for the symmetric ϑ = ϑ  case  Vp=0 becomes possible) 

 
The transverse mode-shift ψ in the core-solution is determined from the eigenvalue ξ, η as: 

( )tan ξ
ξ − ψ =

η  (3.102) 
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b) Guided TM-mode   Hz ≡ 0, Ez ≠ 0 

Again the Helmholtz-eq. reads as:   
2

2 2
i2 0zk E

x
⎛ ⎞∂

+ − β =⎜ ⎟∂⎝ ⎠
   (3.103), 

resulting in a similar eigenvalue equation: 

2 2

2 2Arctan 1 Arctan 1V V p
⎛ ⎞⎛ ⎞

ξ = ϑ ⋅ − + ϑ ⋅ − + ⋅π⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ξ ξ⎝ ⎠ ⎝ ⎠
  (3.104), 

The modified Cutoff relation becomes: 

Arctan
1pV V p

⎛ ⎞ϑ − ϑ
> = ϑ⋅ + ⋅π⎜ ⎟

⎜ ⎟ϑ −⎝ ⎠
  (3.105). 

 
From the eigenvalue ξ we can calculate the transverse mode shift ψ as: 

( )tan ξ
ϑ⋅ ξ − ψ =

η   (3.106). 

 
 
 
The procedure for the eigenvalue and field calculation can be extended straight forward to more complex dielectric 
multi-layer structures with more than three layers. 
Of course the analytical procedure becomes then rather lengthy and numerical methods are appropriate. 
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3.4.3 Different Types of Modes: 
 

In the previous chapter we restricted ourselves to special mode-solutions  (z-propagating, xy-transverse confined modes) 
 

1) propagating in the z-direction   Zk realβ = =  and  
 

2) where the field energy is confined to the core layer with the highest index of refraction, resp. where the field in the 
claddings decays to zero             Tk imaginary=  

 

Thus this set of solutions are probably not complete. 
 
 

( )

( ) ( )

Ti i

Ti i Ti i

k k n

k k n k k n

= − β = →

= − β = = β − →

2 2
0

2 22 2
0 0

real in the core harmonic solution

imaginary >0 or  =reel >0 in the claddings decaying exponential solution
 

 
 
 
 

With the definitions:     2 2 2 2 2 2
1 1 2 2 3 3T T Tk k k k k k= − β = β − = β −  

 

                                       2 2 2 2 2 2
1 2 3d k d k d kξ = ⋅ − β η = ⋅ β − η = ⋅ β −  

 
 
These requirements lead to the following restrictions of possible β(ω) with respect to ki=ω/cni or ni  for a given ω: 
 
 

  clad corek n k n< β <0 0      propagating and confined modes  (a) 
 
 

corek n0β >    is not possible because β must be complex leading to non-propagating, decaying waves in the z-direction 
 

cladk n0β <   possible, but it leads to non-decaying cladding fields   propagating unconfined radiation modes  (b,c) 
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Confined and unconfined mode-profiles: 

 
Extension to non-propagating modes in the z-direction: 
 

These previous conditions for eigenvalues are equivalent to searching for real eigenvalues ξ and η .  
 

The eigenvalue equation are of the type: 

( )cotw z z= − ⋅  

However this eigenvalue-equation can have in principle complex solutions 
 

 w = u + i v  and  z = x + i y  with  V 2 = z2 + w2=real. 
 

It can be shown these solutions lead to so called leaky modes (Leckwellen) appearing at frequencies below the cut-
off of the waveguide. 
 

Leaky modes are solutions that decay in the propagation direction z , but grow exponentially in the cladding. 
Leaky modes are interesting to describe out-coupling effects of waves from a waveguide. 

Mode profiles for 
 

(a) confined propagating wave 
 

(b) substrate wave (radiation into the substrate) and 
 

(c) unguided wave (radiation into substrate and top-cladding). 

top cladding 
 
 
 
core 
 
 
 
 
bottom 
cladding 
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Categories of propagation constants and effective refractive indices of different modes: 
 
                                                              ns             nf                  nc 

 
 
Die unterschiedlichen Eigenmodi des Filmwellenleiters.  

 
 
 
 
 
 
 
 
 
 
 
 

 
 
forbidden (diverging fields x ±∞ ) 
 
 
 
discrete, guided modes 
 
 
 
 
continuous, unguided modes 
 
 
 
 
 
 
 
 
h=d 0 h x

ε
eff

geführte 
Modi

Leckmodi

Substratmodi

propagierende Strahlungsmodi

evaneszente Strahlungsmodi

ε
f

ε
c

ε
s

neff0
2

neff1
2

neff2
2

0

Substrat Film Deckmaterial

 

neff
2=εeff 

Top Cladding Core 

Guided 
modes 

Substrate Modes 

Substrate

Propagating Radiation Modes 
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Analogy between Guided optical Modes and to Eigenstates in Quantum Mechanics: 
 

There is a formal analogy between the wavefunctions Ui(r) with the energy eigenvalues Ei of bound electrons in a 
rectangular potential well and the transverse wavefunction Ei(rT) of a guided (confined photon) mode i in a step-index 
dielectric waveguide. 
 

   E, V                                                                  n, neff 
 
                                                             V(x)                                                       EZ(x) 
                                                                                           neff 
              Ej                             Ui(x)           
 
                                                                                                                                          n(x) 
                                                                        x                                                                           x 
Time-independent Schrödinger Equation:                   Helmholtz-Equation: 
(1-dimensional)                                                                      (1-dimensional) 
 

( ) i iV x E U
m x

2 2

2 0
2

⎛ ⎞∂⎜ ⎟+ − =
⎜ ⎟∂
⎝ ⎠

                                                ( ) ( )
T z z z z z

n x
k E x k E k E

x x x c

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎛ ⎞∂ ∂ ∂

+ = = + ω με − = + ω −⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎜ ⎟⎜ ⎟
⎝ ⎠

22 2 2
2 2 2 2 2

2 2 2 2
0

0  

Potential V(x):   
( )
( )

x d V x V

x d V x V
1

2

≤ =

> =
         V(x)  -n(x)2       Refractive index n(x):     

( )
( )

x d n x n

x d n x n
1

2

≤ =

> =
 

 

Ansatz:  ( ) ( )
iEj t

i ix t U x e,
−

Ψ =                                               Ansatz:  ( ) ( ) j t
z i z iE x t E x e, ,, − ω=      (separation of variables) 

 
Eigenvalue:   Ei                                 Ei=ħω    kz

2             Eigenvalue:  β=neff ko         
 
Transverse standing matter-wave                                       Transverse standing EM-wave 
for bound particle                                                                 for confined photon 
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3.5 Ridge (Rib) Waveguides 
Practical planar optical waveguides (confinement in x-direction) need an additional lateral (y) confinement to 
separate the optical channels from each other in the film plane. 
 

            2-dimensional dielectric confinement in the 2 transverse directions x and y 
 
                x  
 
 
 
                                                                    ng>nc 
 
 
 
 
 
                                                                                   y 
 

Applying the concept of total reflections in the x- and y-direction lead to the requirements for a 2-D waveguide: 
 

• The core (ng) must be surrounded by claddings (nc) of lower refractive index than the core   ng> nc   
 
 

Technical realizations of 2-dimensional film waveguides (WG): 
 

 

  

(a)  strip WG (Streifenleiter),  
(b)  embedded strip WG (eingebetteter Streifenleiter),  
(c)  rib- or ridge WG (Rippenwellenleiter),  
(d)  loaded strip WG (aufliegender Streifenleiter) 
 
Legend:  
the darker the grey-scale, the larger the refractive index. 
 

nair 
 
 
         ng 
 
nsubstrate 
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Approximation:  Method of the effective refractive index  (example rib waveguide) 
 

In general no analytic solutions exist for these 2-dimensional WG    numerical solution methods or approximations 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Concept of effective refractive index: 
 

• Separation of the 2-dimensional (x,y) cross-section into 2 orthogonal 1-dimensional (x) and (y) 3-layer waveguides 
3-layer WG (I – III)  in the y-direction are approximated by the corresponding eff. Indices NI, NII, NIII. 

 

• Separation of the 2-dimensional mode profile into 2 1-dimensional mode profiles X(x) and Y(y): 
 

    φ (x, y) = X(x)·Y(y)   Separation Ansatz (approximation) 

ns

ng

nc

 
 

 

Scanning Electronmicroscope (SEM) picture of  
a ridge waveguide crossection. 
 

Ridge width is W = 2 μm and ridge height ~1 μm. 
 

Effective index approximation:  derive from the ridge struc-
ture in the xy-plane a 3 layer film WG in the y-direction with 
effective indices NI, NII, NIII of the vertical (x-direction)         3-
layer WG with the real indices ns, ng, nc. 

 
    GaAs 
 
 
 
 
 
 
AlGaAs 
 
 

               NI                   NII                       NIII 

y 

x 
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Description of the effective index method: 
 

1) X-layer profiles: separation of the rib geometry in the y-direction in to 3-lateral sections I, II, III. 
Sections are described individually in the vertical x-direction by a 3-layer waveguides (ns,ng,nc,dc) with different di: 

 

Sec. I:   ns, ng / (dI, ns)  XI(x), Neff,I      Sec. II:   ns, ng / (dII, ns)  XII(x), Neff,II     Sec. III:    ns, ng / (dIII, ns)   XIII(x) , Neff,III 
 

Each lateral layer structure in layers I, II, III is characterized by an effective index of refraction  Neff,i=Ni=Neff,i(di,ng,ns,nc). 
 
We assume in the following that we consider the TE-solution (x) in the 3 vertical sections. 
 
2) Y-layer profile: the rib geometry in the y-direction is described by an “effective” 3-layer slab waveguide by the 

sections I, II, III and their effective indices Neff,I, Neff,II, Neff,III 
 

     Neff,I , Neff,II / (W, Neff,III)    lateral solution: Y(y), Neff,Y 
 

In the lateral direction we must now consider the TM-solution (y) to be compatible to the above TE-assumption (x). 
 
3) Solution: 
 

section I: φ(x,y)=XI(x)Y(y) ,    section II: φ(x,y)=XII(x)Y(y) ,    section III: φ(x,y)=XIII(x)Y(y) 
 

 
                                                                                  
 
 
 
Lateral weakly guiding approximation: 

• The ratio d/W <<1  (small disturbance in the x-direction) 
 

• 
eff I II eff II eff I eff III II eff II eff III

eff II eff II eff II eff II

N N N N N N
N N N N

− −Δ − Δ −
= << = <<, , , , , ,

, , , ,
1 ; 1    weak lateral confinement 

3 layer WG problem in x-direction:
Film I 
Film II 
Film III 

Neff,I 
Neff,II 
Neff,III 
W

3 layer WG problem in y-direction: 
 

Neff, W 
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resp. ( ), 0.1…1g s cmax− ≈ε ε ε    with the dielectric constants: εi=ni
2   i= s, g , c 

( ){ } ( )eff 0, n , , , , , ,= λeff c i s i R RN R r n n n d m P   

1. step: vertica (x)l WGs  
( ){ } ( )
( ){ } ( )
( ){ } ( )

eff 0

eff 0

eff 0

, , , , , , ,

, , , , , , ,

, , , , , , ,

= λ

= λ

= λ

I I c g s I X X

II II c g s II X X

III III c g s III X X

N X x N n n n d m P

N X x N n n n d m P

N X x N n n n d m P

             vacuum wavelength λ0 , Polarization PX, mx mode index 

 
2. stept lateral (y) WG: 

( ){ } ( )eff 0, , , , , , ,= λeff I II III Y YN Y y N N N N W m P  

 

  ( ) ( ) ( ) ( ){ } ( ), , +φ = ⋅+
X Y I II IIm m IX x X x Xx xy Y y          W                                                     approximation error 

                                                      
        ………                                      n(x), dI                         n(x), dII                       n(x), dIII  

                        Neff,I                     Neff,II                               Neff,III 
                                                                                                               Neff(y) 
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Concept of analysis procedure: what do we want to achieve ? 
 
 

We translate the Helmholtz-equation to the cylindrical geometry of optical fibers by using cylindrical 
coordinates. 
 
The solution procedure for the dispersion relation and the field eigenfunctions is identical to the                     
1-dimensional film WG except that the exponential functions have to be replaced by 2-dimensional cylindrical 
functions. 
 
From the dispersion of relation kz(ω)=β(ω) we can determine frequency dependent group velocity vph(λ) and 
the dispersion factor D(λ) as a function of the waveguide geometry and refractive indices 
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3.6 Optical Glass Fibers    (Repetition 4.sem F&K II) 
 
 

Optical glass fibers are the most important waveguides for long transmission distances in optical communication and 
therefore attenuation and dispersion effects limit the max. transmission distance L at a given bit-rate B. 
 

Fiber fabrication uses a preform drawing process leading to cylindrical wave guides with a high index core cylinder 
n1 (SMF: a~4μm, MMF: a~25-31μm) surrounded by a low index n2 cylindrical cladding layer of ~250μm diameter. 
 

  cylindrical symmetry of the WG 
 
The step index fiber with an abrupt lateral index difference Δn(a)=(n2-n1) is the simplest transverse index profile 
n(r,ϕ). 
 
For symmetry reasons a cylindrical coordinate system (z,r,ϕ) is the appropriate representation with z as the 
longitudinal propagation direction and r, ϕ as the transverse coordinates. 

 

Assumption:  n2 and n1 are homogeneous in the core and cladding sections. 
 
For the formulation of the Helmholtz-equations we transform the vector operators into the cylindrical coordinates: 

Step index glass fibers 
are only weakly guiding with a small Δn=n1-n2~0.01 
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Coordinate transformation   x, y, z    r, ϕ, z: 
 

The coordinate transform is straight forward but lengthy, so only the starting point is given. 
 

( )
( ) ( ) ( )( )

T

x r y r z z

r x y y x z z

Operator transform

f f r f r f f f
x r xx r x x y

r rr r

2 2

2 22 2 2 2 2 2

2 2 2 2 2 2

2 2

2 2 2

cos ; sin ;

; arctan / ;

: f x,y f x r, ,y r,

analog  for  

1 1 transverse Lap

= ⋅ ϕ = ⋅ ϕ =

= + ϕ = =

Δ − = ϕ ϕ

∂ ∂ ∂ ∂ ∂ ∂ ∂ϕ ∂ ∂ ϕ ∂⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ϕ∂ ∂ ∂ ∂ϕ ∂ ∂⎝ ⎠ ⎝ ⎠

∂ ∂ ∂
→ Δ = + ⋅ + ⋅

∂∂ ∂ϕ
lace-operator in cylindric coordinates

 

 
3.6.1 Vector field solutions for the step-index fiber 
The step-index fiber has the only simple index profile where the field can be calculated analytically in terms of 
cylindric Bessel-functions. 
 
1) Transformation of Helmholtz-equations (longitudinal components) into cylindrical coordinates: 

( ) ( )
( ) ( )

2

2

, 0

, 0

Δ + =

Δ + =

T T z

T T z

k E x y

k H x y
                 

T r rr r

2 2

2 2 2
1 1∂ ∂ ∂

Δ = + ⋅ + ⋅
∂∂ ∂ϕ

⎯⎯⎯⎯⎯⎯⎯→
                      

( )

( )

2 2
2

2 2 2

2 2
2

2 2 2

1 1 , 0

1 1 , 0

⎛ ⎞∂ ∂ ∂
+ ⋅ + ⋅ + ϕ =⎜ ⎟∂ ∂ ∂ϕ⎝ ⎠

⎛ ⎞∂ ∂ ∂
+ ⋅ + ⋅ + ϕ =⎜ ⎟∂ ∂ ∂ϕ⎝ ⎠

T z

T z

k E r
r r r r

k H r
r r r r

 

with the definition for the transverse wave number kT :                                     2D eigenvalue differential equation 
 

2 2 2 2 2( )T Tk k r= − β = ω με − β  
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As the following derivation is basically just an extension of the technique of the symmetric planar 3-layer WG to 2-dimensions 
we leave the conversion to cylinder-functions as  (self-study). 
 
2) Solution by coordinate separation: 

( )
( ) ( ) ( )

,
,

z

z

E r A
R r

H r B
ϕ ⎫ ⎧ ⎫

= ⋅ ⋅ φ ϕ⎬ ⎨ ⎬ϕ ⎩ ⎭⎭
     Solution-“Ansatz” with radial and azimuthal separation 

Insertion of the “Ansatz” and separating into R(r) and φ(ϕ) leads to 2 second order, uncoupled differential equations: 
 

( ) ( )

( ) ( )

2 2 2
2

2 2 2

2 2
2

2 2
2

2
2

multiply on both sides

con

1 R 0 /  

stant f r f1

 T

T

only f r only f

R R rk R
r r r r R

r R r r k
R

m
r R r

ϕ

∂ ∂ ∂ φ
φ + ⋅ φ + ⋅ + ⋅ φ = →

∂ ∂ ∂ϕ φ

∂ ∂
+ ⋅ + =

∂
= = ≠ ≠ ϕ

∂
− ⋅

φ ϕ∂
φ

∂

i

   

( )

( )

2
2

2 2

2

2

2

2

1 0

0

Tk R r
r r r

m
r

m

⎛ ⎞

⎛ ⎞∂
+

∂ ∂
+ ⋅ + − =⎜ ⎟∂ ∂⎝ ⎠

φ ϕ =⎜ ⎟∂ϕ⎝ ⎠

    m=constant ! 

 
                                                                                                               2 decoupled differential equations for R(r) and φ(ϕ) 
m is still an undefined constant. 
 
 
3) Harmonic azimuthal solutions for φ(ϕ): 
 

 ( ) ( )
( )
m
m

sin
cos

⋅ ϕ⎧
φ ϕ = ⎨ ⋅ ϕ⎩

        for symmetry reason: m=0, 1, 2, 3  integer are possible   (azimuthal symmetry, node number) 

 
The radial solutions must be radial periodic and symmetric with respect to the z-axis and 2m indicates the number of 
radial nodes of the field. 
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4) Bessel-functions for radial solutions for R(r): 
 

The radial Bessel-solutions R(r) depend on kT and m 
 

 function     m= 0, 1, 2, 3, …  physical 
 interpretation 

 Cartesian  
 correspondence 

 kT : real 
 ( ) ( )m TR r J k r=  
 Zylinderfunktion 1. Art → Jm : Besselfunktion 

 ( ) ( )m TR r N k r=  
 Zylinderfunktion 2. Art → Nm : Neumannfunktion 

 standing 
 cylindrical wave 

 

( )

( )

cos

sin

x

x

k x

k x

 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

(1)

(2)

m T m T m T

m T m T m T

R r H k r J k r i N k r

R r H k r J k r i N k r

= = +

= = −
 

 Zylinderfunktion 3. Art → Hm
(1,2) : Hankelfunktionen 

 propagating 
 cylindrical wave  

x

x

ik x

ik x

e
e

+ ⋅

− ⋅
 

 kT → – i·kT' : imaginary 
 ( ) ( ) ( )m

m T m TR r I k r i J i k r′ ′= = ⋅ −  
 → Im : modifizierte Besselfunktionen 

 growing 
 cylindrical wave 

  

 xk xe ⋅  

 ( ) ( ) ( ) ( )1 (2)

2
m

m T m TR r K k r i H i k r+π′ ′= = − ⋅ −  

 → Km : modifizierte Hankelfunktionen 

 decaying  
 cylindrical wave 

  

 xk xe− ⋅
 

 
 

The type of solutions of the Bessel-differential equation and the carthesian 
 correspondence for the symmetric 3 layer film waveguide  
 
For the graphical representation of cylindrical functions see at summary at the end of the chapter. 
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We consider the transverse wave number kTi
2 = ki

2 – β 2 corresponding to medium i.  
 

For mode confinement as before the eigenvalue β is restricted to the interval  k2 = k0·n2 < β < k1 = k0·n1. 
 
General solution for the longitudinal components Ez and Hz for a homogeneous medium section: 

( ) ( ) ( ) ( ) ( )1 2

1 1 2

cos sin
m m

0z
0 T m T m Tm m

m0z

AE A A
Z k r Z k r m Z k r m

BH B B

∞

=

⎧ ⎫ ⎧ ⎫⎧ ⎫⎫
= ⋅ + ⋅ ⋅ ϕ + ⋅ ⋅ ϕ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎭ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭
∑  (3.153),             (depends on azimthal mode number m) 

Zm(...) is a cylinder function from the table for R(r) depending on medium i with ni (core or cladding) and argument m. 
 
 
5) Radial continuity conditions of the transversal field at r = a for all ϕ  = 0 … 2π: 
 

The formulation of the continuity requires the additional calculation of the transverse field components Er, Eϕ, Hr und Hϕ 
in cylinder coordinates  (without proof): 

       

2

2

2

2

1 1

1 1

1 1

1 1

r z z
T

z z
T

r z z
T

z z
T

E E H
i k r r

E E H
i k r r

H H E
i k r r

H H E
i k r r

ϕ

ϕ

⎧ ⎫∂ ∂
= β ⋅ + ωμ ⋅⎨ ⎬∂ ∂ϕ⎩ ⎭

⎧ ⎫∂ ∂
= β ⋅ − ωμ ⋅⎨ ⎬∂ϕ ∂⎩ ⎭

⎧ ⎫∂ ∂
= β ⋅ − ωε ⋅⎨ ⎬∂ ∂ϕ⎩ ⎭

⎧ ⎫∂ ∂
= β ⋅ + ωε ⋅⎨ ⎬∂ϕ ∂⎩ ⎭

              
1 2 1 2

1 2 1 2

0 0
0 0

z z z zE E H H
E E H Hϕ ϕ ϕ ϕ

− = − =
− = − =   

Boundary conditions 

                      Er 
 
 
                                 EZ 

                          Eϕ 

           r 
 
  x 
 
            ϕ 
                    z 
 
                x 
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The boundary conditions lead to an infinite set of equations for A0, B0, A1
m, A2

m, B1
m und B2

m, m=1,2, 3 … ∞, but 
symmetry and rotation invariance properties of the solutions reduce the solution space to: 

• core :  n = n1,   k1 > β,   r < a   

( ) ( ) ( )
( ) ( ) ( )

0

0

, cos

, sin
z 1 m T

z 1 m T

E r A J k r m

H r B J k r m

ϕ = ⋅ ⋅ ϕ + ϕ

ϕ = ⋅ ⋅ ϕ + ϕ
                         oscillatory transverse wave solution; 

• cladding :  n = n2,   k2 < β,   r > a                                  4 unknown A1, A2, B1, B2 

( ) ( ) ( )
( ) ( ) ( )

0

0

, cos

, sin
z 2 m T

z 2 m T

E r A K k r m

H r B K k r m

′ϕ = ⋅ ⋅ ϕ + ϕ

′ϕ = ⋅ ⋅ ϕ + ϕ
                         decaying, transverse confined , evanescent wave solution 

  Reduction to 4 terms:  A1, A2, B1, B2 are the desired solutions for a particular m and a particular wave excitation as 
boundary condition. 

 
The solutions are inserted into the tangential boundary conditions and define a set of equations for A1, A2, B1, B2 and the 
unknown propagation constant β(ω)=kZ(ω)  as eigenvalue: 
 

Using similar substitutions as in the case of the slab waveguide 

( ) ( )2 2 2 2
1 2T Ta k a k a k a k′ξ β = ⋅ = ⋅ − β η β = ⋅ = ⋅ β −                 

we obtain  (without proof) following system of eq. 
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( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2
2 2

1 2
2 2

1

1

2

2

0 0 0
0 0 0

0
0

m m

m m
m m

m m m m

m m
m m m m

J K A
J K B

J J K K A
BJ J K K

ω⋅μ ω⋅μ±β⋅ ±β⋅
ξ ηξ η

ω⋅ε ω⋅ε±β⋅ ±β⋅
ξ ηξ η

ξ − η⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ξ − η⎢ ⎥ ⎢ ⎥ ⎢ ⎥⋅ =⎢ ⎥′ ′ξ ξ η η ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ ′ξ ξ η η⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦

    for m=1,2,3, … ∞  and ( ) ZZ x
x

' ∂
=

∂  

 
The sign ± corresponds to the cos-  (ϕ0 = 0)  resp. sin-solution (ϕ0 = ± π / 2)  for Ez. 
 

Nontrivial solutions for A1, A2, B1, B2  only exist if the determinant of the homogeneous system vanishes, leading to the 
eigenvalue equation for ξ, η: 

       

( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2
2 2

1 2
2 2

0 0
0 0

det 0

m m

m m
m m

m m m m

m m
m m m m

J K
J K

J J K K

J J K K

ω⋅μ ω⋅μ±β⋅ ±β⋅
ξ ηξ η

ω⋅ε ω⋅ε±β⋅ ±β⋅
ξ ηξ η

ξ − η
ξ − η

=′ ′ξ ξ η η

′ ′ξ ξ η η

                       Eigenvalue equation f(η, ξ, m)=0    β(ω) 

Characteristic equation, resp. Eigenvalue equation: 

 ( ) ( ){ } ( ) ( ){ }
2

2 2 2 2
1 2 2 2

1 1 0m m m mk J k K J K m ⎛ ⎞
⋅ ξ + ⋅ η ⋅ ξ + η − β ⋅ + =⎜ ⎟ξ η⎝ ⎠

     with the definitions: ( ) ( )
( ) ( ) ( )

( )
;

′ ′ξ η
ξ = η =

ξ⋅ ξ η⋅ η
m m

m m
m m

J K
J K

J K  

 
In analogy to the symmetric planar WG we make use of a single structure parameter or fiber parameter V(ω) to 
eliminate either ξ or η: 

         ( ) 2 2 2 2 2 2
1 2 0 1 2 0 0 0; 2 / / oV a k k a k n n a k NA k cω = ⋅ − = ⋅ ⋅ − = ⋅ ⋅ = ξ + η = π λ = ω   
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6) Formal solution procedure for βmp(ω): 
 

• chose an integer  m=0, 1, 2, … (azimuthal mode index m)   and ω  
• eliminate η  with the above eigenvalue equation by using V(ω) and find the zero ξp with increasing values.  
    There are p zeros (radial mode index p) of the eigenvalue equation for a given m      (radial field nodes !) 
• from ξp we determine βmp(ω) of the modes characterized by the numbers m,p 
• for m and p we associate a particular modal solution of mode X m p . with  X= HE-, EH-, TE- or TM-modes. 
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Classification of Modes Xpm:   (m= azimuthal mode number, p= radial mode number) 
 

Goal:  calculate the propagation constant βm,p(ω)  to determine the dispersion properties of the fiber modes 
 

1. class:   m=0  (azimuthally homogeneous), and β=0  (no cut-off) 
 

1) for m=0 the 4x4 determinant splits into two independent 2x2 sub-determinants for A1, A2 (TE) and B1, B2 (TM). 
      TE- resp. TM-modes 
 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

m m

m m

m m

m m

m
J K A

J K B
J K A

BJ K

1 2

1 2

1

1

2

2

0
0 0 0

0 0 0
0 0 0

00 0

ω⋅μ ω⋅μ
ξ η

ω⋅ε ω⋅ε
ξ η

= →

ξ − η⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ξ − η⎢ ⎥ ⎢ ⎥ ⎢ ⎥⋅ =⎢ ⎥′ ′ξ η ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥′ ′ ⎣ ⎦⎣ ⎦ξ η⎣ ⎦

              

( ) ( )
( ) ( )

( ) ( )
( ) ( )

m m

m m

m m

m m

J K A
AJ K

J K B
BJ K

1 2

1 2

1

2

1

2

0
0

0
0

ω⋅ε ω⋅ε
ξ η

ω⋅μ ω⋅μ
ξ η

ξ − η⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⋅ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ ′ξ η ⎣ ⎦⎣ ⎦⎢ ⎥⎣ ⎦

ξ − η⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⋅ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ ′ξ η ⎣ ⎦⎣ ⎦⎢ ⎥⎣ ⎦

 

 
2) m=0   TE- and TM-modes have radial symmetry 
 

3) β=0    represents a mode which has its cutoff at ω=0     HE11-mode 
 
Dispersion relation β(ω) for TEop-modes  (Ez = 0, Er = 0, Hϕ = 0,): 
 

( ) ( ){ } 0m mJ Kξ + η =  using  J0'(ξ) = – J1(ξ) and K0'(η) = – K1(η)    
( )
( )

( )
( )

1 1

0 0

0
J K
J K

ξ η
+ =

ξ⋅ ξ η⋅ η       βTEop(ω) 

 
Dispersion relation β(ω) for TMop-modes  (Hz = 0, Hr = 0, Eϕ = 0,): 
 

( ) ( ){ }2 2
1 2 0m mk J k K⋅ ξ + ⋅ η =     

( )
( )

( )
( )

2 2
1 1 2 1

0 0

0
k J k K

J K
⋅ ξ ⋅ η

+ =
ξ⋅ ξ η⋅ η      βTMop(ω) 
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2. class:  m≠0, and β≠0    (with mode-cutoff) 
 

general case          hybrid modes   (Ez≠0 , Hz≠0 ) 
 
classification of modes by dominating z-field component: 
 

a) inspection 
 

0
lim z

V
z

EHE
HEH→∞

⎧ ⎫ ⎧
=⎨ ⎬ ⎨∞⎩⎩ ⎭

 

 
 
b) approximation of weak guiding  n1 ≈ n2 ≈ neff 
 

The general eigenvalue equation simplifies to 
 

( ) ( ){ } 2 2

1 1 0m mJ K m ⎛ ⎞
ξ + η ⋅ + =⎜ ⎟ξ η⎝ ⎠

∓             sign convention:  + for EHmp-   and    - for HEmp-modes 

and further to 
 
 

( )
( )

( )
( )

( )
( )

( )
( )

1 1

1 1

0

0

m m
m p

m m

m m
m p

m m

J K
HE

J K

J K
EH

J K

− −

+ +

ξ η
− →

ξ⋅ ξ η⋅ η

ξ η
+ →

ξ⋅ ξ η⋅ η

     

 
  Approximate dispersion relation β(ω) for hybrid modes      βHEmp(ω),  βEHmp(ω) 

TE-like because Hz is dominant 
 

TM-like because Ez is dominant 
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  (observe m,p-nodes in the fields!) 

Field cross-sections of guided modes in step-
index glass fibers: 
 
The most relevant mode is the HE11 (m=1, p=1) with a zero-
frequency cut-off and single-mode operation. 
 
 
 
 

Dispersion curves neff(V)=β(V)/β0 of guided modes 
in step-index glass fibers:  (compare to film WG p.3-31) 

neff= 
β/k0= 
βc0/ω

∼ ω 

n1 

n2 

Single-mode          Multi-mode 
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Dispersion in step-index Glassfibers:   (similar to the symmetric 3-layer WG) 
 

β(ω) determines the phase- and group-velocities and the modal groupe-velocitiy dispesion D (pulse broadening) 
 

A nonlinear dispersion β(ω) leads to frequency dependent group velocities vgr(ω) and modal dispersion D(ω) 

                
 
Cutoff-condition  2 2

2a kη β= −  → 0  for different modes:               (without proof) 
 

m=0:  TE0p, TM0p                      m=1:  HE1p, EH1p                       
 

( )J0 0ξ =                                    ( )J1 0ξ =  
 

m>1:  EHmp                               m>1:  HEmp                       
 

( )mJ 0ξ =                                    ( )( ) ( ) ( )m mn n J J
m

2 2
1 2 1/ 1

1−
ξ

+ ⋅ ξ = ⋅ ξ
−

 

neff= 
β(ω)/k0 

Cutoff-condition Vmp of mode (m,p): 
 
- for V< Vpm=ξ @ η=0 no pm-mode can 

exist (cutoff) 
 

- for V> Vpm the pm-mode exist and is 
described by the dispersion relation 
βpm(ω) 

 
At cutoff        the modes do not decay 
anymore in the cladding. 
Some modes are degenerate at cut-off. 
 
Observe that modes tend to build groups of 
similar dispersion curves  

SMF 

( ) 2 2 2 2
1 2 22V a / n n a kω π λ β= − = −  

∼ ω 

MMF
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Conclusions: 
 

1)  the fundamental mode is the HE11-mode, the fiber is fundamental (single) mode for 0<V(ω)<2.405  
      (no intermodal dispersion occurs, but the mode is dispersive) 
2)  the fundamental mode exists even at ω=0,  no cut-off 
3)  TE- and TM-modes are not degenerate (due to rotational symmetry), however they are degenerate at cut-off 
4)  Hybrid modes are 2-times degenerate, because there exist 2 radial solutions  

( )n and n
n

cos cos
2
π⎛ ⎞⎡ ⎤ϕ ϕ −⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

    (90o-rotation. eg. orthogonal polarizations 

 
 
Approximation of Number of modes vers. V: 
                                                                                                                                                                                                                     no modes 
Question:  how many modes N exist for a certain V, resp. ω ?  
 

 oV a k nN
2 2 2

2 2
Δ

=        (without proof) 

 
                                                                                             guided modes 
                                                                                             (discrete spectrum) 
                                                                                                         
 
 
 
                                                                                            unguided modes 
                                                                                           (continuous spectrum) 

 

V= … 

Step-Index Single Mode Fibers (SMF) must have: 
 

- V<2.45 
- small core diameter 2a 
- small index difference Δn 
- operation at low ω, resp long λ 
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3.7 Dispersion in weakly guiding optical wave guides 
 
Main transmission limitations of optical waves in optical fibers are  
 

1) attenuation of the signal by absorption (material, scattering)  amplitude reduction   and  
 

2)  frequency dependent propagation, dispersion (Zerstreuung)  signal distortion by the frequency dependence of 
n(ω) and β(ω) and spectral width Δω of the wave  . 

 

       material or chromatic dispersion  βmat(ω) 
 

       waveguide dispersion  βmode(ω) 
 

3) if several modes Xpq can be excited at the signal frequency ω (Multimode Operation in MM-fibers) then the propagation 
constants βpq(ω) of the modes pq differ, leading to 

 

      modal dispersion  (can be avoided by single mode fibers) 
 

Dispersion effects result in pulse broadening (inter-symbol interference) and limit the data rate B x L – product of the fiber. 
 

Some dispersion effects can be reversed by dispersion compensation introducing dispersion of the opposite sign. 
 
 

3.7.1  Signal and carrier spectral width Δω: 
 

A quasi-monochromatic (ΔωC) optical carrier wave ( ) ( )o oi t z
cA t e ω −β  is envelop- or amplitude modulated (ΔωS) by a signal 

As(t) and by intrinsic fluctuations of the carrier itself AC(t) in the time-domain (eg. LASER source): 
 
 

( ) ( ) ( ) ( )o oi t z
s cE t z A t A t e ω −β=,         time-domain 

 

The total optical spectrum (carrier and signal sidebands) composed of the 2 spectral contributions from signal and carrier: 
 

( ) ( ) ( ) ( )s c

signal spectrum carrier spectrum

E z A A A0 0 0,ω = ω − ω = ω − ω ∗ ω − ω
           frequency-domain        Δω, resp. Δλ=?, 
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Envelope-spectrum A(ω) and time-function A(t) form a Fourier-pair: 
 

( ) ( )F

F
A t A

1
with a spectral width: 

−
⎯⎯→ ω Δω←⎯⎯      

 

The optical spectrum E(ω)=A(ω−ω0) is obtained by a frequency translation of ω0. 
 

Dispersion effects depend on the total spectral width Δω of the modulated wave, therefore we analyze different 
situations where the signal- (As(ω)) or the carrier-(Ac(ω)) spectrum might be dominant. 

 
a) Carrier spectrum  ΔλC , ΔωλC: 

( ) ( )
( )

c c

c

A s0 0ideal coherent light source: - - 0 pectral width ; e.g. noise-free Single Frequency Laser

partial coherent light source:                                serveral GHz - 100 GHz several nm    

ω ω = δ ω ω → Δλ

→ Δλ

( ) c

e.g. Multimode Laser

incoherent light source optical noise field :             serveral THz e.g. LED (several 10nm)→ Δλ

 

 
An ideal harmonic optical carrier would have zero spectral Δλc=0 width and a Dirac-function spectrum ( )oδ ω− ω .         
A single frequency DFB-Laser can produce such a field approximately with a  Δωc~ 10MHz -10 GHz. 
 
b) Signal spectrum ΔλS ; ΔωλS: 
Envelope-spectrum:  ( ) ( )F

S S sF
A t A

1
with a spectral width: 

−
⎯⎯→ ω Δω←⎯⎯     Δωs ~ 1/B     typ. GHz – several 10 GHz 

 
c) The total spectrum Δλ ; Δωλ of the modulated carrier wave is dominated 
 

a) by the signal spectrum  ( ) ( )00 SE , Aω ω ω= −   ;  Δω ≅ Δωs   (ideal coherent light source, dynamic SM-LD) 
 

b) by the carrier source     ( ) ( )00 CE , Aω ω ω= −   ,  Δω ≅ Δωc   (MM-LD, LED) 
 

c) both carrier and source                                       Δω ≅ f(Δωs, Δωc )   (real quasi-single mode LD) 
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3.7.2  Signals with finite spectral width Δω, Δλ in media with non-linear dispersion β(ω): 
 

Chap.2 showed that frequency components traveling in a dispersive medium at different, frequency dependent velocities 
vph(ω), vgr(ω)  need different transit times τ(ω)=L/vgr for a fiber length L: 
 

1)  the carrier wave travels with the phase velocity  ( )phv ω = ω β/  and  
2)  the envelop A travels with the group velocity       ( ) ( )grv / 1 / /ω = ∂ω ∂β = ∂β ∂ω  
 

The resulting dispersion is characterized by the  
 

Group velocity dispersion (GVD):  (definition for λ) 
Δτg is the propagation delay difference over the spectral width Δω 

2
2

0 0 2
0

2
2

g
g

d L d d D L
d c d d
τ ⎧ ⎫β β

Δτ = ⋅ Δλ = − ⋅ λ ⋅ + λ ⋅ ⋅ Δλ = Δλ⎨ ⎬λ π λ λ⎩ ⎭
      need to know β(ω) for the mode and the material ! 

 

Material and modal Fiberdispersion 
 

a) Material dispersion   (without WG) 
Dispersion due to the frequency dependence of the polarization  
P(ω) is described by the frequency dependence of 
the  refractive n(ω). 
 

2
2

0 0 2
0

2

0 0 2
0

2
2

g
g

mat

d L d d
d c d d

L dn d n D L
c d d

τ ⎧ ⎫β β
Δτ = ⋅ Δλ = − ⋅ λ ⋅ + λ ⋅ ⋅ Δλ =⎨ ⎬λ π λ λ⎩ ⎭

⎧ ⎫
= − ⋅ λ ⋅ + λ ⋅ ⋅ Δλ = Δλ⎨ ⎬λ λ⎩ ⎭

 

                                                                                                             Material dispersion parameter DM(�0) for SiO2 and GeO2–SiO2 glasses 
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b) Waveguide Modal Dispersion  (without material dispersion n≠f(ω)) 
 
Qualitative description of dispersion in the β(ω)-representation:    n1>n2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Dtot ≅ Dmaterial + Dmodal 

ω 

β(ω) 

( ) 2
2

0

nk
c

ω ω=

( ) 1
1

0

nk
c

ω ω=

+

o 

o 

low dispersion

ω 

β1(ω)    β2(ω) 

ω 

-D(ω) 

typ. single mode  
operation point 

 
 
 

( ) ( )1 gr
1

1vββ ω ω
ω β

∂
= → =

∂  

 
 
 

( )
2

0
2 22

0

2 cD πββ ω β
ω λ

⎛ ⎞∂
= → = −⎜ ⎟∂ ⎝ ⎠

 

 

Interpretation: 
 
The frequency dependency of β(ω) of a WG 
with n≠f(ω) results from the fact, that the 
transverse mode-profile is frequency 
dependent. 
 

 the mode “sees” different portions of the 
“fast” cladding and the “slow” core with 
changing frequency ω. 
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Normalized representation representation of dispersion B(V) instead of β(ω): 
 
Formal definitions for weakly guiding fibers (nclad ~ncore   β~k1~k2): 
 

1) Normalized refractive index difference Δ(ω): 

( )
2 2

1 2 1 2
2 1 2

1 1
1: 1

2
n n n nDefinition n n

n nΔ<<
− −

Δ = ⋅ − Δ ⎯⎯⎯→ Δ =    or 

2) Normalized Frequency by using V(ω):  ω-transformation 

( ) 2 2 2
0 0 2 1 2 1 2

0

/ 2 2 2nV k a NA k a n n n k a k a a
c

ω = ⋅ = ⋅ − ⋅ Δ ≈ ⋅ Δ = ω ⋅ Δ ω∼          using:   n1
2 – n2

2 ≈ n1
2·2Δ ≈ n2

2·2Δ  

 

3) Normalized Phase B(ω):   
        β-transformation to the [0,1]-interval 
 

The eigenvalue β(ω) in the interval  
 

β ∈ [ k2, k1]  
 

of the characteristic eigenvalue equation 
 

 C(β, ω ) = 0 is transformed into the  
 

normalized Phase B(ω) in the unit-interval B ∈ [ 0, 1] by: 
 

( ) ( )2 2 2 2
2 2

2 2 2 2
1 2 1 2

1
Definition

k kB
k k V V k k

β ω − ξ η β −
ω = = − = ≈

− −   

 
 

( )( ) ( )
[ ] [ ]0 1 0

B V

, ,

ω β ω←⎯⎯

∞
 

Typical dimensionless model dispersion diagram 
B(V) of fiber-modes:  (from Agrawal) 

SM 
operation

B(ω) 

V(ω) 
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Total (material and waveguide) dispersion expressed from B(V) and n(ω): 
 
 

Core and cladding indices n1(ω) and n2(ω) are now also frequency-dependent. In addition the frequency dependence 
of the solution of the modal eigenvalue problem for β(ω) and  B(ω) describes the structural dispersion. 
 

 both frequency dependencies define the total dispersion. 
 

For weakly (n1(ω)~n2(ω)   β~k1~k2) guiding structures: 
 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )2

2 1 2 2 1 2 2
1 2

1 /
k

B k B k k k B with k k k
k k
β ω − ω

ω ≈ → β ω ≈ ω + ω ⋅ ω − ω ≈ ω ⋅ + ω ⋅Δ ω Δ ω = ω − ω ω
ω − ω

 (3.204). 

The general definition of the group delay time τg using β and B is: 
 

2
0

0 0 02 / 2g
g k

defing L
L d d L d L dL
v d d c dk c d

= π λ

φ= β
β φ β λ β

τ = = ⋅ = = ⋅ = − ⋅ ⋅
ω ω π λ

  
 
 

leads with the substitution of β by B to:      
 

( ){ }2 1 2
0 0 0 0

g
L d L d k B k k
c dk c dk

β
τ = ⋅ ≈ ⋅ + ⋅ −  

 

For the calculation of 
( ){ }2 1 2

0 0

; .d dBk B k k resp
dk dk

+ ⋅ −
  we use of the weak guiding approximations (n1(ω)~n2(ω)): 

 

( )

( ) ( )

0
0 ,

0 0 0

0 0 0 0 0
1 2assuming:

group index (material contribution)

waveguide structure contribution ; having used:

ii i
i gr i

n n

d k ndk dnn k n
dk dk dk

d B d B dV d B V dV V
dk dV dk dV k dk k

ω ω

⋅
= = + ⋅ =

⎛ ⎞ ⎛ ⎞
= ⋅ ≈ ⋅ ≈⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠∼
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( ){ } ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 ,1 ,2 ,1 ,2 1 2 0 1 2 0 ,1 ,2
0 0

using - -gr gr gr gr gr gr

d VBd d B VB k k k k B n n n n k k k n n k n n
dk dV k dV

⋅ − = ⋅ ⋅ − + ⋅ − ≈ − ⋅ = −
   (3.206). 

 

The simplification dV/dk0 ≈ V/k0  meaning that we neglect the frequency dependence of the Δω, resp. frequency 
dependence of core and cladding is the same: 
 
 
 
 
 

 
The third equation assumes that ngr1 – ngr2 ≈ n1 – n2 meaning that the material dispersion of core and cladding is similar. 

( ) ( ) ( ) ( )2
,2 ,1 ,2

0 0

1g gr gr gr

structure

L L nd VB d VB
VB

dVc d
n

c V
n n

⎧ ⎫
⎪ ⎪ ⎧ ⎫⋅

τ ⋅ + − ⋅ ≈ ⋅ + Δ ⋅⎨ ⎬ ⎨ ⎬
⎩ ⎭⎪ ⎪

⎩ ⎭

       
( )d VB
dV  mode delay time factor,                      

 
The group delay dispersion Δτg can be obtained by a derivation of the group delay time τg  with respect to λ:  
 

( ) ( )
,2 ,2 ,1

0

g
g gr gr gr

d d VBd L n n n
d d c dV

⎛ ⎞τ ⎧ ⎫
Δτ = ⋅ Δλ = ⋅ + − ⋅ ⋅ Δλ⎜ ⎟⎨ ⎬λ λ ⎩ ⎭⎝ ⎠

  

The derivation of { }( ).........d
dλ   is simplified by assuming   

1)  dV/dλ ≈ – V/λ    because  V~ω 
 
 

2)  the material dispersion in core and cladding are assumed to be equal d{ngr1 – ngr2}/dλ → 0  
     (equal group indices of refraction) 

2
1

2 1
1 2

2 2 2 1
1 2 0 1 2

0 0)/2n
neglecting the frequency dependence of

(n n  

d V VV a k k ak n n
d k kΔ= −

⎛ ⎞
= − = − ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→ = ⎜ ⎟

⎝ ⎠

1 2

1

n n
n
−

Δ =  
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( ) ( ) ( ) ( ) ( ) ( )2

,2 ,1 ,2 ,1 ,2 ,1 2

2

2using :

gr gr gr gr gr gr

d VB d VB d VBd d dVn n n n n n
d dV d dV dV d

V V k V
k k

⎧ ⎫
− ⋅ = − ⋅ + − ⋅ ⋅ ≈⎨ ⎬λ λ λ⎩ ⎭

∂ ∂ ∂ π ∂⎛ ⎞= = − →⎜ ⎟∂λ ∂ ∂λ λ ∂⎝ ⎠

 

( ) ( ) ( ) ( )2

,2 ,1 ,2 ,1 2
0

gr gr gr gr

d VB d VBd Vn n n n
d dV dV

⎧ ⎫
− ⋅ ≈ − − ⋅ ⋅⎨ ⎬λ λ⎩ ⎭

 (3.211) 

 
With these simplification the total group-delay  Δτg  including material (Dm) and waveguide (DW) dispersion is: 
 

  
( ) ( ) ( )

2
,1 ,2,

0 0
2

2

0

material dispersion (core) wave guide dispersion

1 gr grg gr
g Material Waveguide

d Vn nd dn
L D D L

d c d c
B

V
dV

⎧ ⎫
⎪ ⎪−τ ⎪ ⎪Δτ = ⋅ Δλ = ⋅ ⋅ − ⋅ ⋅ Δλ = + ⋅ ⋅ Δλ⎨ ⎬λ λ ⋅λ⎪ ⎪
⎪ ⎪⎩ ⎭

⋅  
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Dispersion parameters for the HE11-mode (mode with zero frequency cut-off) for the step-index fiber in 
normalized representation: 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                                       Good approximation when mode is well confined to the core ! 
 
 

                                                                                      
( )2

2

d VB
V

dV
⋅ ~ -D is the dispersion factor and determines the 

                                                                                      waveguide dispersion and goes to 0 for large V (core propagation) 
             SM and low dispersion 
 
                                               Strong mode confinement 
Conclusions: 
 

• Waveguide dispersion for the HE11-mode reaches a maximum between the cut-off frequency and the onset of the 
next higher order mode. Dispersion is negative (!) and decreases with increasing frequency. 

 

• For the HE11-mode operation in the V-interval  2 < V < 2.405 is optimal (most of the field energy is concentrated in 
the core). The next higher order mode would start at V>2.405. 

 

• The WG has to be operated close to the single frequency operation limit (onset of a new mode) 

( ) ( )2 2
,1 ,2 2

2 2
0 0 0 0

gr gr
Waveguide

n n d VB d VBnD V V
c dV c dV

− ⋅Δ
= − ⋅ ⋅ ≈ ⋅ ⋅

⋅λ ⋅λ
−

Single Mode Range 

B

V B
V

∂
∂

( )2

2

VB
V

V
∂

∂
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Total Dispersion for a step-index fiber: 

 

 
 
Dispersion compensated fibers:  (optional) 
 

Goal:  obtain low dispersion over the low loss range from 1300 – 1600nm (telecom range) by compensating effects: 
 
1. solution:  shifting the dispersion zero   dispersion shifted fibers 
 

change of B(V) by reducing the core radius a and increasing the normalized refractive index difference Δ results in 
a dispersion zero at 1550nm 

 
2. solution:  multiple cladding layers (index-profile modification)   dispersion flattened fibers 
 

Increase in mode dispersion leads to a 2. dispersion zero and flattening of D between the 1. and 2. zero 

• In general waveguide dispersion is much weaker 
than the dispersion of the material glass 

 
• Waveguide dispersion has a negative sign and can 

compensate positive material dispersion 
 

Enhancing the modal dispersion will shift the zero 
dispersion to longer wavelength λz and flatten the 
total chromatic dispersion. 

 
• The total waveguide dispersion for a simple glass 

step-index fibers has a zero at λz~1300nm 
 
• The dispersion is however ~15ps/nm km at the loss 

minimum of ~1500nm 

increase 
modal 
dispersion 

Δλz 
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     shifted                              flattened 
 
3. solution:  series connection of a fiber with opposite dispersion (or grating delay line)   dispersion compensator 

       dot-dash line is material dispersion,  
 
       full line is the achievable, practical total dispersion  
 
       dash line is an idealized total dispersion achievable within 

material limits. 

Example of a broad band dispersion reduction in a dispersion  flattend fiber 

Increased modal dispersion 
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3.7.3 Systems aspect of Dispersion, Data Rate – Distance Product 
In chap.2 we showed that the dispersion β(ω) leads to pulse envelope deformation and to a reduction of the maximum 
data rate x length product BxL due to symbol interference (digital) or waveform distortion (analog). 
 
Practically we have several additive distortion (delay) mechanisms adding to the total delay time dispersion δτ 
 

1) statistically independent (uncorrelated) dispersion mechanisms ΔτI add up 

          statistically:  
22

i
i

Δτ = Δτ∑          
2

i
i

D D= ∑  

 
2) correlated dispersion mechanism (eg. material and waveguide dispersion, acting on the same spectrum) 
 

            additive:    D = DMaterial + DWaveguide 
 
resulting in the bit-rate x length product (BxL) approximation for the chromatic dispersion: 

1B BL D
T
Δτ

⋅ Δτ = = ⋅ ⋅ Δλ <      (simple interference approximation with the bit-interval T=1/B !) 

Δλ is the total spectral width of carrier and modulating signal with the typical optical narrow band assumption Δλ<< λ0  
 
 
A calculation of dispersion effects on the bit-envelope As(t,z) must include the nonlinearity of the dispersion β(ω).   
 

β(ω) is represent modal and material effects by a Taylor-expansion around the optical carrier ω0: 

( ) ( )
0

2 31 1
0 0 1 2 32 6

0 1/

1 1
! !

gr

n i
n

i in i
n GVDv

parameter

d with
n d i

∞

= ω

β ∂
β ω = ⋅ ⋅ ω − ω ≈ β + β ⋅Δω + β ⋅Δω + β ⋅Δω + β = ⋅ β

ω ∂ω∑ …
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Pulse broadening leads to symbol interference and subsequent bit error rate degradation which we restrict 
by a simplified statement to obtain the max. bit rate B: 
 
 

Τ0’(L) < TB/4             with   TB = 1/B = bit-time slot  and B=bit rate    
¨ 

 

1
0 4BL D⋅ ⋅ Δλ ≤     Dispersions limit    B ~ 1/L, resp. Lmax ~ 1/B 

 
 
If the attenuation dominated dominates:  Attenuation limit 
 

PQuelle[dB] –  α·L > PEmpfänger[dB]  ~ B   →  Lmax = L0 – (10/α)·log(B) 
 

                                      
 

Schematic of attenuation and dispersion limit                   Attenuation and dispersion limit for different fibers and wavelengths 
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• For harmonic guided EM-field the solutions can be obtained from an eigenvalue of an eigenvalue 
equation of the Helmholtz-equations for Ez, Hz including boundary conditions 

The eigenvalue determines the transverse field profile and the longitudinal propagation constant.  

The two longitudinal field components Ez, Hz are a minimal set of independent field variables. 

• Because the longitudinal components Ez, Hz serve as independent field variables, the other 
components can be derived from Ez and Hz. 

• The propagation constant β(ω) is frequency dependent, even if the refractive indices are frequency 
independent and represents the waveguide dispersion. 

•  material dispersion β(ω) leads to pulse broadening and limited transmission rates. Waveguide 
dispersion can be used to compensate material dispersion of opposite sign. 

• The waveguide dispersion results from the fact that the transverse mode pattern is also frequency 
dependent and the transverse mode profile “sees” different portion of the “fast” cladding and the 
“slow” core. This results in a frequency dependent group velocity of the mode. 

 

 
 

     Conclusions and summary: 
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Graphical summary of Cylinder Functions: 
 

Hyperbolic functions:                                                                   Bessel functions (first kind): 

 
Bessel function  (second kind):                                                    Hankel function: 
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Appendix 1: 
 

Polarization mode dispersion   (optional) 
 

The dispersion of light waves can also depend on the polarization state of the optical field in structures where the 
refractive index depends on the direction of the  field vector due to: 
 

• Form or shape birefringence (Form-Doppelbrechung) in asymmetric waveguides (eg. rectangular cores) 
• asymmetric stress (bending, twisting) in the waveguide 
• asymmetric density variations, etc. 
 
Contrary to material and waveguide dispersion, the last 2 effects can vary stochastically along the fiber and in time. 
 

  the 2 possible orthogonal polarizations states at the fiber input are delayed differently in time Δτ=δτpol and rotate the 
polarization directions Θ: 

 

 
 Schematic representation of variable birefringence for  

The 2 orthogonal polarized wave are characterized by  
2 group velocities vgx and vgy: 
 

1 1
pol

gx gy

L
v v

δτ = ⋅ −  

 
leading by statistical averaging to: 
 

pol PMDD Lδτ = ⋅      DPMD=Polarizationdispersion parameter 
                                      (typ.0.1-1ps/√km) 
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Artificially high or low birefringent fibers: 
 

Concept:  Polarization filtering of the fiber structure by making one polarization direction relatively lossy and 
thus filter out the unwanted polarization. 

            

 
High birefringent fibers with pronounced polarization directions 
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Appendix 2: 
 

Remark to the Multi-Mode Gradient-Index Fiber  (MMF) 
 

Single mode fibers (SMF) require for 1) single mode operation at 1.3 / 1.5μm and 2) low dispersion: 
 

a) a low index differences Δn (~1%) between core and cladding 
b) a relative small core diameters d ~5 – 10μm 

 

 precise (<0.1μm) and expensive coupling between laser source and fiber, no LEDs are possible because of the large 
source area, typ ~50μm ∅ 

 
Low-cost data-links for moderate data rates (1-10 GB/s) and short distances (<100m) require LEDs and simple fiber coupling: 
 

  use step-index multimode fibers (MMF) with core diameters of 50-60μm, with simple and efficient coupling, but these 
fibers are multi-transverse mode (several 100 modes) resulting in a huge intermodal dispersion. 

 
  graded index MMF reduce intermodal dispersion in by a lens-like, graded index profile: 

 

                                                                           ( ) 1
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  Parabolic index profile of the core 

 
 
 

Concept in the light ray picture:  lens-like dispersion of the core 
 

The beams traveling off-axis “see” on the “average” a lower refractive index n and travel faster than the rays close to the 
high-index core  → 
as a result on- and off- axis rays travel at about the same speed in the z-direction resulting in low dispersion. 

Equal delay times for different trajectories (lens like) 


