3 Guided waves in optical waveguides

Ridge (rib) Waveguide

Multi-Mode Graded-Index Fiber (MMF) Single-Mode Step-Index Fiber (SMF)

Goals of the chapter:

- Investigate dielectric structures to guide and propagating waves and confine them transversally
- Description of light propagation in dielectric waveguide structures by mode fields $\overrightarrow{\mathrm{E}}_{\mathrm{k}}(\overrightarrow{\mathrm{r}}, \mathrm{t}) ; \overrightarrow{\mathrm{H}}_{\mathrm{k}}(\overrightarrow{\mathrm{r}}, \mathrm{t})$ and propagation constant $\beta_{k}(\omega)$ assuming frequency independent dielectrics
- Relation of the guided wave properties, mode fields and propagation constant of the $\mathbf{k}^{\text {th }}$ mode $\overrightarrow{\mathrm{E}}_{\mathrm{k}}(\overrightarrow{\mathrm{r}}, \mathrm{t}) ; \overrightarrow{\mathrm{H}}_{\mathrm{k}}(\overrightarrow{\mathrm{r}}, \mathrm{t})$ and $\beta_{\mathrm{k}}(\omega)$ to the geometric and dielectric structure of the waveguide
- Typical properties of dielectric waveguide structures for optical communication
- Frequency dependence of $\beta_{\mathrm{k}}(\omega)$ and related dispersion effects (pulse broadening)

Methods for the Solution:

- Propagation of "classical" light is described as a electromagnetic (EM) wave obeying Maxwell field and material equations
- Solve Maxwell's equation with lateral dielectric boundary conditions of the waveguide using the Helmholtz equation (eigenvalue problem) and longitudinal and transversal decomposition (variable reduction)
\Rightarrow modes are eigenfunctions (time- and space dependent EM vector fields $\vec{E}_{k}(\vec{r}, t) ; \vec{H}_{k}(\vec{r}, t)$) and the propagation constant $\beta_{\mathrm{k}}(\omega)$ the corresponding eigenvalue
- Find modal dispersion $D_{\text {mode }, \mathrm{k}}(\omega)$ from $\beta_{\mathrm{k}}(\omega)$ for harmonic waves and pulse broadening effects

Remark: Repetition

All material of Chap. 3 on Maxwell's equations and dielectric waveguides has been treated in "Fields and Components II" by Prof. R.Vahldieck / Dr. P.Leuchtmann (p.147-162) !!!

3 Guides Waves in optical Waveguides

In chapter 2 we considered unguided, unconfined plane-waves in homogeneous dielectrics influenced by the carrier dynamics of dipoles.

Communications needs longitudinally guided and transverse separated (confined) waves in loss less dielectrics.
Laterally confined plane waves without dielectric guiding broaden laterally by diffraction !

3.1 Guiding Lightwaves - Historical Overview

Highly directed transport of light in free space is limited by attenuation and beam broadening due to diffraction and source spatial coherence.

1) Lens waveguides: (Gobau 1960)

Light beams can be formed and propagated by lens and mirror systems counteracting transversal diffraction

\Rightarrow but, light beam in free space are broadened by diffraction (beam widening) and need to be periodically refocused by lenses. Diffraction effects in light beams increase with decreasing beam diameter A.
2) metallic waveguides:

Possible conceptually, but free carrier losses in metals at optical frequencies are too high for long distances. Waveguide dimensions on the $\mu \mathrm{m}$-scale are a technological challenge.
3) dielectric waveguides: (1966 - today)

Very low absorption and scattering losses achieved in ultra pure glasses as dielectrics
Fabrication of km-long wave guides with dimension \sim the optical wavelength $\lambda \sim 1 \mu \mathrm{~m}$ is feasible

Conceptual idea of light guiding by total reflection in dielectric structures:

 (ray optic and total reflection picture)use lossless total reflections at interfaces of 2 dielectrics with refractive indices n_{2} and n_{1} where
a) planar dielectric Film WG (1D-guiding)

Zig-zag ray propagation by total reflection requires $\mathbf{n}_{1}>\mathbf{n}_{\mathbf{2}}$ (for details see chap.3.2)
Length difference of different zig-zag paths creates substantial modal pulse broadening at the fiber end
Thin core and small critical angle of total reflection θ_{C} resp. $\left(\mathrm{n}_{1} \sim \mathrm{n}_{2}\right)$ reduces dispersion effects
b) cylindrical glass fiber WG (2D-guiding)

- Glass fibers (after 1970)

Glass fiber fabrication: drawing process
draw large diameter preforms into small fibers by local heating to the glass transition

(c)

Principle: Collapse a large perform by "softening" (heating to glass transition temp.) and drawing a 1000 x

- Ultra pure materials for low light absorption below $-0.2 \mathrm{~dB} / \mathrm{km}$ (glass)
- Precise geometry control low $0.1 \mu \mathrm{~m}$ of $\sim 5-10 \mu \mathrm{~m}$ core diameter
- Homogenous and precise material composition
- High interface quality, low interface roughness, low scattering
to fiber dimension, ~ 100 um \varnothing

Overview of different types of technical dielectric waveguides:

For fabrication technical reasons dielectric optical waveguides are often realized by:
a) planar deposition (evaporation, spinning, sputtering, epitaxial qrowth) of dielectric films (glass, SC) on a substrate:

Lateral structuring by etching, local diffusion etc.
b) Extrusion (collapsing) of a dielectric fiber from a heated layered cylindrical perform:

Very complex quasi-cylindrical fiber cross-sections are possible.
$\underline{n}_{1} \underline{\underline{n}}_{2}$

(c)

Photonic Crystal Fiber

Polarization Maintaining Fiber

Loss mechanisms in silica optical glass fibers:

Absorption and loss mechanisms:

- Absorption by impurities, mainly OH -radicals at $0.95,1.23$ and $1.39 \mu \mathrm{~m}$ wavelength
- Sub-wavelength density fluctuations $(\Delta \mid<\lambda) \Rightarrow$ Raleigh-Scattering $\sim 1 / \lambda$
- UV-Absorption by electron excitation in the SiO_{2}-complex at $\sim 0.3 \mu \mathrm{~m}$
- IR-absorption by Si-O-vibrations at $\sim 5 \mu \mathrm{~m}$
- Geometrical form fluctuations ($\Delta \mid>\lambda$), Mie-Scattering, microbending

3.2 Ray Optics of total reflection

Light propagation in fibers with core diameters d much larger than the optical wavelength λ ($d \gg \lambda$) can be approximated by the propagation and refraction of light beams (rays) at a dielectric interface n_{1} / n_{2}.

Total Reflection at the interface between fiber core $\left(\mathrm{n}_{1}\right)$ and cladding (n_{2}): lossless Zig-Zag-Transmission

Snell's Law of refraction and reflection:

$\cos \left(\varphi_{2}\right) / \cos \left(\varphi_{1}\right)=\mathrm{n}_{1} / \mathrm{n}_{2}>0 \quad$ and $\mathrm{n}_{1} / \mathrm{n}_{2}<1 \Rightarrow \quad$ (observe angle convention of $\varphi!\angle$ surface - beam)
Critical Angle φ_{c} for total reflection $\left(\varphi_{2}=0, \cos \varphi_{2}=1\right)$ at a dielectric interface with refractive indices $n_{1}>n_{2}$:

$$
\begin{aligned}
\cos \left(\varphi_{\mathrm{c}}\right)=\frac{\mathrm{n}_{2}}{\mathrm{n}_{1}}<1 \quad ; & \varphi_{\mathrm{c}}=\operatorname{ar} \cos \left(\frac{\mathrm{n}_{2}}{\mathrm{n}_{1}}\right) \xrightarrow[\mathrm{n}_{1} \sim \mathrm{n}_{2}]{ } \quad \varphi_{\mathrm{c}} \sim\left(\frac{\mathrm{n}_{1}-\mathrm{n}_{2}}{\mathrm{n}_{1}}\right)=\frac{\Delta \mathrm{n}}{\mathrm{n}_{1}} \\
& \varphi_{1}<\varphi_{\mathrm{c}} \rightarrow \text { total reflection (no refractionlosses) } \\
& \varphi_{1}>\varphi_{\mathrm{c}} \rightarrow \text { reflection and refraction }
\end{aligned}
$$

Acceptance Angle φ_{a} at the critical angle for total internal reflection $\varphi_{1}=\varphi_{c}$
At the entrance interface ($\mathrm{n}_{0}, \mathrm{n}_{1}$) of the fiber the incoming beams (φ_{0}) are mainly refracted according to Snells-Law: (reflection at the air/glass interface is only $\sim 4 \%$). n_{0} is the refractive index of the medium at the entrence.
$\underline{\mathrm{n}_{\mathrm{o}} \sin \left(\varphi_{\mathrm{a}}\right)=\mathrm{n}_{1} \sin \left(\varphi_{\mathrm{c}}\right)}=\mathrm{n}_{1} \sqrt{1-\left(\mathrm{n}_{2} / \mathrm{n}_{1}\right)^{2}}=\sqrt{\mathrm{n}_{1}^{2}-\mathrm{n}_{2}^{2}} \quad$ (limiting situation for total reflection $\varphi_{0}=\varphi_{\mathrm{a}}$)

$$
\text { (angle convention: } \angle \text { surface normal - beam) }
$$

All beams with an entrance angle $\varphi_{0}<\varphi_{\mathrm{a}}$ are propagated lossless by total reflections through a straight fiber.
Beams with $\varphi_{0}>\varphi_{\mathrm{a}}$ suffer refraction losses into the cladding and are attenuated by refraction losses.
For fiber characterization the numerical aperture NA is defined as a figure of merit:

$$
\mathrm{NA}=\sin \left(\varphi_{\mathrm{a}}\right)=\frac{1}{\mathrm{n}_{0}} \sqrt{\mathrm{n}_{1}^{2}-\mathrm{n}_{2}^{2}} \xrightarrow{\mathrm{n}_{0}=1} \quad \approx \frac{\mathrm{n}_{1}}{\mathrm{n}_{0}} \sqrt{2 \Delta} \quad \text { with } \quad \Delta=\frac{\mathrm{n}_{1}-\mathrm{n}_{2}}{\mathrm{n}_{1}}
$$

Δ relative refractive index difference between core and cladding
\Rightarrow small $\Delta \mathrm{n}$ gives a small NA which is more difficult to couple light into, but modal dispersion from zig-zag propagation is less (trade-off)

Conclusions from the simple ray-model of the optical fiber:

- All light beams entering the straight fiber within the cone $\left(\varphi<\varphi_{\mathrm{a}}\right)$ defined by the NA are transmitted lossless by total reflections and exit the fiber within the NA-cone
- Large index differences Δ between core and cladding result in large φ_{c} and NAs and high coupling efficiency between light source and fiber.
Time delays $\Delta \mathrm{t}$ (dispersion) between the different Zig-Zag-paths becomes large \Rightarrow trade-off $\Delta, \mathrm{d} \leftrightarrow \Delta \mathrm{t}$
Multimode (MM) step index fiber: $\quad \Delta=1-3 \% \quad$ NA~0.4
Single mode (SM) step index fibers: $\Delta=0.2-1 \% \quad$ NA $=0.1-0.2, \varphi_{a}=12.2^{\circ}$ mit $n_{1}=1.5$ and $\Delta=1 \%$
- Strong bending of the fiber can result in a violation of the total reflection condition at the bends and the light beams can exit the fiber core (bending losses)

The ray model fails if $\lambda \sim \mathbf{d}$ (modes in SM-fibers) and does not provide the light intensity distributions (mode intensity profiles) correctly and also the longitudinal propagation constant becomes wrong.
\Rightarrow needed: vector wave description of light propagation in cylindrical or rectangular dielectric structures governed by Maxwell's equations.

3.3 Wave propagation in cylindrical optical waveguides

Waveguides for signal transmission must propagate a wave longitudinally in the z-direction $\left(\beta_{z}(\omega)\right)$ and should confine the wave (resonance-like) in the transverse T-direction (x, y-plane).
Question: how will the transverse confinement $\left(\mathrm{n}_{1}, \mathrm{n}_{2}\right)$ of the wave influence the propagation in the z -direction $\beta_{z}(\omega$, diel. geometry) ?
\Rightarrow dielectric optical fibers have often a cylindrical structure, with

1) a homogenous refractive index n in the longitudinal z direction $\rightarrow n(x, y) \neq n(z)$.
2) a inhomogeneous refractive index profile in the transverse plane $n(x, y)$ for lateral confinement (high index core).

multi-mode fiber:

Goal:

find all EM-modes $\overrightarrow{\mathrm{E}}_{\mathrm{i}}(\overrightarrow{\mathrm{r}}, \mathrm{t}), \overrightarrow{\mathrm{H}}_{\mathrm{i}}(\overrightarrow{\mathrm{r}}, \mathrm{t})$ and their propagation constant β_{i} at a given frequency ω supported by the cylindrical WG-structure with a transverse index profile $n(x, y)$ by solving Maxwell's equations.

Concept of analysis procedure: what do we want to achieve?

We are considering lossless dielectric structures where the refractive index distribution $n(x, y, z)$ does not change in the propagation direction z but only has a distribution in the transverse directions $x, y \Rightarrow n(x, y)$

The transverse distributions $n(x, y)$ consists of areas where the refractive index is different but constant.
\Rightarrow it can therefore be expected that the transversal field profile does not change transversally
\Rightarrow we restrict our investigated mode solutions to only the z-guided modes and do not consider any other possible solutions of Maxwell's equations. The time dependence is assumed to be harmonic with ω.

$$
\vec{E}(\vec{r}, t)=\vec{E}(\vec{r}) e^{j \omega t}=\vec{E}\left(\vec{r}_{T}\right) e^{-j k_{z} z} e^{j \omega t}=\vec{E}\left(\vec{r}_{T}\right) e^{j \omega t-j k_{z} z} \quad \text { (right propagating } \vec{E} \text { - wave) }
$$

Next we will show that the 6 vector components of E and H are related and only 2 components are independent - we can restrict the solutions further by assuming that 1 component should be zero

Separating the space vector r and the field vectors E, H in longitudinal (z) and transverse components (T) we will show that the field in a homogeneous region of constant refractive index n obeys a HelmholtzEigenvalue equation with the transverse propagation constant k_{T} as Eigenvalue:
$\left(\Delta-\mu \varepsilon \omega^{2}\right) \overrightarrow{\mathrm{E}}(\overrightarrow{\mathrm{r}}, \mathrm{t})=\left(\Delta-\mathrm{k}_{0}^{2}(\omega) \mathrm{n}^{2}\right) \overrightarrow{\mathrm{E}}(\overrightarrow{\mathrm{r}}, \mathrm{t})=0$ Helmholtz - equation
$\left(\Delta_{\mathrm{T}}+\mathrm{k}_{\mathrm{T}}^{2}\right) \overrightarrow{\mathrm{E}}\left(\overrightarrow{\mathrm{r}}_{\mathrm{T}}\right)=0 \quad$ with $\quad \mathrm{k}_{\mathrm{T}}^{2}=\mathrm{k}^{2}-\mathrm{k}_{\mathrm{z}}^{2}$
$\left(\Delta_{\mathrm{T}}+\mathrm{k}_{\mathrm{T}}^{2}\right) \mathrm{E}_{\mathrm{Z}}\left(\overrightarrow{\mathrm{r}}_{\mathrm{T}}\right)=0$

3.3.1 Maxwell's-Equations for EM-waves in cylindrical dielectric WGs:

Goal: Simplify Maxwell's equations for cylindrical coordinates by
\rightarrow transversal (\mathbf{x}, y) - longitudinal (\mathbf{z}) field decomposition,
\rightarrow use of minimum of independent vector components

Assumptions:

- dielectrics are free of fixed space charges, $\rho=0$
- there are no convection currents flowing in the dielectric (isolator), $\overrightarrow{\mathrm{j}}=\sigma \overrightarrow{\mathrm{E}}=0$
- the dielectrics are isotropic, $\varepsilon=\varepsilon_{0} \varepsilon_{\mathrm{r}} ; \quad \varepsilon_{\mathrm{r}}=$ scalar
- the dielectrics are non-magnetic, $\mu=\mu_{0} ; \mu_{\mathrm{r}}=1$
- consider only guided modes in the z-directions (incomplete set)

1) Separation of the longitudinal (z) and lateral (T), (x, y) geometry:
$\overrightarrow{\mathrm{r}}=(\mathrm{x}, \mathrm{y}, \mathrm{z})=\overrightarrow{\mathrm{r}}_{\mathrm{T}}+\overrightarrow{\mathrm{r}}_{\mathrm{z}}=\overrightarrow{\mathrm{r}}_{\mathrm{T}}+\mathrm{r}_{\mathrm{z}} \overrightarrow{\mathrm{e}}_{\mathrm{z}}$
$\overrightarrow{\mathrm{r}}_{\mathrm{T}}$ and $\overrightarrow{\mathrm{r}}_{\mathrm{z}}$ are orthogonal: $\overrightarrow{\mathrm{r}}_{\mathrm{T}} \bullet \overrightarrow{\mathrm{r}}_{\mathrm{z}}=0$

2) Maxwell Vector-Field Equations (MW) in a homogeneous dielectric:
$\begin{array}{ll}\nabla \times \overrightarrow{\mathrm{E}}=-\mu \frac{\partial}{\partial \mathrm{t}} \overrightarrow{\mathrm{H}} & ; \quad \nabla \times \overrightarrow{\mathrm{H}}=-\varepsilon \frac{\partial}{\partial \mathrm{t}} \overrightarrow{\mathrm{E}} \\ \nabla \overrightarrow{\mathrm{E}}=0 & ; \quad \nabla \overrightarrow{\mathrm{H}}=0\end{array} \quad$ with $\quad \nabla=\left(\frac{\partial}{\partial \mathrm{x}}, \frac{\partial}{\partial \mathrm{y}}, \frac{\partial}{\partial \mathrm{z}}\right) \quad$ and $\vec{X} \equiv \vec{X}(\vec{r}, t)$

3) Materials Equations:

$$
\begin{aligned}
& \overrightarrow{\mathrm{D}}=\varepsilon \overrightarrow{\mathrm{E}}=\varepsilon_{0} \varepsilon_{\mathrm{r}} \overrightarrow{\mathrm{E}} \\
& \overrightarrow{\mathrm{~B}}=\mu_{0} \mu_{\mathrm{r}} \overrightarrow{\mathrm{H}} \underset{\mu_{\mathrm{r}}=1}{=} \mu_{0} \overrightarrow{\mathrm{H}} \quad \Rightarrow \underline{6 \text { field variables: }} \mathrm{E}_{\mathrm{x}}(\overrightarrow{\mathrm{r}}, \mathrm{t}), \mathrm{E}_{\mathrm{y}}(\overrightarrow{\mathrm{r}}, \mathrm{t}), \mathrm{E}_{\mathrm{z}}(\overrightarrow{\mathrm{r}}, \mathrm{t}) \text { and } \mathrm{H}_{\mathrm{x}}(\overrightarrow{\mathrm{r}}, \mathrm{t}), \mathrm{H}_{\mathrm{y}}(\overrightarrow{\mathrm{r}}, \mathrm{t}), \mathrm{H}_{\mathrm{z}}(\overrightarrow{\mathrm{r}}, \mathrm{t})
\end{aligned}
$$

Question: how many are independent?

Elimination of one field variable from MW's equations leads to the
Homogeneous Vector Wave Equations: (derivation see Dr. Leuchtmann: F\&K I)
$\left(\Delta-\mu \varepsilon \frac{\partial^{2}}{\partial \mathrm{t}^{2}}\right) \overrightarrow{\mathrm{E}}(\overrightarrow{\mathrm{r}}, \mathrm{t})=0 \quad ; \quad\left(\Delta-\mu \varepsilon \frac{\partial^{2}}{\partial \mathrm{t}^{2}}\right) \overrightarrow{\mathrm{H}}(\overrightarrow{\mathrm{r}}, \mathrm{t})=0 \quad$ with $\quad \Delta=\left(\frac{\partial^{2}}{\partial \mathrm{x}^{2}}+\frac{\partial^{2}}{\partial \mathrm{y}^{2}}+\frac{\partial^{2}}{\partial \mathrm{z}^{2}}\right)=\nabla^{2} \quad \mu, \varepsilon \neq \mathrm{f}(\mathrm{r})$
Assuming that the fields are excited by sources with a harmonic time dependence $\mathrm{e}^{+\mathrm{i} \omega t}$ leads to
4) Harmonic field solutions with a separation of space \vec{r} and time t dependence:
$\overrightarrow{\mathrm{E}}(\overrightarrow{\mathrm{r}}, \mathrm{t})=\operatorname{Re}\left\{\overrightarrow{\mathrm{E}}(\overrightarrow{\mathrm{r}}) \mathrm{e}^{\mathrm{i} \omega \mathrm{t}}\right\} \equiv \frac{1}{2} \overrightarrow{\mathrm{E}}(\overrightarrow{\mathrm{r}}) \mathrm{e}^{\mathrm{i} \omega \mathrm{t}}+\frac{1}{2} \overrightarrow{\mathrm{E}}^{*}(\overrightarrow{\mathrm{r}}) \mathrm{e}^{-\mathrm{i} \omega \mathrm{t}} \quad ; \quad \overrightarrow{\mathrm{X}}(\overrightarrow{\mathrm{r}})=$ complex, spatial only Phasor of the vectorfield $\overrightarrow{\mathrm{X}}(\overrightarrow{\mathrm{r}}, \mathrm{t})$
$\overrightarrow{\mathrm{H}}(\overrightarrow{\mathrm{r}}, \mathrm{t})=\operatorname{Re}\left\{\overrightarrow{\mathrm{H}}(\overrightarrow{\mathrm{r}}) \mathrm{e}^{\mathrm{i} \omega \mathrm{t}}\right\} \equiv \frac{1}{2} \overrightarrow{\mathrm{H}}(\overrightarrow{\mathrm{r}}) \mathrm{e}^{\mathrm{i} \omega \mathrm{t}}+\frac{1}{2} \overrightarrow{\mathrm{H}}^{*}(\overrightarrow{\mathrm{r}}) \mathrm{e}^{-\mathrm{i} \omega \mathrm{t}} \quad ; \quad *=$ conjugate complex, cc.
5) Homogeneous Helm holtz Equation (eigenvalue equation) for the spatial Functions $\vec{E}(\vec{r}) ; \vec{H}(\vec{r})$:

For the harmonic time dependence $\mathrm{e}^{\text {iot }}$ the time-derivation operators transform as
$\frac{\partial}{\partial \mathrm{t}} \longrightarrow+\mathrm{i} \omega ; \frac{\partial^{2}}{\partial \mathrm{t}^{2}} \longrightarrow-\omega^{2} \Rightarrow$

$$
\left(\Delta+\mu \varepsilon \omega^{2}\right) \overrightarrow{\mathrm{E}}(\overrightarrow{\mathrm{r}})=0 ; \quad\left(\Delta+\mu \varepsilon \omega^{2}\right) \overrightarrow{\mathrm{H}}(\overrightarrow{\mathrm{r}})=0 \xrightarrow{\begin{array}{c}
\text { Def.. } \mu \varepsilon \omega^{2}=\mathrm{k}(\omega)^{2} \\
=\mathrm{k}_{0}(\omega)^{2} \mathrm{n}^{2}
\end{array}}\left(\Delta+\mathrm{k}(\omega)^{2}\right) \overrightarrow{\mathrm{E}}(\overrightarrow{\mathrm{r}})=0 ;\left(\Delta+\mathrm{k}(\omega)^{2}\right) \overrightarrow{\mathrm{H}}(\overrightarrow{\mathrm{r}})=0
$$

Helmholtz Equation (eigenvalue equation)
Eigenvalue equation with the eigenvalue k and the eigenfunction $\vec{E}(\vec{r})$, resp. $\vec{H}(\vec{r})$ and a generic
plane wave solution: $\vec{E}(\vec{r}) \sim e^{-j \vec{k} \vec{r}}$ with the propagation vector \vec{k} and $|k|=2 \pi / \lambda$
Spherical waves would be an other simple solution.
Question: do we have to solve the Helmholtz-Equation for all 6 field component ?

For a simplification the cylindrical geometry (homogeneous in the z direction) suggests a formal decomposition of the vector operators into spatial $\mathbf{z -}$ (longitudinal) and T-(transversal, x, y) operators and vectors:

Definition: $\quad \Delta=\left(\frac{\partial^{2}}{\partial \mathrm{x}^{2}}+\frac{\partial^{2}}{\partial \mathrm{y}^{2}}+\frac{\partial^{2}}{\partial \mathrm{z}^{2}}\right)=\left(\frac{\partial^{2}}{\partial \mathrm{x}^{2}}+\frac{\partial^{2}}{\partial \mathrm{y}^{2}}\right)+\left(\frac{\partial^{2}}{\partial \mathrm{z}^{2}}\right)=\Delta_{\mathrm{T}}+\Delta_{\mathrm{z}}$
$\left(\Delta_{\mathrm{T}}+\Delta_{\mathrm{z}}+\mathrm{k}^{2}\right) \overrightarrow{\mathrm{E}}=0 \quad ; \quad\left(\Delta_{\mathrm{T}}+\Delta_{\mathrm{z}}+\mathrm{k}^{2}\right) \overrightarrow{\mathrm{H}}=0$
formal decomposition: $\mathrm{k}^{2}=\mathrm{k}_{\mathrm{T}}^{2}+\mathrm{k}_{\mathrm{z}}^{2}=\mu \varepsilon \omega^{2}=\operatorname{scalar} \quad\left(k_{T}, k_{\mathrm{Z}}\right.$ is not defined yet $)$
$\left(\Delta_{\mathrm{T}}+\Delta_{\mathrm{z}}+\mathrm{k}_{\mathrm{T}}^{2}+\mathrm{k}_{\mathrm{z}}^{2}\right) \overrightarrow{\mathrm{E}}(\overrightarrow{\mathrm{r}})=0 \quad ; \quad\left(\Delta_{\mathrm{T}}+\Delta_{\mathrm{z}}+\mathrm{k}_{\mathrm{T}}^{2}+\mathrm{k}_{\mathrm{z}}^{2}\right) \overrightarrow{\mathrm{H}}(\overrightarrow{\mathrm{r}})=0$

Solution-"Ansatz" for the Helmholtz-Equation for a z-guided wave:
Transverse field pattern is propagated in the z-direction
Guided wave "Ansatz": $\vec{E}(\vec{r}, t)=\vec{E}(\vec{r}) e^{j \omega t}=\vec{E}\left(\vec{r}_{T}\right) e^{-j k_{z} z} e^{j \omega t}=\vec{E}\left(\vec{r}_{T}\right) e^{j \omega t-j k_{z} z} \quad$ (right propagating)
Inserting the guided wave into the Helmholtz-equations:

$$
\begin{aligned}
& \left(\Delta+\mathrm{k}^{2}\right) \overrightarrow{\mathrm{E}}(\overrightarrow{\mathrm{r}})=0 \quad ; \quad\left(\Delta+\mathrm{k}^{2}\right) \overrightarrow{\mathrm{H}}(\overrightarrow{\mathrm{r}})=0 \\
& \left(\Delta_{\mathrm{T}}+\Delta_{\mathrm{z}}+\mathrm{k}^{2}\right) \overrightarrow{\mathrm{E}}=0 \quad \text { dropping } \mathrm{e}^{\mathrm{j} \omega \mathrm{t}} \text { and using the assumption } \overrightarrow{\mathrm{E}}(\overrightarrow{\mathrm{r}})=\overrightarrow{\mathrm{E}}\left(\overrightarrow{\mathrm{r}}_{\mathrm{T}}\right) \mathrm{e}^{-\mathrm{jk} \mathrm{k}_{\mathrm{z}}} \\
& \left(\Delta_{\mathrm{T}} \overrightarrow{\mathrm{E}}\left(\overrightarrow{\mathrm{r}}_{\mathrm{T}}\right) \mathrm{e}^{-\mathrm{j} k_{z} z}+\Delta_{\mathrm{z}} \overrightarrow{\mathrm{E}}\left(\overrightarrow{\mathrm{r}}_{\mathrm{T}}\right) \mathrm{e}^{-\mathrm{j} k_{z} z}+\mathrm{k}^{2} \overrightarrow{\mathrm{E}}\left(\overrightarrow{\mathrm{r}}_{\mathrm{T}}\right) \mathrm{e}^{-\mathrm{j} k_{z} \mathrm{z}}\right)=\left(\Delta_{\mathrm{T}} \overrightarrow{\mathrm{E}}\left(\overrightarrow{\mathrm{r}}_{\mathrm{T}}\right) \mathrm{e}^{-\mathrm{j} \mathrm{k}_{z} \mathrm{z}}-\mathrm{k}_{\mathrm{z}}^{2} \overrightarrow{\mathrm{E}}\left(\overrightarrow{\mathrm{r}}_{\mathrm{T}}\right) \mathrm{e}^{-\mathrm{j} k_{z} z}+\mathrm{k}^{2} \overrightarrow{\mathrm{E}}\left(\overrightarrow{\mathrm{r}}_{\mathrm{T}}\right) \mathrm{e}^{-\mathrm{j} k_{z} \mathrm{z}}\right)=0 \\
& \left(\Delta_{\mathrm{T}}+\mathrm{k}^{2}-\mathrm{k}_{\mathrm{z}}^{2}\right) \overrightarrow{\mathrm{E}}\left(\overrightarrow{\mathrm{r}}_{\mathrm{T}}\right) \mathrm{e}^{-\mathrm{j} \mathrm{k}_{\mathrm{z}} \mathrm{z}}=\left(\Delta_{\mathrm{T}}+\left(\mathrm{k}^{2}-\mathrm{k}_{\mathrm{z}}^{2}\right)\right) \overrightarrow{\mathrm{E}}(\overrightarrow{\mathrm{r}}) \underset{\text { Def.: } \mathrm{k}^{2}-\mathrm{k}_{\mathrm{Z}}^{2}=\mathrm{k}_{\mathrm{T}}^{2}}{\overline{=}}\left(\Delta_{\mathrm{T}}+\mathrm{k}_{\mathrm{T}}^{2}\right) \overrightarrow{\mathrm{E}}(\overrightarrow{\mathrm{r}})=0
\end{aligned}
$$

longitudinal (z) and Transverse (T) Helmholtz-Equation for cylindrical waveguide:
(similar procedure for the H -field)

$$
\begin{array}{l|l}
\left(\Delta_{T}+k_{T}^{2}\right) \overrightarrow{\mathrm{E}}(\overrightarrow{\mathrm{r}})=0 & \text { Eigenvalue problem for } \mathbf{k}_{\mathrm{T}} \text { and } \mathbf{k}_{\mathbf{z}} \text { with } \\
\left(\Delta_{\mathrm{T}}+\mathrm{k}_{\mathrm{T}}^{2}\right) \overrightarrow{\mathrm{H}}(\overrightarrow{\mathrm{r}})=0 & \text { the Eigenfunctions } \overrightarrow{\mathrm{E}}(\overrightarrow{\mathrm{r}}, \overrightarrow{\mathrm{k}}) \text {, resp. } \overrightarrow{\mathrm{H}}(\overrightarrow{\mathrm{r}}, \overrightarrow{\mathrm{k}}) \\
\mathrm{k}^{2}-\mathrm{k}_{\mathrm{z}}^{2}=\mathrm{k}_{\mathrm{T}}^{2} &
\end{array}
$$

Solution: $\vec{E}\left(\overrightarrow{r_{T}}\right) \sim e^{i \vec{k}_{T} \vec{r}_{T}}$
\Rightarrow nontrivial

The Eigenfunctions $\overrightarrow{\mathrm{E}}(\overrightarrow{\mathrm{r}}, \overrightarrow{\mathrm{k}})$, resp. $\overrightarrow{\mathrm{H}}(\overrightarrow{\mathrm{r}}, \overrightarrow{\mathrm{k}})$ are called the modes of the field.

$$
\left(\Delta_{\mathrm{T}}+\mathrm{k}_{\mathrm{T}}^{2}\right) \overrightarrow{\mathrm{E}}\left(\overrightarrow{\mathrm{r}}_{\mathrm{T}}\right)=0
$$

Resp. : $\quad\left(\Delta_{\mathrm{T}}+\mathrm{k}_{\mathrm{T}}^{2}\right) \overrightarrow{\mathrm{H}}\left(\overrightarrow{\mathrm{r}}_{\mathrm{T}}\right)=0$ with $\quad \mathrm{k}^{2}-\mathrm{k}_{\mathrm{z}}^{2}=\mathrm{k}_{\mathrm{T}}^{2}$

For the z-dependence we have assumed:

$$
\Rightarrow \vec{E}(\vec{r}) \sim e^{i k_{z_{z}} z}
$$

$$
\text { with }|\overrightarrow{\mathrm{k}}|^{2}=\omega^{2} \mu \varepsilon\left(\overrightarrow{\mathrm{r}}_{\mathrm{T}}\right)=\mathrm{k}_{\mathrm{T}}^{2}+\mathrm{k}_{\mathrm{z}}^{2}
$$

Solution space of the eigenvalues k_{T} and k_{z} for a given $k(\omega)$:
k is per definition real and positive !

1) $\mathrm{k}_{\mathrm{z}}=$ real $\Rightarrow z$-propagating wave (desired)
\mathbf{k}_{T} real or imaginary \Rightarrow transverse oscillatory or decaying wave
2) $\mathrm{k}_{\mathrm{z}}=$ complex \Rightarrow z-decaying wave
k_{T} real or imaginary \Rightarrow transverse oscillatory or decaying wave
3) general case: $\mathbf{k}_{\mathbf{z}}$ and \mathbf{k}_{T} are imaginary fulfilling $\mathrm{k}(\omega)^{2}=\mathrm{k}_{\mathrm{z}}^{2}+\mathrm{k}_{\mathrm{T}}^{2}$

See the discussion for planar film WG in chap.3.4.2.

The eigenvalue equation for H and E are decoupled, but the 2-fields are related by boundary conditions !

In addition the solutions must fulfill from Maxwell's eq. the transversal boundary continuity conditions at the transverse interfaces
a) Normal components: $\overrightarrow{\mathrm{B}}_{\perp} ; \overrightarrow{\mathrm{D}}_{\perp}$ are continuous
$\overrightarrow{\mathrm{e}}_{\mathrm{n}}\left(\overrightarrow{\mathrm{B}}_{2}-\overrightarrow{\mathrm{B}}_{1}\right)=0 \quad ; \quad \overrightarrow{\mathrm{e}}_{\mathrm{n}}\left(\overrightarrow{\mathrm{D}}_{2}-\overrightarrow{\mathrm{D}}_{1}\right)=\sigma_{\mathrm{F}}=0$
b) Tangential components: $\overrightarrow{\mathrm{E}}_{-} ; \overrightarrow{\mathrm{H}}_{-}$are continuous
$\overrightarrow{\mathrm{e}}_{\mathrm{n}} \times\left(\overrightarrow{\mathrm{E}}_{2}-\overrightarrow{\mathrm{E}}_{1}\right)=0 \quad ; \quad \overrightarrow{\mathrm{e}}_{\mathrm{n}} \times\left(\overrightarrow{\mathrm{H}}_{2}-\overrightarrow{\mathrm{H}}_{1}\right)=\overrightarrow{\mathrm{j}}_{\mathrm{F}}=0$

(no proof)
\Rightarrow Total guided z-propagating plane wave solution:
The total time- and spatial dependent solutions for the $E(H)$-field of cylindrical, transverse inhomogeneous WGs from the solution of the Helmholtz-equation becomes:

Right (left) propagating wave: $\overrightarrow{\mathrm{E}}(\overrightarrow{\mathrm{r}}) \mathrm{e}^{+\mathrm{i}(\omega \mathrm{t})}=\overrightarrow{\mathrm{E}}\left(\overrightarrow{\mathrm{r}}_{\mathrm{T}}\right) \mathrm{e}^{\mathrm{i}(\omega \mathrm{t} \mp \overrightarrow{\mathrm{k}}(\omega) \overrightarrow{\mathrm{r}})}=\overrightarrow{\mathrm{E}}^{\mathrm{e}^{i \overrightarrow{\mathrm{k}}_{\mathrm{T}} \overrightarrow{\mathrm{r}}_{\mathrm{T}}} \mathrm{e}^{\mathrm{i}\left(\omega \mathrm{t} \mp \overrightarrow{\mathrm{k}}_{\mathrm{z}}(\omega) \mathrm{z}\right)}} \begin{aligned} & \text { with the phase velocity } \mathrm{v}_{\mathrm{ph}, \mathrm{z}}(\omega)=\omega / \mathrm{k}_{\mathrm{z}}(\omega)\end{aligned}$
standing transverse wáve like
z-propagating wave Eigenfunction (transverse mode)

The eigenvalues k_{T} and k_{z} are not independent but coupled to $k(\omega)$ for a given ω.

Reminder:

The above plane wave solutions with standing waves in the transverse direction do not represent not all possible wave solutions in the WG structure.
We assumed quided waves along the z-axis in the "solution-Ansatz" reducing the solution space of the problem artificially.

Interpretation of the solutions:

- the transverse Helmholtz-Eq. defines an Eigenvalue-problem for the propagation vector $\mathbf{k}_{\mathrm{T}}(\omega)$ resp. $\mathbf{k}_{\mathbf{z}}(\omega)$
- k_{z} describes the spatial dependence in the $\mathbf{z -}, k_{T}$ the transverse direction
- the longitudinal propagation constant $\mathbf{k}_{\mathbf{z}}(\omega)$ is influenced by the transversal solutions \mathbf{k}_{T}, resp. by the transverse dielectric WG structure, because $\mathrm{k}^{2}=\mathrm{k}_{\mathrm{T}}^{2}+\mathrm{k}_{\mathrm{z}}^{2}$ must hold.
But $\mathbf{k}(\omega)$ is also a material property.
- $\mathbf{k}_{\mathbf{z}}(\omega)$ and $\mathrm{k}_{\mathrm{T}}(\omega)$ will define the frequency dependence of the propagation properties
\Rightarrow mode-dispersion relation $\mathbf{k}_{\mathbf{z}}(\omega)$

3.3.2 Separation of Longitudinal and Transversal Field components:

The next step is to see if we have to solve the Helmholtz equations for all 6 vector components or if there are relations between them reducing the number independent variables.
The solution of the EM-vector field has 6 vector components ($\mathrm{E}_{\mathrm{x}}, \mathrm{E}_{\mathrm{y}}, \mathrm{E}_{\mathrm{z}}, \mathrm{H}_{\mathrm{x}}, \mathrm{H}_{\mathrm{y}}, \mathrm{H}_{z}$), which are not all independent.

$$
\begin{array}{lll}
\left(\Delta_{\mathrm{T}}+\mathrm{k}_{\mathrm{T}}^{2}\right) \mathrm{E}_{\mathrm{i}}(\overrightarrow{\mathrm{r}})=0 & ;\left(\Delta_{\mathrm{T}}+\mathrm{k}_{\mathrm{T}}^{2}\right) \mathrm{H}_{\mathrm{i}}(\overrightarrow{\mathrm{r}})=0 & \mathrm{i}=\mathrm{x}, \mathrm{y}, \mathrm{z} \\
\left(\Delta_{\mathrm{z}}+\mathrm{k}_{\mathrm{z}}^{2}\right) \mathrm{E}_{\mathrm{i}}(\overrightarrow{\mathrm{r}})=0 & ;\left(\Delta_{\mathrm{Z}}+\mathrm{k}_{\mathrm{z}}^{2}\right) \mathrm{H}_{\mathrm{i}}(\overrightarrow{\mathrm{r}})=0 &
\end{array}
$$

Helmholtz-equations

Question: Possibility to solve for a fraction of components (eg. 2 out of 6) and derive the rest by mutual relations ? What is the minimum number of independent field components?

Without prove (appendix 3 B) we state that any vector field $\overrightarrow{\mathrm{V}}$ satisfies the following 2 universal vector relations 1) , 2):

$$
\overrightarrow{\mathrm{v}}=\overrightarrow{\mathrm{v}}_{\mathrm{T}}+\overrightarrow{\mathrm{v}}_{\mathrm{Z}}=\overrightarrow{\mathrm{v}}_{\mathrm{T}}+\mathrm{v}_{\mathrm{Z}} \overrightarrow{\mathrm{e}}_{\mathrm{z}}
$$

1) $\vec{v}_{T}=\vec{e}_{z} \times \overrightarrow{\mathrm{v}} \times \overrightarrow{\mathrm{e}}_{\mathrm{z}}$
2) $\vec{e}_{z} v_{z}=\vec{e}_{z} \cdot \vec{v} \cdot \vec{e}_{z}$

The equations 1) and 2) define relations between longitudinal and transversal field components $\overrightarrow{\mathrm{v}} \rightleftarrows \overrightarrow{\mathrm{v}}_{\mathrm{T}}, \overrightarrow{\mathrm{v}}_{\mathrm{Z}}$ allowing the reduction of the number of independent field components.

T- and z-decomposition of the vector-fields:
$\vec{E}(\vec{r})=\vec{E}_{T}(\vec{r})+\vec{E}_{Z}(\vec{r})=\left(E_{x}, E_{y}, 0\right)+\left(0,0, E_{z}\right)$
$\vec{H}(\vec{r})=\vec{H}_{T}(\vec{r})+\vec{H}_{Z}(\vec{r})$

T- and z-decomposition of vector-operations:

Expressing the vector-operations in Maxwell's-equations for a field decomposed into transversal and longitudinal components $\overrightarrow{\mathrm{v}}=\overrightarrow{\mathrm{v}}_{\mathrm{T}}+\overrightarrow{\mathrm{v}}_{\mathrm{Z}}=\overrightarrow{\mathrm{v}}_{\mathrm{T}}+\mathrm{v}_{\mathrm{Z}} \overrightarrow{\mathrm{e}}_{\mathrm{z}}$: (without proof, appendix 3 B)

$$
\begin{aligned}
& \nabla=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)=\nabla_{T}+\nabla_{Z}=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, 0\right)+\left(0,0, \frac{\partial}{\partial z}\right) \\
& \overrightarrow{\text { grad }: ~} \quad \nabla s=\nabla_{T} s+\vec{e}_{z} \cdot \frac{\partial}{\partial z} s \\
& \text { div: } \quad \nabla \cdot \vec{v}=\nabla_{T} \cdot \vec{v}_{T}+\frac{\partial}{\partial z} v_{z} \\
& \overrightarrow{\text { rot }:} \quad \nabla \times \vec{v}=\left(\nabla_{T} \cdot\left(\vec{v}_{T} \times \vec{e}_{z}\right)\right) \cdot \vec{e}_{z}+\left(\nabla_{T} v_{z}-\frac{\partial}{\partial z} \vec{v}_{T}\right) \times \vec{e}_{z}
\end{aligned}
$$

1) replacing the vector operators $\nabla=\nabla_{T}+\nabla_{Z}$ in Maxwell's-equations, eg. for \vec{E} leads to:

$$
\nabla \times \vec{E}=\left(\nabla_{T} \cdot\left(\vec{E}_{T} \times \vec{e}_{z}\right)\right) \cdot \vec{e}_{z}+\left(\nabla_{T} E_{z}-\frac{\partial}{\partial z} \vec{E}_{T}\right) \times \vec{e}_{z}=-i \omega \mu \vec{H}=-i \omega \mu\left(\vec{H}_{z}+\vec{H}_{T}\right)
$$

2) separating into transversal (T) and longitudinal (z) components:

$$
\begin{align*}
& \left(\nabla_{T} E_{z}-\frac{\partial}{\partial z} \vec{E}_{T}\right) \times \vec{e}_{z}=-i \omega \mu \vec{H}_{T} \tag{*t}\\
& \nabla_{T} \cdot\left(\vec{E}_{T} \times \vec{e}_{z}\right)=-i \omega \mu H_{z} \tag{**l}
\end{align*}
$$

3) vector multiplying $\boldsymbol{e}_{Z} \times\left(^{*}\right)$ and using $\boldsymbol{e}_{z} \times \boldsymbol{v}_{T} \times \boldsymbol{e}_{z}=\boldsymbol{v}_{T}$ and applying $\partial / \partial z \rightarrow-i k_{z}$ gives:

$$
k_{z} \vec{E}_{T}-i \nabla_{T} E_{z}=-\omega \mu\left(\vec{e}_{z} \times \vec{H}_{T}\right)
$$

4) from the second equation (**) by using $v_{T} \times \boldsymbol{e}_{z}=-\boldsymbol{e}_{z} \times \boldsymbol{v}_{T}$, we obtain:

$$
\nabla_{T} \cdot\left(\vec{e}_{z} \times \vec{E}_{T}\right)=i \omega \mu H_{z}
$$

Applying the same transforms to the \boldsymbol{H}-field results in the

Maxwell's-equation separated by transversal and longitudinal vector-operators:

Vector relations transversal and longitudinal field components

$$
\begin{array}{l|c}
k_{z} \vec{E}_{T}-i \nabla_{T} E_{z}=-\omega \mu\left(\vec{e}_{z} \times \vec{H}_{T}\right) & e q .1 \\
k_{z} \vec{H}_{T}-i \nabla_{T} H_{z}=\omega \varepsilon\left(\vec{e}_{z} \times \vec{E}_{T}\right) & \text { eq. } 2 \\
\nabla_{T} \cdot\left(\vec{e}_{z} \times \vec{E}_{T}\right)=i \omega \mu H_{z} & \text { eq. } 3 \\
\nabla_{T} \cdot\left(\vec{e}_{z} \times \vec{H}_{T}\right)=-i \omega \varepsilon E_{z} & \text { eq. } 4
\end{array}
$$

Interpretation:

- 4 relations between transversal and longitudinal field components 4 relations and 6 variable
\Rightarrow only 2 independent field variables
- the 4 other dependent field variables can be derived from the 2 independent ones
\Rightarrow we chose the longitudinal components Ez, Hz as independent field variables

Solution-Procedure for Maxwell's equations:

Concept:

Solve Helmholtz-Eigenvalue equations (if possible) for the longitudinal E_{z} - and H_{z}-components and the determine the transversal components E_{T} and H_{T} by the relations (eq.1-4).

1) Elimination of the 4 transversal field components $\left(E_{T}, H_{T}\right) \Rightarrow E_{z}$ and H_{z} are independent field variables (no proof)
$\left(\Delta_{T}+k_{T}^{2}\right) E_{z}\left(\vec{r}_{T}\right)=0$
$\left(\Delta_{T}+k_{T}^{2}\right) H_{z}\left(\vec{r}_{T}\right)=0$

2-dimensional Helmholtz-Equation for longitudinal E_{z}, H_{z} (eigenvalue equation for k_{T})
2) Solve for E_{Z}, H_{Z} and $k_{T}(\omega) \rightarrow k_{T}, E_{X}, H_{X}, E_{Y}, H_{Y}$ from the eigenvalue equation obtained from the matching of the boundary continuity conditions
3) Express transversal field components E_{T}, H_{T} by the longitudinal E_{z}, H_{z} :

$$
\begin{aligned}
& \vec{E}_{T}=\frac{1}{i k_{T}^{2}}\left\{k_{z} \cdot \nabla_{T} E_{z}-\omega \mu\left(\vec{e}_{z} \times \nabla_{T}\right) H_{z}\right\} \\
& \vec{H}_{T}=\frac{1}{i k_{T}^{2}}\left\{k_{z} \cdot \nabla_{T} H_{z}+\omega \varepsilon\left(\vec{e}_{z} \times \nabla_{T}\right) E_{z}\right\}
\end{aligned}
$$

longitudinal $z\left(k_{z}, E_{z}, H_{z}\right) \rightarrow$ transversal T Transform ($\left.k_{T}, E_{T}, H_{T}\right)$
4) Using the relation between k, k_{T}, k_{z} provides the calculation of the longitudinal propagation constant k_{z} :

Making use of the continuity equations for the transversal and longitudinal fields gives an Eigenvalue equation for:

$$
k_{T}^{2}=k^{2}-k_{z}^{2}=\omega^{2} \mu \varepsilon\left(\vec{r}_{T}\right)-k_{z}^{2} \quad(3.30) \Rightarrow k_{z}(\omega)=\sqrt{k(\omega)^{2}-k_{T}^{2}}
$$

5) matching the source boundary conditions will provide the absolute values for H_{z} and E_{z}

Categories of Wave Solutions (Modes):

- TM-Wave (transverse magnetic wave) or E-wave $E_{z} \neq 0, H_{z} \equiv 0$:

Guided wave with only longitudinal E-field and a purely transverse magnetic field.
For the solution we need only to solve the Helmholtz-equation for the E_{z}-component.

- TE-Wave (transverse electric wave) or H-wave $H_{z} \neq 0, E_{z} \equiv 0$:

Guided wave with only longitudinal H-field and a purely transverse electric field. For the solution we need only solve the Helmholtz-equation for the H_{z}-component.

- Hybrid EH- or HE-Wave (transverse electric wave) or H-wave $E_{z} \neq 0, H_{z} \neq 0$:

Guided wave with both longitudinal E - and H -fields (EH: E_{z} is dominating, $\mathrm{HE}: \mathrm{H}_{z}$ is dominating). For the solution we need solve both Helmholtz-equation for the $E_{z^{-}}$and H_{2}-components.

- TEM-Wave (transverse electromagnetic Wave) $E_{z} \equiv 0, H_{z} \equiv 0$:

Guided wave with only transversal E- and H-fields. We can not solve the Helmholtz-equation for the $E_{z^{-}}$and $H_{z^{-}}$ components. For TEM-waves we must directly solve the Helmholtz-equation for the transverse components.

$$
\left(\Delta_{T}+k_{T}^{2}\right) \vec{E}_{T}=0
$$

TEM-wave often occur in weakly guiding WGs with small index difference between core and cladding.

Summary: Solutions for cylindrical waveguides

- For waveguide the Helmholtz-equations define the eigenvalue-problem with eigenvalue k_{T} resp. k_{z}, being the transverse and longitudinal propagation constants and the Eigenfunction of the transversal field distribution $\boldsymbol{E}\left(r_{T}\right), \boldsymbol{H}\left(r_{T}\right)$.
- The longitudinal Helmholtz-equations for the longitudinal components E_{z} and/or H_{z} are formulated for the reduction of field variables. Using the field boundary conditions the solutions are evaluated.
- Depending on the selection of the field components - only H_{z}, only E_{z} or E_{z} and H_{z} combined - the corresponding mode-type is determined (TE-, TM-, or hybrid HE- bzw. EH-modes).
- The transversal components E_{T} and \boldsymbol{H}_{T} are calculated from the primary solutions of E_{Z} and H_{Z}.
- Enforcing the boundary conditions for the longitudinal z- and for the corresponding transversal T-components provides the necessary Eigenvalue-equation for the propagation constants k_{T} and k_{z}.
- TEM-Waves are solutions of the simple transversal potential problem alone.

This type of wave modes occurs in dielectric waveguides with very small index differences between core and cladding or in metallic multi-conductor waveguides.

- Hybrid modes are the most general solution for transverse inhomogeneous dielectric waveguides.
- Each transverse inhomogeneous, dielectric waveguide has transverse Eigensolutions, TE- or TM-Modes (no proof).

Observe that we only considered the the z-guided, confined modes by the chosen solution-Ansatz.

Concept of analysis procedure: what do we want to achieve?
Before we derived the Helmholtz-equation of the Eigenvalue-type for a homogeneous region
In the following we will match the Eigenfunctions of the Helmholz-equations of the different dielectric regions i of a given waveguide structure for a common z-propagation vector k_{z} at all interfaces of all regions.

The matching conditions provide a nonliner eigenvalue equation for the common propagation constant $\mathrm{k}_{\mathrm{z}}(\omega)$ for a given ω.

The in general nonlinear function $\mathbf{k}_{\mathbf{z}}(\omega)$ is the dispersion relation of the WG describing the influence (modification) of the geometrical dielectric guiding structure on the linear material dispersion relation $\mathrm{k}(\omega)$.

The simplest wave structure is the symmetric planar film waveguide $n_{1}-n_{2}-n_{1}$ which we solve in detail to demonstrate the solution procedure and the classification of the different modal solutions.

3.4 Planar Film Waveguides

For optoelectronic devices fabricated by planar IC-processes the generic dielectric planar slab waveguide consists of a 2-D core slab of a high refractive index n_{1} and thickness $2 d$ covered in the x-direction by two "infinitely" thick cladding layers of refractive index $\mathrm{n}_{2}, \mathrm{n}_{3}$.

Wave guiding occurs only in the yz-plane, - the wave is confined only in the transverse x-direction.
We choose the z-direction as the propagation direction. The problem is homogeneous in the y-direction: $\partial / \partial \mathrm{y}=0$

3.4.1 Symmetric planar slab (film) waveguide,$n_{2}=n_{3}$

For a lossless propagating wave $\mathrm{e}^{\mathrm{tj} \beta z}$ (mode)
$k_{z}=\beta$ and k_{i} must be real with the restriction:

$$
k_{T, i}^{2}+k_{z, i}^{2}=k_{T, i}^{2}+\beta_{i}^{2}=k_{i}^{2}(\omega)
$$

$\Rightarrow \mathbf{k}_{\mathrm{T}, \mathrm{i}}$ can be real (oscillatory solution in the core) or imaginary (decaying solutions in the cladding)
a) Guided TE-Modes $E_{z} \equiv 0$ (assumption), $H_{z} \neq 0$

1) solve the 1D-Helmholtz-Equation for the $\mathrm{H}_{\mathrm{z}}(\mathrm{x})$-component in the loss-less medium:

$$
\left(\Delta_{T}+k_{\mathrm{T}}^{2}\right) H_{z}=(\frac{\partial^{2}}{\partial x^{2}}+\underbrace{k_{i}^{2}-\beta^{2}}_{k_{T, i}^{2}}) H_{z}=0
$$

with the longitudinal propagation constant $\mathrm{k}_{\mathrm{z}}=\beta$ and $n_{i}(\forall i=1,2)$
$k_{i}=\omega \cdot \sqrt{\mu \varepsilon_{i}}=\frac{2 \pi}{\lambda_{\mathrm{i}}}=\frac{n_{i}}{c} \omega=k_{0} n_{i}>0 \quad ; \quad k_{0}=\omega \cdot \sqrt{\mu_{0} \varepsilon_{0}}=\frac{2 \pi}{\lambda_{0}} \quad$ (vacuum propagation constant)

1) Solve the Helmholtz eq. for the core and cladding layers separately and match boundary conditions at interfaces
2) $H_{z}(x)$ must be symmetric or anti-symmetric in the x-direction leading to harmonic solutions of the Helmholtzequation (plane waves) of the form $\mathrm{e}^{\mp \mathrm{jk} \mathrm{ki}^{\mathrm{X}}}$ with the transverse wave number $k_{T i}^{2}=k_{i}^{2}-\beta^{2}$ resp. $\beta^{2}=k_{i}^{2}-k_{T i}^{2}$ for the medium i. $\quad \beta$ must be the same for all layers (core and cladding).
3) Useful optical wave for signal propagation require a transverse confined mode therefore k_{T} must be imaginary in the cladding for a decaying transverse cladding field $\mathrm{H}_{\mathrm{z}}(\pm \infty)=0$.
The field in the core can be oscillatory and k_{T} real.
\Rightarrow eigenvalue $k_{z}(\omega)=\beta(\omega)$ must fulfill the interval inequality (solution space):

$$
k_{1}=k_{0} \cdot n_{1}>\beta(\omega)>k_{2}=k_{0} \cdot n_{2} \quad \text { resp. } \quad \omega / c_{0} n_{1}>\beta(\omega)=k_{z}(\omega)>\omega / c_{0} n_{2}
$$

decaying cladding wave symmetrie condition
Interpretation: the resulting mode field distribution must "balance" the different phase velocities of core and cladding.

Solutions of the transverse Helmholtz-equation:

- core area (1): $n=n_{1}, k_{1}>\beta,|x|<d$ oscillatory solutions

$$
H_{z}(x)=A \cdot\left\{\begin{array}{l}
\sin \left(x \cdot \sqrt{k_{1}^{2}-\beta^{2}}\right) \\
\cos \left(x \cdot \sqrt{k_{1}^{2}-\beta^{2}}\right)
\end{array}\right\} ; E_{Z}=0 \quad \text { A, B are arbitrary unknown amplitude constants }
$$

- Top cladding (2): $n=n_{2}, k_{2}<\beta, x>d$ exponential decaying solution

$$
H_{z}(x)=B \cdot e^{-(x-d) \cdot \sqrt{\beta^{2}-k_{2}^{2}}} \quad ; E_{Z}=0 \quad \text { field decay constant } 1 / \sqrt{\beta^{2}-\mathrm{k}_{2}^{2}}
$$

- Bottom cladding (3): $n=n_{2}, k_{2}<\beta, x<-\boldsymbol{d}$ (+ for the cos-solution in the core) exponential decaying solution

$$
\begin{equation*}
H_{z}(x)=-(+) B \cdot e^{(x+d) \cdot \sqrt{\beta^{2}-k_{2}^{2}}} \quad ; E_{Z}=0 \tag{3.58}
\end{equation*}
$$

2) Boundary conditions at the core-cladding-interface requires the continuity of the tangential field components, that is the continuity of H_{z} and also for E_{y} with $E_{z}=0$.

These equations couple the core and cladding field together (constants a A and B). The transverse field components are obtained by the relations with $E_{z}=0$:

$$
\begin{array}{ll}
\vec{E}_{T}=\frac{1}{i k_{T}^{2}}\left\{k_{z} \cdot \nabla_{-}-E_{z}^{\prime}-\omega \mu\left(\vec{e}_{z} \times \nabla_{T}\right) H_{z}\right\} & \nabla_{\mathrm{T}}=\left(\frac{\partial}{\partial \mathrm{x}}, \frac{\partial}{\partial \mathrm{y}}=0, \frac{\partial}{\partial \mathrm{z}}=0\right) \\
\vec{H}_{T}=\frac{1}{i k_{T}^{2}}\left\{k_{z} \cdot \nabla_{T} H_{z}+\omega \varepsilon\left(\vec{e}_{\bar{z}}-\bar{x} \overline{\nabla_{T}}\right) E_{z}\right\} & \Rightarrow\left(1-\mathrm{D} \text { and } E_{Z}=0\right) \Rightarrow \begin{array}{lll}
E_{y}=\frac{i \omega \mu}{k_{i}^{2}-\beta^{2}} \cdot \frac{\partial}{\partial x} H_{z} \quad ; \quad E_{X}=0 \quad ; \quad E_{z}=0 \\
H_{x}=\frac{-i \beta}{k_{i}^{2}-\beta^{2}} \cdot \frac{\partial}{\partial x} H_{z} ; H_{y}=0 ; \quad \leftarrow H_{z}(x) \neq 0
\end{array}
\end{array}
$$

Using the basic assumption for the TE-mode $E_{z} \equiv 0$ leads to the conclusion that $E_{x}-$, resp. the H_{y}-component vanish because the y-components are constant ($\partial / \partial \mathrm{y}=0$).

The \boldsymbol{E}-field of the $T E$-mode has only a E_{y}-component and the \boldsymbol{H}-field has only a H_{z}-and a H_{x}-component.
Remark:
It can be shown, that the continuity of E_{y} also fulfills the continuity of H_{z} by using the relation:
$H_{X}(x)=-\frac{j \beta}{k^{2}-\beta^{2}} \frac{\partial}{\partial x} H_{Z}(x)$

Tangential continuity conditions for $\mathrm{H}_{\mathbf{z}}$ at the interfaces $\mathbf{x}= \pm \mathbf{d}$ relates A and $\mathrm{B}: \quad((+)$ for the cos-solution $)$

$$
H_{z}(\pm d, \beta)=A \cdot\left\{\begin{array}{c}
\pm \sin \left(d \cdot \sqrt{k_{1}^{2}-\beta^{2}}\right) \\
\cos \left(d \cdot \sqrt{k_{1}^{2}-\beta^{2}}\right)
\end{array}\right\}= \pm(+) B \quad \text { (c1). } \quad B=B(A)
$$

Tangential continuity conditions for E_{y} at the interfaces $\mathbf{x}= \pm \mathbf{d}$: ((\pm) for the cos-solution $\left.\mathrm{H}_{\mathrm{z}}\right)$

$$
E_{y}(\pm d, \beta)=+\frac{i \omega \mu_{1} \cdot A}{\sqrt{k_{1}^{2}-\beta^{2}}} \cdot\left\{\begin{array}{c}
\cos \left(d \cdot \sqrt{k_{1}^{2}-\beta^{2}}\right) \tag{c2}\\
\mp \sin \left(d \cdot \sqrt{k_{1}^{2}-\beta^{2}}\right)
\end{array}\right\}=+(\pm) \frac{i \omega \mu_{2} \cdot B}{\sqrt{\beta^{2}-k_{2}^{2}}}
$$

3) Eigenvalue-Equation for the longitudinal propagation constant β :

the continuity equations (c1) and (c2) must be fulfilled simultaneously and for non-magnetic dielectrics $\mu_{1}=\mu_{2}=\mu$. Eliminating A and B by a division of eg.(c1)/(c2) leads to the eigenvalue-eq. for β :

For the sin-function (symmetric, even for E_{y}) in the core:

$$
\tan \left(d \cdot \sqrt{k_{1}^{2}-\beta(\omega)^{2}}\right)=\frac{\sqrt{\beta(\omega)^{2}-k_{2}^{2}}}{\sqrt{k_{1}^{2}-\beta(\omega)^{2}}}
$$

${ }^{(3.33)}$ Transcendental Eigenvalue Equation for $\beta(\omega)=$?
and for the cos-function (anti-symmetric, odd for E_{y}) in the core:

$$
-\cot \left(d \cdot \sqrt{k_{1}^{2}-\beta(\omega)^{2}}\right)=\frac{\sqrt{\beta(\omega)^{2}-k_{2}^{2}}}{\sqrt{k_{1}^{2}-\beta(\omega)^{2}}}
$$

(3.64) Transcendental Eigenvalue Equation for $\beta(\omega)=$?
which are only relations between:

- the propagation constants $\beta(\omega)$ and $k_{i}(\omega)$ (containing ω and n_{i}) and - geometrical parameters (d).
\Rightarrow Solutions for real β (undamped propagation in in z-direction) exist only if $\mathbf{k}_{\mathbf{2}}<\boldsymbol{\beta}<\mathbf{k}_{\mathbf{1}}$

For a graphical solution of the Eigenvalue-equations we substitute the functions ξ, η :

$$
\begin{aligned}
& \xi(\omega)=d \cdot \sqrt{k_{1}^{2}-\beta^{2}}=d \sqrt{k_{T 1}^{2}}>0 \\
& \eta(\omega)=d \cdot \sqrt{\beta^{2}-k_{2}^{2}}=d \sqrt{k_{T 2}^{2}}>0
\end{aligned}
$$

$\xi(\omega) / d=\sqrt{k_{1}^{2}-\beta^{2}}=k_{T 1}$ is the transverse wave number $\mathrm{k}_{\mathrm{T} 1}$ of the core n_{1} $\eta(\omega) / d=\sqrt{\beta^{2}-k_{2}^{2}}=k_{T 2}$ is the inverse field decay constant in the claddings n_{2}

The transcendental Eigenvalue-equations for $\beta(\omega)$ have the generic forms:

$$
\sin : \quad \eta(\omega)=\xi(\omega) \cdot \tan (\xi(\omega)) \quad ; \quad \cos : \quad \eta(\omega)=-\xi(\omega) \cdot \cot (\xi(\omega)) \quad \text { (3.67 } \quad \text { 1. equation containing } \eta, \zeta
$$

For the graphical solution we define the structure parameter $\mathrm{V}(\omega)$:

$$
V(\omega)=\sqrt{\xi^{2}+\eta^{2}}=d \cdot \sqrt{k_{1}^{2}-k_{2}^{2}}=k_{0} d \cdot \sqrt{n_{1}^{2}-n_{2}^{2}}=2 \pi d / \lambda_{0} \cdot \sqrt{n_{1}^{2}-n_{2}^{2}}=\omega / c \cdot \sqrt{n_{1}^{2}-n_{2}^{2}} \quad \text { (3.69). } \quad \text { 2. equation containing } \eta, \zeta
$$

V combines only the structural parameters of the waveguide $\boldsymbol{d}, \boldsymbol{n}_{\mathbf{1}}$, and $\boldsymbol{n}_{\boldsymbol{2}}$ with the wavelength λ_{0}, resp. ω of the EM wave

For a given optical frequency ω (resp. wavelength λ_{0}) 1) the eigenvalue equations and 2) the condition $V(\omega)$ have to be fulfilled simultaneously in the $\xi-\eta$-plane:

$$
\begin{array}{ll}
\text { 1) } \eta=\xi \cdot \tan (\xi) \quad \eta=-\xi \cdot \cot (\xi) & \rightarrow \eta(\xi) \text {-tan or cot-curves } \\
\text { 2) } V(\omega)=\sqrt{\xi^{2}+\eta^{2}}=\frac{\omega}{c} \cdot \sqrt{n_{1}^{2}-n_{2}^{2}} & \rightarrow \text { circles with radius } V(\omega)
\end{array} \quad \text { (tan and cot are periodic in } p!\text {) }
$$

SM !

Graphical representation of the two eigenvalue equations and the circles for constant $V(\omega)$:

Each intersection ($\bullet \cdot \bullet$) represents the η, ξ-solution values for a particular odd or even propagating TE-mode at a given frequency ω.
$\Rightarrow \beta(\omega)=\beta(\eta, \xi)=\sqrt{k_{1}^{2}-\left(\frac{\xi}{d}\right)^{2}}=\sqrt{k_{2}^{2}+\left(\frac{\eta}{d}\right)^{2}}$

Dispersion-Relation

zero-frequency cut-off!
even symmetry modefinite frequency cut-off

Graphic solution: $\Rightarrow \xi(\omega)$ and $\eta(\omega) \Rightarrow \beta(\omega)$

- For large ω resp V many odd and even modes exist - multimode operation
- For small ω resp \vee only one even modes exist - singlemode (SM) operation!
- small core diameter d or small index difference favour singlemode operation
- cut-off: $\eta=0 \quad \beta=k_{2}=n_{2} k_{0}$ ("cladding mode")
- asymptotic behaviour: $\omega \rightarrow \infty \quad \mathrm{V} \rightarrow \infty \quad \xi(\omega) / d=\sqrt{k_{1}^{2}-\beta^{2}}=$ finite $\rightarrow \beta=\mathrm{k}_{1}=\mathrm{n}_{1} \mathrm{k}_{0} \quad$ ("core mode")

What do we learn: Existence and Propagation of Modes

- Guides modes are z-propagating wave with planar phase fronts in the transverse x - y-plane and a confined field variation in the transverse x-direction (the y-direction is homogenous)
- The field distribution in the transverse direction (x) must be such that a real propagation constant $\beta(\omega)$ results, which is the "same" for core and claddings (qualitative).
- The structure parameter $\mathrm{V}(\omega)$ determines

1) if there exists no, one or multiple modes (solutions, intersections= number of modes) and

2) the values of the corresponding propagation constants $\beta(\omega)$.
Large values of V , resp ω often allow multiple modes to coexist (depending if they are excited by a source)
For small values of $\mathrm{V} \ll 1$, resp. ω (small radius of V) only one mode can propagate, the $T E_{1}$-mode, resp. H_{1}-mode. This mode exists even for $\omega \rightarrow 0$ (mode without a cut-off)

- Dispersion of the modes:

Modal dispersion: $\beta_{i}(\omega)$
if $\mathrm{V}(\omega)$, resp. ω changes then the propagation constant $\beta(\omega)$ and the phase propagation velocity $\mathrm{v}_{\mathrm{ph}}(\omega)=\omega / \beta(\omega)$ varies, - a particular mode can travel at different velocities, depending on its frequency ω.
If $\beta \sim \omega$ the phasevelocity is constant (dispersion free, no modal pulse broadening)
Intermodal dispersion: $\beta_{i}(\omega) \neq \beta_{k}(\omega)$
if multiple modes i coexist with different propagation constants $\beta_{i}(\omega)$ then each mode may propagate at a different phase velocity $\mathrm{V}_{\mathrm{ph}, \mathrm{I}}$ and the total field of all modes may show large dispersion.
(excitation of multiple modes)

Dispersion curves of modes: $\beta(\omega)$ and $\mathrm{n}_{\text {eff }}(\omega)$
Definition: of the modal effective index of refraction $n_{\text {eff: }}$

$$
\beta(\omega)=\mathrm{k}_{\mathrm{eff}}(\omega)=\frac{2 \pi}{\lambda_{0}} \mathrm{n}_{\mathrm{eff}}(\omega) \rightarrow \mathrm{n}_{\mathrm{eff}}(\omega)=\beta(\omega) \frac{\lambda_{0}}{2 \pi}
$$

Schematic propagation constant $\beta(\omega)$ versus optical frequency ω (Dispersion relation) $\beta(\omega) \Rightarrow$ provides information about dispersion

Effective index of refraction $\mathbf{n}_{\text {eff }}(\mathbf{f})$ of the symmetric slab WG vers. optical frequency f for the modes $\mathrm{TE}_{1}\left(\mathrm{H}_{1}\right), \mathrm{TE}_{2}\left(\mathrm{H}_{2}\right)$ and $T E_{3}$ $\left(\mathrm{H}_{3}\right)$
$\mathrm{n}_{\text {eff }}(\omega) \Rightarrow$ provides information about dispersion
(corresponding mode fields at 600 THz see next foil).

Interpretation of $\mathrm{n}_{\text {eff }}$ and β :

- Dispersion curves show that modes exist in general in a frequency range from $\omega_{\text {min,i }}$ (cut-off frequency) to infinity $\omega \rightarrow \infty$.
- At cut-off β approaches k_{2}, resp. $n_{\text {eff }}$ approaches n_{2} of the cladding of the cladding - the decay of the cladding field becomes small and the mode field mostly propagates in the cladding.

At high frequencies above cut-off, $\beta \rightarrow \mathrm{k}_{1}$ and $\mathrm{n}_{\text {eff }} \rightarrow \mathrm{n}_{1}$ the decay of the cladding field is strong and the mode is almost completely confined to the core.

- $n_{\text {eff }} \in\left[n_{2}, n_{1}\right]$,

$$
\begin{aligned}
& k_{2} \leq \beta \leq k_{1} \\
& k_{0} \cdot n_{2} \leq \beta \leq k_{0} \cdot n_{1} \\
& n_{2} \leq \beta / k_{0} \leq n_{1} \rightarrow n_{\text {eff }}=\beta / k_{0}
\end{aligned}
$$

Normalized transversal field distributions (a) $H_{z}(x)$ and (b) $E_{y}(x)$ or the modes $T E_{1}\left(H_{1}\right), T E_{2}\left(H_{2}\right)$ und $T E_{3}\left(H_{3}\right)$ at 600 THz .

Mode classification (mode number) and mathematical formulation of the eigenvalue problem:

a) Guided TE-Modes $E_{z} \equiv 0, H_{z} \neq 0$

Replacing η by $\mathrm{V}(\omega)$ in the eigenvalue equation we obtain for the variable $\xi(\omega)$:

$$
\sqrt{V^{2}-\xi^{2}}=\left\{\begin{array}{r}
\xi \cdot \tan (\xi) \\
-\xi \cdot \cot (\xi)
\end{array}\right.
$$

Using the addition theorem for tan- / cot-functions (periodicity of tan, cot: π) :

$$
\tan \left(\alpha-\frac{p \cdot \pi}{2}\right)=\left\{\begin{aligned}
-\cot (\alpha) & \forall p: \text { odd } \\
\tan (\alpha) & \forall p: \text { even }
\end{aligned} \quad \text { (3.72) } \mathbf{p}\right. \text { is the mode index }
$$

we eliminate the cot-function in the eigenvalue equation and combine both equations to.

$$
\sqrt{V^{2}-\xi^{2}}=\xi \cdot \tan \left(\xi-\frac{p \cdot \pi}{2}\right) \quad \mathrm{p}=0,1,2, \ldots
$$

$$
(3.73),
$$

Solving the eigenvalue equation for the eigenvalue ξ :

$$
\xi=\operatorname{Arctan}\left(\sqrt{\frac{V^{2}}{\xi^{2}}-1}\right)+\frac{p \cdot \pi}{2} \quad \mathrm{p}=0,1,2, \ldots=\text { mode index } \quad \text { alternative form: } \mathrm{C}(\beta, \omega)=0
$$

\Rightarrow p serves as a counting index to classify the modes $T E_{p+1^{-}}$resp. H_{p+1}-modes.
With $\xi(\omega)$ we calculate $\beta(\omega)$ using $\xi(\omega)=d \cdot \sqrt{k_{1}^{2}(\omega)-\beta^{2}(\omega)}$
Repeating the previous procedure we can investigate also the $T M_{p+1}$ - resp. E_{p+1}-modes.
b) Guided TM-Modes $\boldsymbol{H}_{z} \equiv 0, E_{z} \neq 0 \quad$ (self-study)

Repeating the Helmholz-equation for the longitudinal E_{z}-field component $E_{z}(x) \neq 0, H_{z} \equiv 0$:

$$
\left(\frac{\partial^{2}}{\partial x^{2}}+k_{\mathrm{i}}^{2}-\beta^{2}\right) E_{\mathrm{z}}=0 \rightarrow \mathrm{E}_{\mathrm{z}}(\mathrm{x})
$$

Using the similar formal solutions for the longitudinal component $E_{z}(x)$, we can determine the transverse field components from the derivation of E_{z} :

$$
\begin{aligned}
& E_{x}=\frac{-i \beta}{k_{i}^{2}-\beta^{2}} \cdot \frac{\partial}{\partial x} E_{z} \\
& H_{y}=\frac{-i \omega \varepsilon}{k_{i}^{2}-\beta^{2}} \cdot \frac{\partial}{\partial x} E_{z}
\end{aligned} \quad E_{\mathrm{z}}(\mathrm{x}) \rightarrow \mathrm{E}_{\mathrm{x}}(\mathrm{x}), \mathrm{H}_{\mathrm{y}}(\mathrm{x})
$$

We assumed already $H_{z} \equiv 0$ and again the E_{y}-, resp. the H_{x}-components vanish, because the field components in the y-direction are constant, resp. $\partial / \partial y \rightarrow 0$.
\Rightarrow The \boldsymbol{H}-field of the $T M$-modes has only one H_{y}-component and the corresponding E-field is composed of only the an $E_{z^{-}}$and E_{x}-component.

The field continuity boundary conditions between core and cladding lead again to the formulation of the eigenvalue equation:

- Continuity of the E_{z}-component: ((+ -sign for the cos-solution)

$$
E_{z}(\pm d)=A \cdot\left\{\begin{array}{c}
\pm \sin \left(d \cdot \sqrt{k_{1}^{2}-\beta^{2}}\right) \tag{3.78}\\
\cos \left(d \cdot \sqrt{k_{1}^{2}-\beta^{2}}\right)
\end{array}\right\}= \pm(+) B
$$

- Continuity of the H_{y}-component: ($\pm \pm$-sign for the cos-solution for E_{z})

$$
H_{y}(\pm d)=-\frac{i \omega \varepsilon_{1} \cdot A}{\sqrt{k_{1}^{2}-\beta^{2}}} \cdot\left\{\begin{array}{c}
\cos \left(d \cdot \sqrt{k_{1}^{2}-\beta^{2}}\right) \tag{3.79}\\
\mp \sin \left(d \cdot \sqrt{k_{1}^{2}-\beta^{2}}\right)
\end{array}\right\}=-(\pm) \frac{i \omega \varepsilon_{2} \cdot B}{\sqrt{\beta^{2}-k_{2}^{2}}}
$$

For the TM-modes $\varepsilon_{1}=n_{1}{ }^{2} \neq \varepsilon_{2}=n_{2}{ }^{2}$ we write the eigenvalue equation slightly in a different way as for the TE-mode:

$$
\begin{array}{r}
\tan \left(d \cdot \sqrt{k_{1}^{2}-\beta^{2}}\right)=\frac{\varepsilon_{1}}{\varepsilon_{2}} \cdot \frac{\sqrt{\beta^{2}-k_{2}^{2}}}{\sqrt{k_{1}^{2}-\beta^{2}}} \\
-\cot \left(d \cdot \sqrt{k_{1}^{2}-\beta^{2}}\right)=\frac{\varepsilon_{1}}{\varepsilon_{2}} \cdot \frac{\sqrt{\beta^{2}-k_{2}^{2}}}{\sqrt{k_{1}^{2}-\beta^{2}}} \tag{3.80}
\end{array}
$$

Using the same substitutions for $\xi(\omega)$ and $\eta(\omega)$ and introducing v we obtain:

$$
\begin{equation*}
\xi=d \cdot \sqrt{k_{1}^{2}-\beta^{2}} \quad \eta=d \cdot \sqrt{\beta^{2}-k_{2}^{2}} \quad \vartheta=\frac{\varepsilon_{1}}{\varepsilon_{2}}=\frac{n_{1}^{2}}{n_{2}^{2}} \tag{3.82}
\end{equation*}
$$

eliminating η by using the definition of $\vee(\omega)$ results in the eigenvalue equation for the $T M_{p+1}$ - resp. the E_{p+1}-modes:

$$
\begin{equation*}
\xi=\operatorname{Arctan}\left(\vartheta \cdot \sqrt{\frac{V^{2}}{\xi^{2}}-1}\right)+\frac{p \cdot \pi}{2} \tag{3.85}
\end{equation*}
$$

- It can be shown that only one eigenvalue exist for each TM-mode if $V>p \pi / 2$
- TE- and TM-modes are degenerated for symmetric slab waveguides at cutoff, meaning that a TM and TE-solution with the same β exist at the cutoff-frequency!

3.4.2 Asymmetric planar slab waveguide (self-study, exercise)

Real film waveguides are often asymmetric in the sense that the top-cladding has a refractive index n_{3} which is different from the index n_{2} of the bottom-cladding (eg. substrate).
The waveguide core has an index $\mathbf{n}_{1}>\mathbf{n}_{2}, \mathbf{n}_{3}$ and a thickness d (not 2 d as before !).

Assumptions:

- Propagating guided wave in z-direction
- Layer structure in the x-direction
- Homogeneous in the y-direction $\frac{\partial}{\partial y}=0$

Asymmetric plane film waveguide . $\left(n_{2} \geq n_{3}\right)$ with propagation direction z.

Applying the same formalism as for the symmetric WG it is useful to define $\mathbf{2}$ structure parameters $V(\omega)$ and $\tilde{V}(\omega)$ because the asymmetric slab-waveguide has 2 different dielectric interfaces $n_{1}-n_{3}$ and $n_{1}-n_{2}$ (2 different conditions for total reflection).

$$
\begin{array}{ll}
V(x)=k_{0} d \cdot \sqrt{n_{1}^{2}-n_{2}^{2}} \quad ; \quad \tilde{V}(x)=k_{0} d \cdot \sqrt{n_{1}^{2}-n_{3}^{2}} \\
1-2 \text { Interface } & 1-3 \text { Interface }
\end{array}
$$

a) Guided TE-Modi $E_{z} \equiv 0, H_{z} \neq 0$

The Helmholz-equation for the H_{z}-component becomes:

$$
\left(\frac{\partial^{2}}{\partial x^{2}}+k_{\mathrm{i}}^{2}-\beta^{2}\right) H_{z}=\left(\frac{\partial^{2}}{\partial x^{2}}+k_{\mathrm{Ti}}^{2}\right) H_{z}=0 \quad \text { with } \quad k_{\mathrm{Ti}}^{2}=k_{\mathrm{i}}^{2}-\beta^{2} \quad \mathrm{i}=, 1,2,3
$$

The general harmonic solutions in the transverse direction x have the form: $e^{ \pm i\left(k_{\mathrm{Ti}} x-\Psi\right)}$
The new phase parameter ψ takes into account that the solution may be asymmetric in the x -direction

Typ of transverse mode solutions:

Depending on the value of β relative to k_{i}, resp. on the value of $k_{T_{i}}$ we distinguish

- $\mathrm{k}_{\mathrm{T} \mathrm{i}}=$ real $\left(\beta<\mathrm{k}_{\mathrm{i}}\right.$, eg. in the core with $\left.\mathrm{k}_{1}=\mathrm{k}_{0} \mathrm{n}_{1}\right) \Rightarrow$ undamped oscillatory solution (oscillatory standing transverse wave)
- $\mathrm{k}_{\mathrm{Ti}}=$ imaginary $\left(\beta>\mathrm{k}_{\mathrm{i}}\right.$, eg. in the claddings with eg. $\left.\mathrm{k}_{2}=\mathrm{k}_{0} \mathrm{n}_{2}\right) \Rightarrow$ damped exponential (decaying standing transverse wave)

For guided (confined in the x-direction, decaying in the cladding) waves the eigenvalues β must lay in the intervall $\max \left(k_{2}, k_{3}\right)<\beta<k_{1}$

To characterize the refractive index properties at the two interfaces we define again as before:

$$
\begin{equation*}
\vartheta=\frac{\varepsilon_{1}}{\varepsilon_{2}}=\frac{n_{1}^{2}}{n_{2}^{2}} \quad ; \quad \tilde{\vartheta}=\frac{\varepsilon_{1}}{\varepsilon_{3}}=\frac{n_{1}^{2}}{n_{3}^{2}} \tag{3.92}
\end{equation*}
$$

Again we introduce the abbreviations ξ, η and $\tilde{\eta}$ for the eigenvalue equations:

$$
\xi=d \cdot \sqrt{k_{1}^{2}-\beta^{2}} \quad ; \quad \eta=d \cdot \sqrt{\beta^{2}-k_{2}^{2}} \quad ; \quad \tilde{\eta}=d \cdot \sqrt{\beta^{2}-k_{3}^{2}}
$$

$k_{T 1}=\sqrt{k_{1}^{2}-\beta^{2}} \quad ; \quad k_{T 2}=\sqrt{\beta^{2}-k_{2}^{2}} \quad ; \quad k_{T 3}=\sqrt{\beta^{2}-k_{3}^{2}} \quad$ (Observe the interchanged definition of $\mathrm{k}_{\mathrm{T} 2}$ and $\mathrm{k}_{\mathrm{T} 3}$ compared to $\left.\mathrm{k}_{\mathrm{T} 1}!\right)$
Transverse H_{z}-field profile of z-propagating TE-Modes (without proof):
From the solution of the Helmholtz-equation:

- Core (1): $n=n_{1}, k_{1}>\beta, \quad x<d$

$$
H_{z}(x)=A \cdot\left\{\begin{array}{c}
\sin \left(k_{T 1} \cdot x-\psi\right) \\
\cos \left(k_{T 1} \cdot x-\psi\right)
\end{array}\right\}
$$

(3.97); Oscillatory harmonic function

- Bottom Cladding (2): $n=n_{2}, \quad k_{2}<\beta, x>d$

$$
H_{z}(x)=A \cdot\left\{\begin{array}{l}
\sin (\xi-\psi) \\
\cos (\xi-\psi)
\end{array}\right\} \cdot e^{-k_{T 2} \cdot(x-d)} \quad \text { (3.98); decaying (oscillatory) exponential }
$$

- Top Cladding (3): $n=n_{3}, \quad k_{3}<\beta, x<0$

$$
H_{z}(x)=A \cdot\left\{\begin{array}{l}
\sin (\psi) \\
\cos (\psi)
\end{array}\right\} \cdot e^{k_{T 3} \cdot x}
$$

(3.99); decaying (oscillatory) exponential

Appling the boundary conditions (continuity eq.) at the two interfaces for the H_{z} - and the transverse E_{y}-components leads to the eigenvalue equation for the $T E_{p+1}$ - resp. H_{p+1}-mode:

$$
\xi=\operatorname{Arctan}\left(\sqrt{\frac{V^{2}}{\xi^{2}}-1}\right)+\operatorname{Arctan}\left(\sqrt{\frac{\tilde{V}^{2}}{\xi^{2}}-1}\right)+p \cdot \pi \quad \text { (3.100) mode index: } \mathrm{p}=0,1,2, \ldots \text { alternative form: } \mathrm{C}(\beta, \omega)=0
$$

Solving for $\xi(\omega)$ we get finally the propagation constant $\beta(\omega)$ of mode $p+1$:
$\Rightarrow \beta(\omega, \mathrm{p})=\sqrt{\mathrm{k}_{1}^{2}-\left(\frac{\xi(\omega)}{\mathrm{d}}\right)}$

Cut-off-Condition: ($\eta(\omega)=0$)

In view that we have 2 structure parameters $\mathrm{V}(\omega)$ and $\tilde{\mathrm{V}}(\omega)$ for the top- and bottom core-cladding interface it is obvious that the interface with the smaller index difference violates the total reflection condition first (one-sided leakage of the mode into the corresponding cladding).

The detailed discussion of the cutoff-condition \mathbf{V}_{p} for $\boldsymbol{T} E_{p+1}$ - resp. \boldsymbol{H}_{p+1}-modes becomes (without proof)

$$
\begin{equation*}
V>V_{p}=\operatorname{Arctan}\left(\sqrt{\frac{1}{\tilde{\vartheta}} \cdot \frac{\tilde{\vartheta}-\vartheta}{\vartheta-1}}\right)+p \cdot \pi \tag{3.101}
\end{equation*}
$$

Asymmetric film waveguides with $\vartheta \neq \tilde{\vartheta}$ and subsequently $V>V_{p}>0$ can not guide the fundamental mode $p=0, T E_{1}$ for $\omega=0$. (for the symmetric $\vartheta=\tilde{\vartheta}$ case $V_{p}=0$ becomes possible)

The transverse mode-shift ψ in the core-solution is determined from the eigenvalue ξ, η as:

$$
\tan (\xi-\psi)=\frac{\xi}{\eta}
$$

b) Guided TM-mode $H_{z} \equiv 0, E_{z} \neq 0$

Again the Helmholtz-eq. reads as: $\left(\frac{\partial^{2}}{\partial x^{2}}+k_{\mathrm{i}}^{2}-\beta^{2}\right) E_{z}=0$ (3.103),
resulting in a similar eigenvalue equation:

$$
\xi=\operatorname{Arctan}\left(\vartheta \cdot \sqrt{\frac{V^{2}}{\xi^{2}}-1}\right)+\operatorname{Arctan}\left(\tilde{\vartheta} \cdot \sqrt{\frac{\tilde{V}^{2}}{\xi^{2}}-1}\right)+p \cdot \pi
$$

The modified Cutoff relation becomes:

$$
V>V_{p}=\operatorname{Arctan}\left(\sqrt{\tilde{\vartheta} \cdot \frac{\tilde{\vartheta}-\vartheta}{\vartheta-1}}\right)+p \cdot \pi
$$

From the eigenvalue ξ we can calculate the transverse mode shift ψ as:

$$
\vartheta \cdot \tan (\xi-\psi)=\frac{\xi}{\eta}
$$

The procedure for the eigenvalue and field calculation can be extended straight forward to more complex dielectric multi-layer structures with more than three layers.
Of course the analytical procedure becomes then rather lengthy and numerical methods are appropriate.

3.4.3 Different Types of Modes:

In the previous chapter we restricted ourselves to special mode-solutions (z-propagating, xy-transverse confined modes)

1) propagating in the z-direction $\Rightarrow \beta=k_{z}=$ real and
2) where the field energy is confined to the core layer with the highest index of refraction, resp. where the field in the claddings decays to zero $\quad \Rightarrow \mathrm{k}_{\mathrm{T}}=$ imaginary

Thus this set of solutions are probably not complete.
$\mathrm{k}_{\mathrm{Ti}}=\sqrt{\left(\mathrm{k}_{0} \mathrm{n}_{\mathrm{i}}\right)^{2}-\beta^{2}}=$ real in the core \rightarrow harmonic solution
$\mathrm{k}_{\mathrm{Ti}}=\sqrt{\left(\mathrm{k}_{0} \mathrm{n}_{\mathrm{i}}\right)^{2}-\beta^{2}}=$ imaginary >0 or $\mathrm{k}_{\mathrm{Ti}}=\sqrt{\beta^{2}-\left(\mathrm{k}_{0} \mathrm{n}_{\mathrm{i}}\right)^{2}}=$ reel >0 in the claddings \rightarrow decaying exponential solution
With the definitions: $k_{T 1}=\sqrt{k_{1}^{2}-\beta^{2}} \quad k_{T 2}=\sqrt{\beta^{2}-k_{2}^{2}} \quad k_{T 3}=\sqrt{\beta^{2}-k_{3}^{2}}$

$$
\xi=d \cdot \sqrt{k_{1}^{2}-\beta^{2}} \quad \eta=d \cdot \sqrt{\beta^{2}-k_{2}^{2}} \quad \tilde{\eta}=d \cdot \sqrt{\beta^{2}-k_{3}^{2}}
$$

These requirements lead to the following restrictions of possible $\beta(\omega)$ with respect to $\mathrm{k}_{\mathrm{i}}=\omega / \mathrm{cn}_{\mathrm{i}}$ or n_{i} for a given ω :
$\mathrm{k}_{0} \mathrm{n}_{\text {clad }}<\beta<\mathrm{k}_{0} \mathrm{n}_{\text {core }}$
\Rightarrow propagating and confined modes (a)
$\beta>\mathrm{k}_{0} \mathrm{n}_{\text {core }}$ is not possible because β must be complex leading to non-propagating, decaying waves in the z-direction
$\beta<\mathrm{k}_{0} \mathrm{n}_{\text {clad }}$ possible, but it leads to non-decaying cladding fields \Rightarrow propagating unconfined radiation modes (b,c)

Confined and unconfined mode-profiles:

Extension to non-propagating modes in the z-direction:

These previous conditions for eigenvalues are equivalent to searching for real eigenvalues ξ and η.
The eigenvalue equation are of the type:

$$
w=-z \cdot \cot (z)
$$

However this eigenvalue-equation can have in principle complex solutions
$w=u+i v$ and $z=x+i y$ with $V^{2}=z^{2}+w^{2}=$ real.
It can be shown these solutions lead to so called leaky modes (Leckwellen) appearing at frequencies below the cutoff of the waveguide.

Leaky modes are solutions that decay in the propagation direction \mathbf{z}, but grow exponentially in the cladding. Leaky modes are interesting to describe out-coupling effects of waves from a waveguide.

Categories of propagation constants and effective refractive indices of different modes:

Analogy between Guided optical Modes and to Eigenstates in Quantum Mechanics:

There is a formal analogy between the wavefunctions $U_{i}(r)$ with the energy eigenvalues E_{i} of bound electrons in a rectangular potential well and the transverse wavefunction $E_{i}\left(r_{T}\right)$ of a guided (confined photon) mode in a step-index dielectric waveguide.

Time-independent Schrödinger Equation: (1-dimensional)
$(\frac{\hbar^{2}}{2 \mathrm{~m}} \frac{\partial^{2}}{\partial \mathrm{x}^{2}}+\underbrace{\mathrm{V}(\mathrm{x})-\mathrm{E}_{\mathrm{i}}}) \mathrm{U}_{\mathrm{i}}=0$
Potential $\mathrm{V}(\mathrm{x}): \begin{array}{ll}|\mathrm{x}| \leq \mathrm{d} & \mathrm{V}(\mathrm{x})=\mathrm{V}_{1} \\ |\mathrm{x}|>\mathrm{d} & \mathrm{V}(\mathrm{x})=\mathrm{V}_{2}\end{array}$
Ansatz: $\Psi_{i}(x, t)=U_{i}(x) e^{-\mathrm{j} \frac{E_{i}}{\hbar}}$
Eigenvalue: E_{i}
Transverse standing matter-wave for bound particle
$\mathrm{n}, \mathrm{n}_{\text {eff }}$

\Leftrightarrow

$$
\mathrm{E}_{\mathrm{i}}=\hbar \omega \Leftrightarrow \mathrm{k}_{\mathrm{z}}{ }^{2}
$$

Helmholtz-Equation:
(1-dimensional)
$\left(\frac{\partial^{2}}{\partial \mathrm{x}^{2}}+\mathrm{k}_{\mathrm{T}}^{2}\right) \mathrm{E}_{\mathrm{z}}=0=\left(\frac{\partial^{2}}{\partial \mathrm{x}^{2}}+\omega^{2} \mu \varepsilon(\mathrm{x})-\mathrm{k}_{\mathrm{z}}^{2}\right) \mathrm{E}_{\mathrm{z}}=(\frac{\partial^{2}}{\partial \mathrm{x}^{2}}+\underbrace{\omega^{2} \frac{\mathrm{n}^{2}(\mathrm{x})}{\mathrm{c}_{0}^{2}}-\mathrm{k}_{\mathrm{z}}^{2}}) \mathrm{E}_{\mathrm{z}}$

$$
V(x) \Leftrightarrow-n(x)^{2}
$$

Refractive index $\mathrm{n}(\mathrm{x})$:

$$
\begin{array}{ll}
|\mathrm{x}| \leq \mathrm{d} & \mathrm{n}(\mathrm{x})=\mathrm{n}_{1} \\
|\mathrm{x}|>\mathrm{d} & \mathrm{n}(\mathrm{x})=\mathrm{n}_{2}
\end{array}
$$

Ansatz: $\mathrm{E}_{z, \mathrm{i}}(\mathrm{x}, \mathrm{t})=\mathrm{E}_{\mathrm{z}, \mathrm{i}}(\mathrm{x}) \mathrm{e}^{-\mathrm{j} \omega t} \quad$ (separation of variables)

Eigenvalue: $\beta=n_{\text {eff }} k_{0}$
Transverse standing EM-wave
for confined photon

3.5 Ridge (Rib) Waveguides

Practical planar optical waveguides (confinement in x-direction) need an additional lateral (y) confinement to separate the optical channels from each other in the film plane.
\Rightarrow 2-dimensional dielectric confinement in the 2 transverse directions x and y

Applying the concept of total reflections in the x - and y-direction lead to the requirements for a 2-D waveguide:

- The core $\left(n_{g}\right)$ must be surrounded by claddings $\left(n_{c}\right)$ of lower refractive index than the core $n_{g}>n_{c}$

Technical realizations of 2-dimensional film waveguides (WG):

(a) strip WG (Streifenleiter),
(b) embedded strip WG (eingebetteter Streifenleiter),
(c) rib- or ridge WG (Rippenwellenleiter),
(d) loaded strip WG (aufliegender Streifenleiter)

Legend:
the darker the grey-scale, the larger the refractive index.

Approximation: Method of the effective refractive index (example rib waveguide)
In general no analytic solutions exist for these 2-dimensional WG \Rightarrow numerical solution methods or approximations

Scanning Electronmicroscope (SEM) picture of a ridge waveguide crossection.
Ridge width is $W=2 \mu \mathrm{~m}$ and ridge height $\sim 1 \mu \mathrm{~m}$.

Effective index approximation: derive from the ridge structure in the xy-plane a 3 layer film WG in the y-direction with effective indices $N_{I}, N_{I I}, N_{I I I}$ of the vertical (x-direction) 3layer WG with the real indices n_{s}, n_{g}, n_{c}.

Concept of effective refractive index:

- Separation of the 2-dimensional (x, y) cross-section into 2 orthogonal 1-dimensional (x) and (y) 3-layer waveguides 3-layer WG (I - III) in the y-direction are approximated by the corresponding eff. Indices $\mathrm{N}_{\mathrm{l}}, \mathrm{N}_{\mathrm{II}}, \mathrm{N}_{\text {III }}$.
- Separation of the 2-dimensional mode profile into 2 1-dimensional mode profiles $X(x)$ and $Y(y)$:

$$
\phi(x, y)=X(x) \cdot Y(y) \quad \text { Separation Ansatz (approximation) }
$$

Description of the effective index method:

1) X-layer profiles: separation of the rib geometry in the y-direction in to 3-lateral sections I, II, III.

Sections are described individually in the vertical x-direction by a 3-layer waveguides ($n_{s}, n_{g}, n_{c}, d_{c}$) with different d_{i} :
Sec. I: $n_{s}, n_{g} /\left(d_{l}, n_{s}\right) \Rightarrow X_{I}(x), N_{\text {eff, },} \quad$ Sec. II: $n_{s}, n_{g} /\left(d_{I I}, n_{s}\right) \Rightarrow X_{I I}(x), N_{\text {eff,II }} \quad$ Sec. III: $\quad n_{s}, n_{g} /\left(d_{I I I}, n_{s}\right) \Rightarrow X_{I I I}(x), N_{\text {eff,III }}$ Each lateral layer structure in layers I, II, III is characterized by an effective index of refraction $N_{\text {eff }, i}=N_{i}=N_{\text {eff } ;}\left(d_{i}, n_{g}, n_{s}, n_{c}\right)$.

We assume in the following that we consider the TE-solution (x) in the 3 vertical sections.
2) Y-layer profile: the rib geometry in the y-direction is described by an "effective" 3-layer slab waveguide by the sections I, II, III and their effective indices $\mathrm{N}_{\text {eff, },}, \mathrm{N}_{\text {eff,II, }}, N_{\text {eff,III }}$
$\mathrm{N}_{\text {eff, }, \mathrm{I}}, \mathrm{N}_{\text {eff,II }} /\left(\mathrm{W}, \mathrm{N}_{\text {eff,III }}\right) \Rightarrow$ lateral solution: $\mathrm{Y}(\mathrm{y}), \mathrm{N}_{\text {eff }, \mathrm{Y}}$
In the lateral direction we must now consider the TM-solution (y) to be compatible to the above TE-assumption (x).

3) Solution:

section I: $\phi(x, y)=X_{I}(x) Y(y), \quad$ section II: $\phi(x, y)=X_{I I}(x) Y(y), \quad$ section III: $\phi(x, y)=X_{I I I}(x) Y(y)$

```
3 layer WG problem in x-direction:
Film I
Film II
Film III
```

$\mathrm{N}_{\text {eff,l }}$
$\mathrm{N}_{\text {eff,II }}$
$\mathrm{N}_{\text {eff,III }}$
W

3 layer WG problem in y-direction:
$\mathrm{N}_{\text {efff }}$ W

Lateral weakly guiding approximation:

- The ratio $d / W \ll 1$ (small disturbance in the x-direction)
- $\frac{\Delta \mathrm{N}_{\text {eff }, \text { I-II }}}{\mathrm{N}_{\text {eff,II }}}=\frac{\mathrm{N}_{\text {eff,II }}-\mathrm{N}_{\text {eff, }, \mathrm{I}}}{\mathrm{N}_{\text {eff, II }}} \ll 1 ; \quad \frac{\Delta \mathrm{N}_{\text {eff, III-II }}}{\mathrm{N}_{\text {eff, II }}}=\frac{\mathrm{N}_{\text {eff,II }}-\mathrm{N}_{\text {eff,III }}}{\mathrm{N}_{\text {eff, II }}} \ll 1$ weak lateral confinement
resp. $\sqrt{\varepsilon_{g}-\max \left(\varepsilon_{s}, \varepsilon_{c}\right)} \approx 0.1 \ldots 1$ with the dielectric constants: $\varepsilon_{\mathrm{i}}=\mathrm{n}_{\mathrm{i}}{ }^{2} \quad \mathrm{i}=\mathrm{s}, \mathrm{g}, \mathrm{c}$

$$
\left\{N_{e f f}, R(r)\right\}=\mathrm{n}_{\text {eff }}\left(n_{c}, n_{i}, n_{s}, d_{i}, \lambda_{0}, m_{R}, P_{R}\right)
$$

1. step: vertica (x)/ WGs

$$
\begin{aligned}
& \left\{N_{I}, X_{I}(x)\right\}=N_{\text {eff }}\left(n_{c}, n_{g}, n_{s}, d_{I}, \lambda_{0}, m_{X}, P_{X}\right) \\
& \left\{N_{I I}, X_{I I}(x)\right\}=N_{\text {eff }}\left(n_{c}, n_{g}, n_{s}, d_{I I}, \lambda_{0}, m_{X}, P_{X}\right) \\
& \left\{N_{I I}, X_{\text {III }}(x)\right\}=N_{\text {eff }}\left(n_{c}, n_{g}, n_{s}, d_{I I I}, \lambda_{0}, m_{X}, P_{X}\right)
\end{aligned}
$$

$$
\left\{N_{I I}, X_{I I}(x)\right\}=N_{\text {eff }}\left(n_{c}, n_{g}, n_{s}, d_{I I}, \lambda_{0}, m_{X}, P_{X}\right) \quad \text { vacuum wavelength } \lambda_{0} \text {, Polarization } P_{X}, \text { mode index }
$$

2. stept lateral (y) WG:
$\left\{N_{\text {eff }}, Y(y)\right\}=N_{\text {eff }}\left(N_{I}, N_{I I}, N_{\text {III }}, W, \lambda_{0}, m_{Y}, P_{Y}\right)$
$\Rightarrow \phi_{m_{X}, m_{Y}}(x, y)=\left\{X_{I}(x)+X_{I I}(x)+X_{I I I}(x)\right\} \cdot Y(y) \quad \mathrm{W}$

approximation error
$\mathrm{N}_{\text {eff }}(\mathrm{y})$

Concept of analysis procedure: what do we want to achieve?
We translate the Helmholtz-equation to the cylindrical geometry of optical fibers by using cylindrical coordinates.

The solution procedure for the dispersion relation and the field eigenfunctions is identical to the 1-dimensional film WG except that the exponential functions have to be replaced by 2-dimensional cylindrical functions.

From the dispersion of relation $\mathrm{k}_{\mathrm{z}}(\omega)=\beta(\omega)$ we can determine frequency dependent group velocity $\mathrm{v}_{\mathrm{ph}}(\lambda)$ and the dispersion factor $D(\lambda)$ as a function of the waveguide geometry and refractive indices

3.6 Optical Glass Fibers (Repetition 4.sem F\&K II)

Optical glass fibers are the most important waveguides for long transmission distances in optical communication and therefore attenuation and dispersion effects limit the max. transmission distance L at a given bit-rate B.

Fiber fabrication uses a preform drawing process leading to cylindrical wave guides with a high index core cylinder n_{1} (SMF: $\mathrm{a} \sim 4 \mu \mathrm{~m}$, MMF: $\mathrm{a} \sim 25-31 \mu \mathrm{~m}$) surrounded by a low index n_{2} cylindrical cladding layer of $\sim 250 \mu \mathrm{~m}$ diameter.
\Rightarrow cylindrical symmetry of the WG
The step index fiber with an abrupt lateral index difference $\Delta n(a)=\left(n_{2}-n_{1}\right)$ is the simplest transverse index profile $n(r, \varphi)$.

For symmetry reasons a cylindrical coordinate system (z, r, φ) is the appropriate representation with z as the longitudinal propagation direction and r, φ as the transverse coordinates.

Assumption: n_{2} and n_{1} are homogeneous in the core and cladding sections.
For the formulation of the Helmholtz-equations we transform the vector operators into the cylindrical coordinates:

Coordinate transformation $\mathbf{x}, \mathbf{y}, \mathbf{z} \Rightarrow \mathbf{r}, \varphi, \mathbf{z}$:

The coordinate transform is straight forward but lengthy, so only the starting point is given.
$\mathrm{x}=\mathrm{r} \cdot \cos \varphi \quad ; \quad \mathrm{y}=\mathrm{r} \cdot \sin \varphi \quad ; \quad \mathrm{z}=\mathrm{z}$
$\mathrm{r}=\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}} ; \varphi=\arctan (\mathrm{y} / \mathrm{x}) ; \mathrm{z}=\mathrm{z}$
Δ - Operator transform : $\quad f(x, y)=f(x(r, \varphi), y(r, \varphi))$
$\frac{\partial^{2} \mathrm{f}}{\partial \mathrm{x}^{2}}=\frac{\partial^{2} \mathrm{f}}{\partial \mathrm{r}^{2}}\left(\frac{\partial \mathrm{r}}{\partial \mathrm{x}}\right)^{2}+\frac{\partial \mathrm{f}}{\partial \mathrm{r}} \frac{\partial^{2} \mathrm{r}}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \mathrm{f}}{\partial \varphi^{2}}\left(\frac{\partial \varphi}{\partial \mathrm{x}}\right)^{2}+\frac{\partial \mathrm{f}}{\partial \varphi} \frac{\partial^{2} \varphi}{\partial \mathrm{x}^{2}} \quad$ analog for $\frac{\partial^{2} \mathrm{f}}{\partial \mathrm{y}^{2}}$
$\rightarrow \Delta_{\mathrm{T}}=\frac{\partial^{2}}{\partial \mathrm{r}^{2}}+\frac{1}{\mathrm{r}} \cdot \frac{\partial}{\partial \mathrm{r}}+\frac{1}{\mathrm{r}^{2}} \cdot \frac{\partial^{2}}{\partial \varphi^{2}}$ transverse Laplace-operator in cylindric coordinates

3.6.1 Vector field solutions for the step-index fiber

The step-index fiber has the only simple index profile where the field can be calculated analytically in terms of cylindric Bessel-functions.

1) Transformation of Helmholtz-equations (longitudinal components) into cylindrical coordinates:

$$
\begin{aligned}
& \left(\Delta_{T}+k_{T}^{2}\right) E_{z}(x, y)=0 \\
& \left(\Delta_{T}+k_{T}^{2}\right) H_{z}(x, y)=0
\end{aligned} \quad \xrightarrow[\Delta_{\mathrm{T}}=\frac{\partial^{2}}{\partial \mathrm{r}^{2}}+\frac{1}{\mathrm{r}} \cdot \frac{\partial}{\partial \mathrm{r}}+\frac{1}{\mathrm{r}^{2}} \cdot \frac{\partial^{2}}{\partial \varphi^{2}}]{ }
$$

$$
\begin{aligned}
& \left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \cdot \frac{\partial}{\partial r}+\frac{1}{r^{2}} \cdot \frac{\partial^{2}}{\partial \varphi^{2}}+k_{T}^{2}\right) E_{z}(r, \varphi)=0 \\
& \left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \cdot \frac{\partial}{\partial r}+\frac{1}{r^{2}} \cdot \frac{\partial^{2}}{\partial \varphi^{2}}+k_{T}^{2}\right) H_{z}(r, \varphi)=0
\end{aligned}
$$

with the definition for the transverse wave number k_{T} :
2D eigenvalue differential equation

$$
k_{T}^{2}=k^{2}-\beta^{2}=\omega^{2} \mu \varepsilon\left(\vec{r}_{T}\right)-\beta^{2}
$$

As the following derivation is basically just an extension of the technique of the symmetric planar 3-layer WG to 2-dimensions we leave the conversion to cylinder-functions as (self-study).

2) Solution by coordinate separation:

$$
\left.\begin{array}{l}
E_{z}(r, \varphi) \\
H_{z}(r, \varphi)
\end{array}\right\}=\left\{\begin{array}{l}
A \\
B
\end{array}\right\} \cdot R(r) \cdot \phi(\varphi) \quad \text { Solution-"Ansatz" with radial and azimuthal separation }
$$

Insertion of the "Ansatz" and separating into $\mathrm{R}(\mathrm{r})$ and $\phi(\varphi)$ leads to 2 second order, uncoupled differential equations:
$\frac{\partial^{2} R}{\partial r^{2}} \phi+\frac{1}{r} \cdot \frac{\partial R}{\partial r} \phi+\frac{\mathrm{R}}{r^{2}} \cdot \frac{\partial^{2} \phi}{\partial \varphi^{2}}+k_{T}^{2} R \cdot \phi=0 \quad /$ multiply on both sides $\cdot \frac{r^{2}}{R \phi} \rightarrow$ $\underbrace{\frac{r^{2}}{R} \frac{\partial^{2} R}{\partial r^{2}}+\frac{r}{R} \cdot \frac{\partial}{\partial r}+r^{2} k_{T}^{2}}_{\text {only } f(r)}=\underbrace{-\frac{1}{\phi} \cdot \frac{\partial^{2} \phi}{\partial \varphi^{2}}}_{\text {only }}=m^{2}=$ constant $\neq \mathrm{f}(\mathrm{r}) \neq \mathrm{f}(\varphi)$

$$
\begin{aligned}
& \left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \cdot \frac{\partial}{\partial r}+k_{T}^{2}-\frac{m^{2}}{r^{2}}\right) R(r)=0 \\
& \left(\frac{\partial^{2}}{\partial \varphi^{2}}+m^{2}\right) \phi(\varphi)=0
\end{aligned}
$$

2 decoupled differential equations for $R(r)$ and $\phi(\varphi)$
m is still an undefined constant.

3) Harmonic azimuthal solutions for $\phi(\varphi)$:

$\phi(\varphi)=\left\{\begin{array}{l}\sin (\mathrm{m} \cdot \varphi) \\ \cos (\mathrm{m} \cdot \varphi)\end{array} \mathrm{m}\right.$ for symmetry reason: $\mathbf{m}=0,1,2,3$ integer are possible (azimuthal symmetry, node number)
The radial solutions must be radial periodic and symmetric with respect to the z-axis and $2 m$ indicates the number of radial nodes of the field.

4) Bessel-functions for radial solutions for $R(r)$:

The radial Bessel-solutions $R(r)$ depend on k_{T} and m

function $m=0,1,2,3, \ldots$	physical interpretation	Cartesian correspondence
$\begin{aligned} & \boldsymbol{k}_{T}: \text { real } \\ & R(r)=J_{m}\left(k_{T} r\right) \end{aligned}$ Zylinderfunktion 1. Art $\rightarrow J_{m}$: Besselfunktion	standing cylindrical wave	$\cos \left(k_{x} x\right)$$\sin \left(k_{x} x\right)$
$R(r)=N_{m}\left(k_{T} r\right)$ Zylinderfunktion 2. Art $\rightarrow N_{m}$: Neumannfunktion		
$\begin{aligned} & R(r)=H_{m}^{(1)}\left(k_{T} r\right)=J_{m}\left(k_{T} r\right)+i N_{m}\left(k_{T} r\right) \\ & R(r)=H_{m}^{(2)}\left(k_{T} r\right)=J_{m}\left(k_{T} r\right)-i N_{m}\left(k_{T} r\right) \end{aligned}$ Zylinderfunktion 3. Art $\rightarrow H_{m}{ }^{(1,2)}$: Hankelfunktionen	propagating cylindrical wave	$\begin{aligned} & e^{+i k_{x} \cdot x} \\ & e^{-i k_{x} \cdot x} \end{aligned}$
$\begin{aligned} & \boldsymbol{k}_{\boldsymbol{T}} \rightarrow-\boldsymbol{i} \cdot \boldsymbol{k}_{\boldsymbol{T}}{ }^{\prime}: \text { imaginary } \\ & R(r)=I_{m}\left(k_{T}^{\prime} r\right)=i^{m} \cdot J_{m}\left(-i k_{T}^{\prime} r\right) \end{aligned}$ $\rightarrow I_{m}$: modifizierte Besselfunktionen	growing cylindrical wave	$e^{k_{x} \cdot x}$
$R(r)=K_{m}\left(k_{T}^{\prime} r\right)=\frac{\pi}{2}(-i)^{m+1} \cdot H_{m}^{(2)}\left(-i k_{T}^{\prime} r\right)$ $\rightarrow K_{m}$: modifizierte Hankelfunktionen	decaying cylindrical wave	$e^{-k_{x} \cdot x}$

The type of solutions of the Bessel-differential equation and the carthesian correspondence for the symmetric 3 layer film waveguide

For the graphical representation of cylindrical functions see at summary at the end of the chapter.

We consider the transverse wave number $\mathrm{k}_{\mathrm{Ti}}{ }^{2}=\mathrm{k}_{\mathrm{i}}{ }^{2}-\beta^{2}$ corresponding to medium i.

General solution for the longitudinal components E_{z} and H_{z} for a homogeneous medium section:
$\left.\begin{array}{l}E_{z} \\ H_{z}\end{array}\right\}=\left\{\begin{array}{l}A_{0} \\ B_{0}\end{array}\right\} \cdot Z_{0}\left(k_{T} r\right)+\sum_{m=1}^{\infty}\left\{\begin{array}{l}A_{1}^{m} \\ B_{1}^{m}\end{array}\right\} \cdot Z_{m}\left(k_{T} r\right) \cdot \cos (m \varphi)+\left\{\begin{array}{l}A_{2}^{m} \\ B_{2}^{m}\end{array}\right\} \cdot Z_{m}\left(k_{T} r\right) \cdot \sin (m \varphi)$
(depends on azimthal mode number m)
$Z_{m}(\ldots)$ is a cylinder function from the table for $R(r)$ depending on medium i with n_{i} (core or cladding) and argument m.
5) Radial continuity conditions of the transversal field at $r=a$ for all $\varphi=0 \ldots 2 \pi$:

The formulation of the continuity requires the additional calculation of the transverse field components $E_{r}, E_{\varphi,} H_{r}$ und H_{φ} in cylinder coordinates (without proof):
E_{r}

$$
\begin{aligned}
& E_{r}=\frac{1}{i k_{T}^{2}}\left\{\beta \cdot \frac{\partial}{\partial r} E_{z}+\omega \mu \cdot \frac{1}{r} \frac{\partial}{\partial \varphi} H_{z}\right\} \\
& E_{\varphi}=\frac{1}{i k_{T}^{2}}\left\{\beta \cdot \frac{1}{r} \frac{\partial}{\partial \varphi} E_{z}-\omega \mu \cdot \frac{\partial}{\partial r} H_{z}\right\} \\
& H_{r}=\frac{1}{i k_{T}^{2}}\left\{\beta \cdot \frac{\partial}{\partial r} H_{z}-\omega \varepsilon \cdot \frac{1}{r} \frac{\partial}{\partial \varphi} E_{z}\right\} \\
& H_{\varphi}=\frac{1}{i k_{T}^{2}}\left\{\beta \cdot \frac{1}{r} \frac{\partial}{\partial \varphi} H_{z}+\omega \varepsilon \cdot \frac{\partial}{\partial r} E_{z}\right\}
\end{aligned}
$$

Boundary conditions

The boundary conditions lead to an infinite set of equations for $A_{0}, B_{0}, A_{1}{ }^{m}, A_{2}{ }^{m}, B_{1}{ }^{m}$ und $B_{2}{ }^{m}, m=1,2,3 \ldots \infty$, but symmetry and rotation invariance properties of the solutions reduce the solution space to:

- core (1): $n=n_{1}, k_{1}>\beta, r<a$

$$
\begin{aligned}
& E_{z}(r, \varphi)=A_{1} \cdot J_{m}\left(k_{T} r\right) \cdot \cos \left(m \varphi+\varphi_{0}\right) \\
& H_{z}(r, \varphi)=B_{1} \cdot J_{m}\left(k_{T} r\right) \cdot \sin \left(m \varphi+\varphi_{0}\right)
\end{aligned}
$$

- cladding (2): $n=n_{2}, \quad k_{2}<\beta, \quad r>a$

$$
\begin{aligned}
& E_{z}(r, \varphi)=A_{2} \cdot K_{m}\left(k_{T}^{\prime} r\right) \cdot \cos \left(m \varphi+\varphi_{0}\right) \\
& H_{z}(r, \varphi)=B_{2} \cdot K_{m}\left(k_{T}^{\prime} r\right) \cdot \sin \left(m \varphi+\varphi_{0}\right)
\end{aligned}
$$

oscillatory transverse wave solution;

4 unknown $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~B}_{1}, \mathrm{~B}_{2}$
decaying, transverse confined, evanescent wave solution
\Rightarrow Reduction to 4 terms: $A_{1}, A_{2}, B_{1}, B_{2}$ are the desired solutions for a particular m and a particular wave excitation as boundary condition.

The solutions are inserted into the tangential boundary conditions and define a set of equations for $A_{1}, A_{2}, B_{1}, B_{2}$ and the unknown propagation constant $\beta(\omega)=\mathrm{k}_{\mathrm{z}}(\omega)$ as eigenvalue:
Using similar substitutions as in the case of the slab waveguide

$$
\xi(\beta)=a \cdot k_{T}=a \cdot \sqrt{k_{1}^{2}-\beta^{2}} \quad \eta(\beta)=a \cdot k_{T}^{\prime}=a \cdot \sqrt{\beta^{2}-k_{2}^{2}}
$$

we obtain (without proof) following system of eq.

$$
\left[\begin{array}{cccc}
J_{m}(\xi) & 0 & -K_{m}(\eta) & 0 \\
0 & J_{m}(\xi) & 0 & -K_{m}(\eta) \\
\frac{ \pm \beta \cdot m}{\xi^{2}} J_{m}(\xi) & \frac{\omega \cdot \mu_{1}}{\xi} J_{m}^{\prime}(\xi) & \frac{ \pm \beta \cdot m}{\eta^{2}} K_{m}(\eta) & \frac{\omega \cdot \mu_{2}}{\eta} K_{m}^{\prime}(\eta) \\
\frac{\omega \cdot \varepsilon_{1}}{\xi} J_{m}^{\prime}(\xi) & \frac{ \pm \beta \cdot m}{\xi^{2}} J_{m}(\xi) & \frac{\omega \cdot \varepsilon_{2}}{\eta} K_{m}^{\prime}(\eta) & \frac{ \pm \beta \cdot m}{\eta^{2}} K_{m}(\eta)
\end{array}\right] \cdot\left[\begin{array}{c}
A_{1} \\
B_{1} \\
A_{2} \\
B_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

for $m=1,2,3, \ldots \infty$ and $Z^{\prime}(x)=\frac{\partial Z}{\partial x}$

The sign \pm corresponds to the $\cos -\left(\varphi_{0}=0\right)$ resp. sin-solution $\left(\varphi_{0}= \pm \pi / 2\right)$ for E_{z}.
Nontrivial solutions for $A_{1}, A_{2}, B_{1}, B_{2}$ only exist if the determinant of the homogeneous system vanishes, leading to the eigenvalue equation for ξ, η :

$$
\operatorname{det}\left|\begin{array}{cccc}
J_{m}(\xi) & 0 & -K_{m}(\eta) & 0 \\
0 & J_{m}(\xi) & 0 & -K_{m}(\eta) \\
\frac{ \pm \beta \cdot m}{\xi^{2}} J_{m}(\xi) & \frac{\sigma, \mu_{m} J_{m}^{\prime}(\xi)}{\xi} \frac{ \pm \beta \cdot m}{\eta^{2}} K_{m}(\eta) & \frac{\odot \mu_{2}}{\eta} K_{m}^{\prime}(\eta) \\
\frac{\oplus \varepsilon_{1}}{\xi} J_{m}^{\prime}(\xi) & \frac{ \pm \beta \cdot m}{\xi^{2}} J_{m}(\xi) & \frac{\propto \varepsilon_{2}}{\eta} K_{m}^{\prime}(\eta) & \frac{ \pm \beta \cdot m}{\eta^{2}} K_{m}(\eta)
\end{array}\right|=0 \quad \quad \Rightarrow \text { Eigenvalue equation } f(\eta, \xi, m)=0 \quad \Rightarrow \beta(\omega)
$$

Characteristic equation, resp. Eigenvalue equation:

$\left\{k_{1}^{2} \cdot \tilde{J}_{m}(\xi)+k_{2}^{2} \cdot \tilde{K}_{m}(\eta)\right\} \cdot\left\{\tilde{J}_{m}(\xi)+\tilde{K}_{m}(\eta)\right\}-m^{2} \beta^{2} \cdot\left(\frac{1}{\xi^{2}}+\frac{1}{\eta^{2}}\right)^{2}=0 \quad$ with the definitions: $\tilde{J}_{m}(\xi)=\frac{J_{m}^{\prime}(\xi)}{\xi \cdot J_{m}(\xi)} ; \quad \tilde{K}_{m}(\eta)=\frac{K_{m}^{\prime}(\eta)}{\eta \cdot K_{m}(\eta)}$

In analogy to the symmetric planar WG we make use of a single structure parameter or fiber parameter $\mathbf{V}(\omega)$ to eliminate either ξ or η :

$$
V(\omega)=a \cdot \sqrt{k_{1}^{2}-k_{2}^{2}}=a \cdot k_{0} \cdot \sqrt{n_{1}^{2}-n_{2}^{2}}=a \cdot k_{0} \cdot N A=\sqrt{\xi^{2}+\eta^{2}} \quad ; \quad k_{0}=2 \pi / \lambda_{0}=\omega / c_{o}
$$

6) Formal solution procedure for $\beta_{\mathrm{mp}}(\omega)$:

- chose an integer $m=0,1,2, \ldots$ (azimuthal mode index m) and ω
- eliminate η with the above eigenvalue equation by using $\mathrm{V}(\omega)$ and find the zero ξ_{p} with increasing values. There are p zeros (radial mode index p) of the eigenvalue equation for a given m (radial field nodes !)
- from ξ_{p} we determine $\beta_{\mathrm{mp}}(\omega)$ of the modes characterized by the numbers m, p
- for m and p we associate a particular modal solution of mode $X_{m p}$. with $X=H E-, E H-, T E$ - or TM-modes.

Classification of Modes X_{pm} : ($\mathrm{m}=$ azimuthal mode number, $\mathrm{p}=$ radial mode number)

Goal: calculate the propagation constant $\beta_{\mathrm{m}, \mathrm{p}}(\omega)$ to determine the dispersion properties of the fiber modes

1. class: $\mathbf{m}=0$ (azimuthally homogeneous), and $\beta=0$ (no cut-off)
1) for $m=0$ the 4×4 determinant splits into two independent 2×2 sub-determinants for $A_{1}, A_{2}(T E)$ and B_{1}, B_{2} (TM).
\Rightarrow TE- resp. TM-modes

2) $m=0$ TE- and TM-modes have radial symmetry
3) $\beta=0 \quad$ represents a mode which has its cutoff at $\omega=0 \Rightarrow$ HE11-mode

Dispersion relation $\beta(\omega)$ for $\mathrm{TE}_{\mathrm{op}}$-modes $\left(E_{Z}=0, E_{r}=0, H_{\varphi}=0\right.$, :
$\left\{\tilde{J}_{m}(\xi)+\tilde{K}_{m}(\eta)\right\}=0$ using $J_{0}{ }^{\prime}(\xi)=-J_{1}(\xi)$ and $K_{0}{ }^{\prime}(\eta)=-K_{1}(\eta) \Rightarrow \frac{J_{1}(\xi)}{\xi \cdot J_{0}(\xi)}+\frac{K_{1}(\eta)}{\eta \cdot K_{0}(\eta)}=0 \Rightarrow \beta_{\text {TEop }}(\omega)$
Dispersion relation $\beta(\omega)$ for $\mathbf{T M}_{\mathbf{o p}}$-modes $\left(H_{z}=0, H_{r}=0, E_{\varphi}=0\right.$, :
$\left\{k_{1}^{2} \cdot \tilde{J}_{m}(\xi)+k_{2}^{2} \cdot \tilde{K}_{m}(\eta)\right\}=0 \Rightarrow \frac{k_{1}^{2} \cdot J_{1}(\xi)}{\xi \cdot J_{0}(\xi)}+\frac{k_{2}^{2} \cdot K_{1}(\eta)}{\eta \cdot K_{0}(\eta)}=0 \Rightarrow \beta_{\text {TMор }}(\omega)$
2. class: $m \neq 0$, and $\beta \neq 0$ (with mode-cutoff)
general case $\quad \Rightarrow$ hybrid modes ($\mathrm{E}_{\mathrm{z}} \neq \mathbf{0}, \mathrm{H}_{\mathbf{z}} \neq \mathbf{0}$)
classification of modes by dominating z-field component:
a) inspection
$\lim _{V \rightarrow \infty}\left\{\frac{E_{z}}{H_{z}}\right\}=\left\{\begin{array}{ccc}0 & E H & \text { TE-like because } H_{z} \text { is dominant } \\ \infty & H E & \text { TM-like because } E_{z} \text { is dominant }\end{array}\right.$
b) approximation of weak guiding $\mathrm{n}_{1} \approx \mathrm{n}_{2} \approx \mathrm{n}_{\text {eff }}$

The general eigenvalue equation simplifies to
$\left\{\tilde{J}_{m}(\xi)+\tilde{K}_{m}(\eta)\right\} \mp m \cdot\left(\frac{1}{\xi^{2}}+\frac{1}{\eta^{2}}\right)=0 \quad$ sign convention: + for $E H_{m p^{-}}$and \quad for $\mathrm{HE}_{m p}$-modes and further to

$$
\begin{aligned}
& \frac{J_{m-1}(\xi)}{\xi \cdot J_{m}(\xi)}-\frac{K_{m-1}(\eta)}{\eta \cdot K_{m}(\eta)} \simeq 0 \rightarrow H E_{m p} \\
& \frac{J_{m+1}(\xi)}{\xi \cdot J_{m}(\xi)}+\frac{K_{m+1}(\eta)}{\eta \cdot K_{m}(\eta)} \simeq 0 \rightarrow E H_{m p}
\end{aligned}
$$

\Rightarrow Approximate dispersion relation $\beta(\omega)$ for hybrid modes
$\Rightarrow \beta_{\mathrm{HEmp}}(\omega), \beta_{\mathrm{EHmp}}(\omega)$

Dispersion in step-index Glassfibers: (similar to the symmetric 3-layer WG)

$\beta(\omega)$ determines the phase- and group-velocities and the modal groupe-velocitiy dispesion D (pulse broadening) A nonlinear dispersion $\beta(\omega)$ leads to frequency dependent group velocities $\mathbf{v g r}^{\mathrm{gr}}(\omega)$ and modal dispersion $\mathrm{D}(\omega)$

Cutoff-condition $\eta=a \sqrt{\beta^{2}-k_{2}^{2}} \rightarrow \mathbf{0}$ for different modes: \square
Cutoff-condition $V_{m p}$ of mode (m, p):

- for $\mathrm{V}<\mathrm{V}_{\mathrm{pm}}=\xi$ @ $\eta=0$ no pm-mode can exist (cutoff)
- for $V>V_{p m}$ the pm-mode exist and is described by the dispersion relation $\beta_{\mathrm{pm}}(\omega)$

At cutoff \bigcirc the modes do not decay anymore in the cladding.
Some modes are degenerate at cut-off.
Observe that modes tend to build groups of similar dispersion curves
(without proof)
$\mathrm{m}=0: \mathrm{TE}_{0 \mathrm{p}}, \mathrm{TM}_{0 \mathrm{p}}$
$m=1: \mathrm{HE}_{1 \mathrm{p}}, \mathrm{EH}_{1 \mathrm{p}}$
$\mathrm{J}_{0}(\xi)=0$
$\mathrm{J}_{1}(\xi)=0$
$\mathrm{m}>1: E H_{m p}$
$\mathrm{m}>1$: $\mathrm{HE} \mathrm{mp}_{\mathrm{mp}}$
$\mathrm{J}_{\mathrm{m}}(\xi)=0$

Conclusions:

1) the fundamental mode is the HE_{11}-mode, the fiber is fundamental (single) mode for $0<\mathrm{V}(\omega)<2.405$ (no intermodal dispersion occurs, but the mode is dispersive)
2) the fundamental mode exists even at $\omega=0$, no cut-off
3) TE- and TM-modes are not degenerate (due to rotational symmetry), however they are degenerate at cut-off
4) Hybrid modes are 2-times degenerate, because there exist 2 radial solutions $\cos (\mathrm{n} \varphi)$ and $\cos \left(\mathrm{n}\left[\varphi-\frac{\pi}{2 \mathrm{n}}\right]\right) \quad\left(90^{\circ}\right.$-rotation. eg. orthogonal polarizations

Approximation of Number of modes vers. V :

Question: how many modes N exist for a certain V , resp. ω ?
$\mathrm{N} \simeq \frac{\mathrm{V}^{2}}{2}=\frac{\mathrm{a}^{2} \mathrm{k}_{\mathrm{o}}^{2} \Delta \mathrm{n}}{2} \quad$ (without proof)

Step-Index Single Mode Fibers (SMF) must have:

- V<2.45
- small core diameter 2a
- small index difference $\Delta \mathrm{n}$
- operation at low ω, resp long λ

3.7 Dispersion in weakly guiding optical wave guides

Main transmission limitations of optical waves in optical fibers are

1) attenuation of the signal by absorption (material, scattering) \Rightarrow amplitude reduction and
2) frequency dependent propagation, dispersion (Zerstreuung) \Rightarrow signal distortion by the frequency dependence of $\mathrm{n}(\omega)$ and $\beta(\omega)$ and spectral width $\Delta \omega$ of the wave .
\Rightarrow material or chromatic dispersion $\beta_{\text {mat }}(\omega)$
\Rightarrow waveguide dispersion $\beta_{\text {mode }}(\omega)$
3) if several modes $X_{p q}$ can be excited at the signal frequency ω (Multimode Operation in MM-fibers) then the propagation constants $\beta_{\mathrm{pq}}(\omega)$ of the modes pq differ, leading to
\Rightarrow modal dispersion (can be avoided by single mode fibers)
Dispersion effects result in pulse broadening (inter-symbol interference) and limit the data rate $\mathbf{B} \times \mathrm{L}$ - product of the fiber. Some dispersion effects can be reversed by dispersion compensation introducing dispersion of the opposite sign.

3.7.1 Signal and carrier spectral width $\Delta \omega$:

A quasi-monochromatic $\left(\Delta \omega_{C}\right)$ optical carrier wave $A_{c}(t) e^{i\left(\omega_{o} t-\beta_{0} z\right)}$ is envelop- or amplitude modulated ($\left.\Delta \omega_{S}\right)$ by a signal $\mathbf{A}_{\mathbf{s}}(\mathbf{t})$ and by intrinsic fluctuations of the carrier itself $\mathbf{A}_{\mathbf{c}}(\mathbf{t})$ in the time-domain (eg. LASER source):
$\mathrm{E}(\mathrm{t}, \mathrm{z})=\mathrm{A}_{\mathrm{s}}(\mathrm{t}) \mathrm{A}_{\mathrm{c}}(\mathrm{t}) \mathrm{e}^{\mathrm{i}\left(\omega_{0} t-\beta_{0} \mathrm{z}\right)} \quad$ time-domain
The total optical spectrum (carrier and signal sidebands) composed of the 2 spectral contributions from signal and carrier:
$\mathrm{E}(\omega, \mathrm{z})=\mathrm{A}\left(\omega-\omega_{0}\right)=\underbrace{\mathrm{A}_{\mathrm{s}}\left(\omega-\omega_{0}\right)}_{\text {signal spectrum }} * \underbrace{\mathrm{~A}_{\mathrm{c}}\left(\omega-\omega_{0}\right)}_{\text {carrier spectrum }}$

$$
\text { frequency-domain } \quad \Rightarrow \Delta \omega \text {, resp. } \Delta \lambda=\text { ?, }
$$

Envelope-spectrum $A(\omega)$ and time-function $A(t)$ form a Fourier-pair:
$\mathrm{A}(\mathrm{t}) \underset{\mathrm{F}^{-1}}{\stackrel{\mathrm{~F}}{\rightleftarrows}} \mathrm{~A}(\omega)$ with a spectral width: $\Delta \omega$
The optical spectrum $E(\omega)=A\left(\omega-\omega_{0}\right)$ is obtained by a frequency translation of ω_{0}.
Dispersion effects depend on the total spectral width $\Delta \omega$ of the modulated wave, therefore we analyze different situations where the signal- $\left(\mathrm{A}_{s}(\omega)\right)$ or the carrier- $\left(\mathrm{A}_{c}(\omega)\right)$ spectrum might be dominant.
a) Carrier spectrum $\Delta \lambda_{c}, \Delta \omega \lambda_{c}$:
ideal coherent light source: $\quad \mathrm{A}_{\mathrm{c}}\left(\omega-\omega_{0}\right)=\delta\left(\omega-\omega_{0}\right) \rightarrow \Delta \lambda_{\mathrm{c}} \hat{=} 0$ spectral width ; e.g. noise-free Single Frequency Laser partial coherent light source: $\quad \rightarrow \Delta \lambda_{\mathrm{c}} \hat{=}$ serveral $\mathrm{GHz}-100 \mathrm{GHz}$ (several nm) e.g. Multimode Laser incoherent light source (optical noise field): $\quad \rightarrow \Delta \lambda_{\mathrm{c}} \hat{=}$ serveral THz e.g. LED (several 10nm)

An ideal harmonic optical carrier would have zero spectral $\Delta \lambda_{c}=0$ width and a Dirac-function spectrum $\delta\left(\omega-\omega_{o}\right)$. A single frequency DFB-Laser can produce such a field approximately with a $\Delta \omega_{\mathrm{c}} \sim 10 \mathrm{MHz}-10 \mathrm{GHz}$.
b) Signal spectrum $\Delta \lambda_{s} ; \Delta \omega \lambda_{s}$:

Envelope-spectrum: $\mathrm{A}_{\mathrm{S}}(\mathrm{t}) \underset{\mathrm{F}^{-1}}{\stackrel{\mathrm{~F}}{\rightleftarrows}} \mathrm{~A}_{\mathrm{S}}(\omega)$ with a spectral width: $\Delta \omega_{\mathrm{s}} \quad \Delta \omega_{\mathrm{s}} \sim 1 / \mathrm{B} \quad$ typ. $\mathrm{GHz}-$ several 10 GHz
c) The total spectrum $\Delta \lambda ; \Delta \omega \lambda$ of the modulated carrier wave is dominated
a) by the signal spectrum $E(\omega, 0)=A_{s}\left(\omega-\omega_{0}\right) ; \Delta \omega \cong \Delta \omega_{\text {s }}$ (ideal coherent light source, dynamic SM-LD)
b) by the carrier source $E(\omega, 0)=A_{c}\left(\omega-\omega_{0}\right), \Delta \omega \cong \Delta \omega_{c}$ (MM-LD, LED)
c) both carrier and source $\quad \Delta \omega \cong f\left(\Delta \omega_{\mathrm{s}}, \Delta \omega_{\mathrm{c}}\right)$ (real quasi-single mode LD)

3.7.2 Signals with finite spectral width $\Delta \omega, \Delta \lambda$ in media with non-linear dispersion $\beta(\omega)$:

Chap. 2 showed that frequency components traveling in a dispersive medium at different, frequency dependent velocities $\mathrm{v}_{\mathrm{ph}}(\omega), \mathrm{vgrg}_{\mathrm{g}}(\omega)$ need different transit times $\tau(\omega)=\mathrm{L} / \mathrm{vgr}_{\mathrm{gr}}$ for a fiber length L :

1) the carrier wave travels with the phase velocity $\mathrm{v}_{\mathrm{ph}}(\omega)=\omega / \beta$ and
2) the envelop A travels with the group velocity $\mathrm{v}_{\mathrm{gr}}(\omega)=\partial \omega / \partial \beta=1 /(\partial \beta / \partial \omega)$

The resulting dispersion is characterized by the
Group velocity dispersion (GVD): (definition for λ)
$\Delta \tau_{g}$ is the propagation delay difference over the spectral width $\Delta \omega$
$\Delta \tau_{g}=\frac{d \tau_{g}}{d \lambda} \cdot \Delta \lambda=-\frac{L}{2 \pi c_{0}} \cdot\left\{2 \lambda_{0} \cdot \frac{d \beta}{d \lambda}+\lambda_{0}^{2} \cdot \frac{d^{2} \beta}{d \lambda^{2}}\right\} \cdot \Delta \lambda=|D| L \Delta \lambda$
\Rightarrow need to know $\beta(\omega)$ for the mode and the material !

Material and modal Fiberdispersion

a) Material dispersion (without WG)

Dispersion due to the frequency dependence of the polarization $P(\omega)$ is described by the frequency dependence of the refractive $\mathrm{n}(\omega)$.

$$
\begin{aligned}
\underline{\Delta \tau_{g}} & =\frac{d \tau_{g}}{d \lambda} \cdot \Delta \lambda=-\frac{L}{2 \pi c_{0}} \cdot\left\{2 \lambda_{0} \cdot \frac{d \beta}{d \lambda}+\lambda_{0}^{2} \cdot \frac{d^{2} \beta}{d \lambda^{2}}\right\} \cdot \Delta \lambda= \\
& =-\frac{L}{c_{0}} \cdot\left\{\lambda_{0} \cdot \frac{d n}{d \lambda}+\lambda_{0} \cdot \frac{d^{2} n}{d \lambda^{2}}\right\} \cdot \Delta \lambda=\underline{\left|D_{\text {mat }}\right| L \Delta \lambda}
\end{aligned}
$$

Material dispersion parameter $\mathrm{D}_{\mathrm{M}}(0)$ for SiO_{2} and $\mathrm{GeO}_{2}-\mathrm{SiO}_{2}$ glasses
b) Waveguide Modal Dispersion (without material dispersion $\mathbf{n} \neq \mathrm{f}(\omega)$)

Qualitative description of dispersion in the $\beta(\omega)$-representation: $n_{1}>n_{2}$

$$
\beta_{1}(\omega)=\frac{\partial \beta}{\partial \omega} \rightarrow \mathrm{v}_{\mathrm{gr}}(\omega)=\frac{1}{\beta_{1}}
$$

$$
\beta_{2}(\omega)=\frac{\partial^{2} \beta}{\partial \omega^{2}} \rightarrow \mathrm{D}=\beta_{2}\left(-\frac{2 \pi \mathrm{c}_{0}}{\lambda_{0}}\right)
$$

$\Rightarrow D_{\text {tot }} \cong D_{\text {material }}+D_{\text {modal }}$

Normalized representation representation of dispersion $B(V)$ instead of $\beta(\omega)$:

Formal definitions for weakly guiding fibers $\left(\mathbf{n}_{\text {clad }} \sim \mathbf{n}_{\text {core }} \rightarrow \beta \sim \mathrm{k}_{1} \sim \mathrm{k}_{2}\right)$:

1) Normalized refractive index difference $\Delta(\omega)$:

Definition $\Delta: \quad n_{2}=n_{1} \cdot(1-\Delta) \quad \xrightarrow[\Delta \ll 1]{ } \quad \Delta=\frac{n_{1}-n_{2}}{n_{1}} \simeq \frac{n_{1}^{2}-n_{2}^{2}}{2 n_{1}^{2}} \quad$ or
2) Normalized Frequency by using $\mathbf{V}(\omega)$: ω-transformation

$$
V(\omega)=k_{0} a \cdot N A=k_{0} a / n_{2} \cdot \sqrt{n_{1}^{2}-n_{2}^{2}} \simeq k_{1} a \cdot \sqrt{2 \Delta} \approx k_{2} a \cdot \sqrt{2 \Delta}=\frac{n_{2}}{c_{0}} \omega a \cdot \sqrt{2 \Delta} \quad \sim \omega \quad \text { using: } n_{1}^{2}-n_{2}^{2} \approx n_{1}^{2} \cdot 2 \Delta \approx n_{2}^{2} \cdot 2 \Delta
$$

3) Normalized Phase $B(\omega)$:
$\Rightarrow \beta$-transformation to the [0,1]-interval
Typical dimensionless model dispersion diagram $B(V)$ of fiber-modes: (from Agrawal)

The eigenvalue $\beta(\omega)$ in the interval
$\beta \in\left[k_{2}, k_{1}\right]$
of the characteristic eigenvalue equation
$C(\beta, \omega)=0$ is transformed into the normalized Phase $\mathbf{B}(\omega)$ in the unit-interval $B \in[0,1]$ by:

$$
B(\omega) \underset{\text { Definition }}{=} \frac{\beta^{2}(\omega)-k_{2}^{2}}{k_{1}^{2}-k_{2}^{2}}=1-\frac{\xi^{2}}{V^{2}}=\frac{\eta^{2}}{V^{2}} \approx \frac{\beta-k_{2}}{k_{1}-k_{2}}
$$

$$
\begin{array}{lr}
B(V(\omega)) \longleftarrow & \beta(\omega) \\
{[0,1]} & {[0, \infty]}
\end{array}
$$

Total (material and waveguide) dispersion expressed from $B(V)$ and $n(\omega)$:

Core and cladding indices $\mathrm{n}_{1}(\omega)$ and $\mathrm{n}_{2}(\omega)$ are now also frequency-dependent. In addition the frequency dependence of the solution of the modal eigenvalue problem for $\beta(\omega)$ and $B(\omega)$ describes the structural dispersion.
\Rightarrow both frequency dependencies define the total dispersion.
For weakly $\left(n_{1}(\omega) \sim n_{2}(\omega) \rightarrow \beta \sim k_{1} \sim k_{2}\right)$ guiding structures:
$B(\omega) \approx \frac{\beta(\omega)-k_{2}(\omega)}{k_{1}(\omega)-k_{2}(\omega)} \rightarrow \beta(\omega) \approx k_{2}(\omega)+B(\omega) \cdot\left(k_{1}(\omega)-k_{2}(\omega)\right) \approx k_{2}(\omega) \cdot(1+B(\omega) \cdot \Delta(\omega))$ with $\quad \Delta(\omega)=\left(k_{1}(\omega)-k_{2}(\omega)\right) / k_{2}(\omega)$
The general definition of the group delay time τ_{g} using β and B is:
$\tau_{g}=\frac{L}{v_{g}}=L \cdot \frac{d \beta}{d \omega} \stackrel{\text { defing } \phi=L \beta}{=} \frac{d \phi}{d \omega}=\frac{L}{c_{0}} \cdot \frac{d \beta}{d k_{0}} \underset{k=2 \pi / \lambda}{=}-\frac{L}{c_{0}} \cdot \frac{\lambda_{0}^{2}}{2 \pi} \cdot \frac{d \beta}{d \lambda}$
leads with the substitution of β by B to:
$\tau_{g}=\frac{L}{c_{0}} \cdot \frac{d \beta}{d k_{0}} \approx \frac{L}{c_{0}} \cdot \frac{d}{d k_{0}}\left\{k_{2}+B \cdot\left(k_{1}-k_{2}\right)\right\}$
For the calculation of $\frac{d}{d k_{0}}\left\{k_{2}+B \cdot\left(k_{1}-k_{2}\right)\right\} \quad ; \quad$ resp. $\frac{d B}{d k_{0}}$ we use of the weak guiding approximations $\left(\mathrm{n}_{1}(\omega) \sim \mathrm{n}_{2}(\omega)\right)$:
$\frac{d k_{i}}{d k_{0}}=\frac{d\left(k_{0} \cdot n_{i}\right)}{d k_{0}}=n_{i}+k_{0} \cdot \frac{d n_{i}}{d k_{0}}=n_{g r, i} \quad$ group index (material contribution)
$\frac{d B}{d k_{0}}=\frac{d B}{d V} \cdot\left(\frac{d V}{d k_{0}}\right)$ assuming: $\underset{n_{1}(\omega) \sim n_{2}(\omega)}{\approx} \frac{d B}{d V} \cdot\left(\frac{V}{k_{0}}\right)$ waveguide structure contribution ; having used: $\frac{d V}{d k_{0}} \approx \frac{V}{k_{0}}$
$\frac{d}{d k_{0}}\left\{B \cdot\left(k_{1}-k_{2}\right)\right\}=\frac{d B}{d V} \cdot \frac{V}{k_{0}} \cdot\left(k_{1}-k_{2}\right)+B \cdot\left(n_{g r, 1}-n_{g r, 2}\right) \approx \underline{\left(n_{g r, 1}-n_{g r, 2}\right) \cdot \frac{d(V B)}{d V}}$ using $\left.k_{1}-k_{2}=k_{0}\left(n_{1}-n_{2}\right) \simeq k_{0}\left(n_{g r, 1}-n_{g r, 2}\right)\right)_{\text {amm }}$
The simplification $d V / d k_{0} \approx V / k_{0}$ meaning that we neglect the frequency dependence of the $\Delta \omega$, resp. frequency dependence of core and cladding is the same:

$$
\mathrm{V}=\mathrm{a} \sqrt{\mathrm{k}_{1}^{2}-\mathrm{k}_{2}^{2}}=\mathrm{ak}_{0} \sqrt{\mathrm{n}_{1}^{2}-\mathrm{n}_{2}^{1}} \xrightarrow[\substack{\text { neglecting the frequency dependence of } \\ \Delta=\left(\mathrm{n}_{1}^{2}-\mathrm{n}_{2}^{1}\right) / 2 \mathrm{n}_{1}^{2}}]{ } \frac{\mathrm{dV}}{\mathrm{dk}_{0}}=\left(\frac{\mathrm{V}}{\mathrm{k}_{0}}\right)
$$

The third equation assumes that $\mathrm{n}_{\mathrm{gr1}}-n_{\mathrm{gr2} 2} \approx n_{1}-n_{2}$ meaning that the material dispersion of core and cladding is similar.

$$
\tau_{g}(V B) \simeq \frac{L}{c_{0}} \cdot\{n_{g r, 2}+\left(n_{g r, 1}-n_{g r, 2}\right) \cdot \underbrace{\frac{d(V B)}{d V}}_{\text {structure }}\} \approx \frac{L \cdot n_{2}}{c_{0}} \cdot\left\{1+\Delta \cdot \frac{d(V B)}{d V}\right\}
$$

$$
\frac{d(V B)}{d V} \text { mode delay time factor, } \quad \Delta=\frac{n_{1}-n_{2}}{n_{1}}
$$

The group delay dispersion $\Delta \tau_{g}$ can be obtained by a derivation of the group delay time τ_{g} with respect to λ :

$$
\Delta \tau_{g}=\frac{d \tau_{g}}{d \lambda} \cdot \Delta \lambda=\frac{d}{d \lambda}\left(\frac{L}{c_{0}} \cdot\left\{n_{g r, 2}+\left(n_{g r, 2}-n_{g r, 1}\right) \cdot \frac{d(V B)}{d V}\right\}\right) \cdot \Delta \lambda
$$

The derivation of $\frac{d}{d \lambda}(\{\ldots \ldots \ldots\})$ is simplified by assuming

1) $d V / d \lambda \approx-V / \lambda$ because $V \sim \omega$
2) the material dispersion in core and cladding are assumed to be equal $d\left\{n_{g r 1}-n_{g r 2}\right\} / d \lambda \rightarrow 0$ (equal group indices of refraction)
$\frac{d}{d \lambda}\left\{\left(n_{g r, 2}-n_{g r, 1}\right) \cdot \frac{d(V B)}{d V}\right\}_{--}=\frac{d}{d \lambda}\left(n_{g r, 2}=-\bar{n}_{g r, 1}^{--}\right) \cdot \frac{\bar{d}(V B)}{d V}+\left(n_{g r, 2}-n_{g r, 1}\right) \cdot \frac{d^{2}(V B)}{d V^{2}} \cdot \frac{d V}{d \lambda} \approx$
using: $\frac{\partial V}{\partial \lambda}=\frac{\partial V}{\partial k} \frac{\partial k}{\partial \lambda}=-\left(\frac{2 \pi}{\lambda^{2}}\right) \frac{\partial V}{\partial k} \rightarrow$
$\frac{d}{d \lambda}\left\{\left(n_{g r, 2}-n_{g r, 1}\right) \cdot \frac{d(V B)}{d V}\right\} \approx-\left(n_{g r, 2}-n_{g r, 1}\right) \cdot \frac{d^{2}(V B)}{d V^{2}} \cdot \frac{V}{\lambda_{0}}$

With these simplification the total group-delay $\Delta \tau_{g}$ including material $\left(\mathbf{D}_{\mathrm{m}}\right)$ and waveguide $\left(\mathrm{D}_{\mathrm{W}}\right)$ dispersion is:

$$
\Delta \tau_{g}=\frac{d \tau_{g}}{d \lambda} \cdot \Delta \lambda=L \cdot\left\{\begin{array}{l}
\underbrace{\frac{1}{c_{0}} \cdot \frac{d n_{g r, 2}}{d \lambda}}_{\text {material dispersion (core) }}-\underbrace{\frac{\left(n_{g r, 1}-n_{g r, 2}\right)}{c_{0} \cdot \lambda_{0}} \cdot V \cdot \frac{d^{2}(V B)}{d V^{2}}}_{\text {wave guide dispersion }}\} \cdot \Delta \lambda=\left(D_{\text {Material }}+D_{\text {Waveguide }}\right) \cdot L \cdot \Delta \lambda, \Delta \lambda, ~
\end{array}\right\}
$$

Dispersion parameters for the HE_{11}-mode (mode with zero frequency cut-off) for the step-index fiber in normalized representation:

$$
D_{\text {Waveguide }}=-\frac{n_{g r, 1}-n_{g r, 2}}{c_{0} \cdot \lambda_{0}} \cdot V \cdot \frac{d^{2}(V B)}{d V^{2}} \approx-\frac{n_{2} \cdot \Delta}{c_{0} \cdot \lambda_{0}} \cdot V \cdot \frac{d^{2}(V B)}{d V^{2}}
$$

Good approximation when mode is well confined to the core !
$V \cdot \frac{d^{2}(V B)}{d V^{2}} \sim-\mathrm{D}$ is the dispersion factor and determines the waveguide dispersion and goes to 0 for large V (core propagation)

Conclusions:

- Waveguide dispersion for the HE_{11}-mode reaches a maximum between the cut-off frequency and the onset of the next higher order mode. Dispersion is negative (!) and decreases with increasing frequency.
- For the HE_{11}-mode operation in the V-interval $2<V<2.405$ is optimal (most of the field energy is concentrated in the core). The next higher order mode would start at $\mathrm{V}>2.405$.
- The WG has to be operated close to the single frequency operation limit (onset of a new mode)

Total Dispersion for a step-index fiber:

- In general waveguide dispersion is much weaker than the dispersion of the material glass
- Waveguide dispersion has a negative sign and can compensate positive material dispersion

Enhancing the modal dispersion will shift the zero dispersion to longer wavelength λ_{z} and flatten the total chromatic dispersion.

- The total waveguide dispersion for a simple glass step-index fibers has a zero at $\lambda_{z} \sim 1300 \mathrm{~nm}$
- The dispersion is however $\sim 15 \mathrm{ps} / \mathrm{nm} \mathrm{km}$ at the loss minimum of $\sim 1500 \mathrm{~nm}$

Dispersion compensated fibers: (optional)

Goal: obtain low dispersion over the low loss range from 1300-1600nm (telecom range) by compensating effects:

1. solution: shifting the dispersion zero \Rightarrow dispersion shifted fibers
change of $\mathrm{B}(\mathrm{V})$ by reducing the core radius a and increasing the normalized refractive index difference Δ results in a dispersion zero at 1550nm
2. solution: multiple cladding layers (index-profile modification) \Rightarrow dispersion flattened fibers Increase in mode dispersion leads to a 2 . dispersion zero and flattening of D between the 1 . and 2 . zero

Example of a broad band dispersion reduction in a dispersion flattend fiber

n
— . - . dot-dash line is material dispersion,
full line is the achievable, practical total dispersion
dash line is an idealized total dispersion achievable within material limits.
3. solution: series connection of a fiber with opposite dispersion (or grating delay line) \Rightarrow dispersion compensator

3.7.3 Systems aspect of Dispersion, Data Rate - Distance Product

In chap. 2 we showed that the dispersion $\beta(\omega)$ leads to pulse envelope deformation and to a reduction of the maximum data rate x length product $B^{\times} L$ due to symbol interference (digital) or waveform distortion (analog).

Practically we have several additive distortion (delay) mechanisms adding to the total delay time dispersion $\delta \tau$

1) statistically independent (uncorrelated) dispersion mechanisms $\Delta \tau_{1}$ add up statistically: $\langle\Delta \tau\rangle^{2}=\sum_{i}\left\langle\Delta \tau_{i}\right\rangle^{2} \Rightarrow D=\sqrt{\sum_{i} D_{i}^{2}}$
2) correlated dispersion mechanism (eg. material and waveguide dispersion, acting on the same spectrum)

$$
\text { additive: } \quad D=D_{\text {Material }}+D_{\text {Waveguide }}
$$

resulting in the bit-rate x length product (BxL) approximation for the chromatic dispersion:

$$
B \cdot\langle\Delta \tau\rangle=\frac{\langle\Delta \tau\rangle}{T}=B L \cdot|D| \cdot \Delta \lambda<1 \quad \text { (simple interference approximation with the bit-interval } \mathrm{T}=1 / \mathrm{B} \text { !) }
$$

$\Delta \lambda$ is the total spectral width of carrier and modulating signal with the typical optical narrow band assumption $\Delta \lambda \ll \lambda_{0}$

A calculation of dispersion effects on the bit-envelope $\mathrm{A}_{\mathrm{s}}(\mathrm{t}, \mathrm{z})$ must include the nonlinearity of the dispersion $\beta(\omega)$.
$\beta(\omega)$ is represent modal and material effects by a Taylor-expansion around the optical carrier ω_{0} :
$\beta(\omega)=\sum_{n=0}^{\infty} \frac{1}{n!} \cdot \frac{d^{n} \beta}{d \omega^{n}} \cdot\left(\omega-\omega_{0}\right)^{n} \approx \beta_{0}+\underbrace{\beta_{1}}_{1 / V_{g r}} \cdot \Delta \omega+\frac{1}{2} \underbrace{\beta_{2}}_{\substack{G V D \\ \text { parameter }}} \cdot \Delta \omega^{2}+\frac{1}{6} \beta_{3} \cdot \Delta \omega^{3}+\ldots$ with $\beta_{i}=\left.\frac{1}{i!} \cdot \frac{\partial^{i}}{\partial \omega^{i}}\right|_{\omega 0} \beta_{i}$

Pulse broadening leads to symbol interference and subsequent bit error rate degradation which we restrict by a simplified statement to obtain the max. bit rate B :

$$
T_{0}^{\prime}(\mathrm{L})<\mathrm{T}_{\mathrm{B}} / 4 \quad \text { with } T_{B}=1 / B=\text { bit-time slot and } \mathrm{B}=\text { bit rate }
$$

$B L \cdot|D| \cdot \Delta \lambda_{0} \leq \frac{1}{4} \quad$ Dispersions limit $\quad B \sim 1 / L$, resp. $L_{\max } \sim 1 / B$

If the attenuation dominated dominates: Attenuation limit

Schematic of attenuation and dispersion limit

Attenuation and dispersion limit for different fibers and wavelengths

Conclusions and summary:

For harmonic guided EM-field the solutions can be obtained from an eigenvalue of an eigenvalue equation of the Helmholtz-equations for $\mathrm{E}_{\mathrm{z}}, \mathrm{H}_{\mathrm{z}}$ including boundary conditions

The eigenvalue determines the transverse field profile and the longitudinal propagation constant.
The two longitudinal field components E_{z}, H_{z} are a minimal set of independent field variables.

- Because the longitudinal components E_{z}, H_{z} serve as independent field variables, the other components can be derived from E_{z} and H_{z}.
- The propagation constant $\beta(\omega)$ is frequency dependent, even if the refractive indices are frequency independent and represents the waveguide dispersion.
- material dispersion $\beta(\omega)$ leads to pulse broadening and limited transmission rates. Waveguide dispersion can be used to compensate material dispersion of opposite sign.
- The waveguide dispersion results from the fact that the transverse mode pattern is also frequency dependent and the transverse mode profile "sees" different portion of the "fast" cladding and the "slow" core. This results in a frequency dependent group velocity of the mode.

Literature:

[15] Charles Tsao. Optical Fibre Waveguide Analysis. Oxford: Oxford University Press, 1992.
[16] Allan W. Snyder, John D. Love. Optical Waveguide Theory. London: Chapman \& Hall, 1991,
[17] N. S. Kapany, J. J. Burke. Optical Waveguides. New York: Academic Press, 1972.
[18] A. Safaai-Jazi, G. L. Yip, «Classification of hybrid modes in cylindrical dielectric optical waveguides,» Radio Science, Vol. 12, No. 4, pp. 603-609, July-Aug. 1977.
[19] Erhard Grimm, Walter Nowak. Lichtwellenleitertechnik. Berlin: VEB Verlag Technik, 1988.
[20] Gerd Keiser. Optical Fiber Communications. Boston: McGraw-Hill, Series in Electrical and Computer Engineering, $3^{\text {rd }}$ Edition, 2000.
[21] D. Gloge,«Weakly guiding fibers,» Applied Optics, Vol. 10, No. 11, pp. 2252-2258, Nov. 1971.
[22] D. Gloge,«Dispersion in weakly guiding fibers,» Applied Optics, Vol. 10, No. 11, pp. 2442-2445, Nov. 1971.
[23] D. Gloge,«Propagation effects in optical fibers,» IEEE Transactions on Microwave Theory and Technique, Vol. 23, No. 1, pp. 106120, Jan. 1975.
[24] Max Ming-Kang Liu. Principles and Applications of Optical Communications. Chicago: Irwin, 1996.
[25] H.-G. Unger. Optische Nachrichtentechnik - Teil I: Optische Wellenleitertechnik. Heidelberg: Hüthig, 1984.

Graphical summary of Cylinder Functions:

Hyperbolic functions:

Bessel function (second kind):

Bessel functions (first kind):

Hankel function:

Appendix 1:

Polarization mode dispersion (optional)

The dispersion of light waves can also depend on the polarization state of the optical field in structures where the refractive index depends on the direction of the field vector due to:

- Form or shape birefringence (Form-Doppelbrechung) in asymmetric waveguides (eg. rectangular cores)
- asymmetric stress (bending, twisting) in the waveguide
- asymmetric density variations, etc.

Contrary to material and waveguide dispersion, the last 2 effects can vary stochastically along the fiber and in time.
\Rightarrow the 2 possible orthogonal polarizations states at the fiber input are delayed differently in time $\Delta \tau=\delta \tau_{p o l}$ and rotate the polarization directions Θ :

The 2 orthogonal polarized wave are characterized by 2 group velocities \mathbf{v}_{gx} and v_{gy} :

$$
\delta \tau_{p o l}=L \cdot\left|\frac{1}{v_{g x}}-\frac{1}{v_{g y}}\right|
$$

leading by statistical averaging to:

$$
\left\langle\delta \tau_{p o l}\right\rangle=D_{P M D} \cdot \sqrt{L}
$$

$\mathrm{D}_{\text {PMD }}=$ Polarizationdispersion parameter (typ.0.1-1ps/ $/ \mathrm{km}$)

Schematic representation of variable birefringence for

Artificially high or low birefringent fibers:

Concept: Polarization filtering of the fiber structure by making one polarization direction relatively lossy and thus filter out the unwanted polarization.

High birefringent fibers with pronounced polarization directions

Appendix 2:

Remark to the Multi-Mode Gradient-Index Fiber (MMF)

Single mode fibers (SMF) require for 1) single mode operation at 1.3 / $1.5 \mu \mathrm{~m}$ and 2) low dispersion:
a) a low index differences $\Delta \mathrm{n}(\sim 1 \%)$ between core and cladding
b) a relative small core diameters $\mathrm{d} \sim 5-10 \mu \mathrm{~m}$
\Rightarrow precise $(<0.1 \mu \mathrm{~m})$ and expensive coupling between laser source and fiber, no LEDs are possible because of the large source area, typ $\sim 50 \mu \mathrm{~m} \varnothing$

Low-cost data-links for moderate data rates ($1-10 \mathrm{~GB} / \mathrm{s}$) and short distances ($<100 \mathrm{~m}$) require LEDs and simple fiber coupling:
\Rightarrow use step-index multimode fibers (MMF) with core diameters of $50-60 \mu \mathrm{~m}$, with simple and efficient coupling, but these fibers are multi-transverse mode (several 100 modes) resulting in a huge intermodal dispersion.
\Rightarrow graded index MMF reduce intermodal dispersion in by a lens-like, graded index profile:

Concept in the light ray picture: lens-like dispersion of the core

The beams traveling off-axis "see" on the "average" a lower refractive index n and travel faster than the rays close to the high-index core \rightarrow as a result on- and off- axis rays travel at about the same speed in the z-direction resulting in low dispersion.

