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Gornergletscher, Switzerland, June 2006

The ice-dammed lake (with icebergs) in the confluence drains every year in early summer.

Cold ice of −13◦C flows from the highest peaks of Monte Rosa at 4500m through
Grenzgletscher (right of medial moraine) down to elevations of 2500m, where a central

ribbon of ice is at a temperature of −2.3◦C, while all other ice is temperate.
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Life is like a glacier
Heaven-descended in its origin, it yet takes its mould and conformation
from the hidden womb of the mountains which brought it forth. At first
soft and ductile, it acquires a character and firmness of its own as an
inevitable destiny urges it on its onward career. Fostled and constrained by
the crosses and inequalities of its prescribed path, hedged in by impassable
barriers which fix limits to its movements, it yielding groaning to its fate,
and still travels forward seamed with the scars of many a conflict with
opposing obstacles. All this while, although wasting, it is renewed by an
unseen power – it evaporates, but is not consumed. On its surface it bears
the spoils which, during the progress of existence it has made its own; –
often weighty burdens devoid of beauty or value – at times precious masses,
sparkling with gems or with ore.

Having at length attained its greatest widths and extension, commanding
admiration by its beauty and power, wast predominates over supply,
the vital springs begin to fail; it stoops into an attitude of decrepitude;
it drops the burdens one by one, which it had borne so proudly aloft;
its dissolution is inevitable. But as it is resolved into its elements, it
takes all at once a new, livelier, and disembarrassed form; the wreck of
its members it arises, “another, yet the same”, – a noble, full-bodied,
arrowy stream, which leaps, rejoicing over the obstacles which before had
stayed its progress, and hastens through fertile valleys towards a freer
existence, and a final union in the ocean with the boundless and the infinite.

James D. Forbes (1855)



Chapter

1
Overview

Many people are concerned about the question “what will change on a warmer
planet?” Most will know that glaciers react to climate, and that they will melt
back dramatically in the future, according to most climate scenarios. Big changes in
glaciation will affect earth climate, river hydrology and sea level, among others. In
this course we will take a detailed look at the physics of the processes that govern
the behavior of glaciers and ice sheets.

We will be mainly concerned about ice sheets and valley glaciers. To get a feeling
for the relevant scales, typical sizes of ice sheets and glaciers, their aspect ratios
(thickness/length), and reaction times are listed below (after Kuhn, 1995)

Size Thickness Length Thickness/Length Reaction time

Ice sheets 1000 m 1000 km 0.001 1000 years
Valley glaciers 100 m 10 km 0.01 100 years
Cirque glaciers 10 m 0.1 km 0.1 10 years

The Greenland ice sheet is about 3400 m thick. The maximum ice thickness in
East Antarctica is more than 4500 m. Grosser Aletschgletscher, the biggest glacier
in the Alps, is 25 km long, typically some 500 m thick, and more than 900 m at
Konkordiaplatz.

Distribution of glaciated areas

The distribution of glaciated areas on Earth is shown in Table 1.1. Clearly the huge
ice sheets of Antarctica and Greenland dominate by the sheer volume of water they
store in form of ice. What if they melt? Is that possible at all? How fast would that
happen? What about other areas with smaller ice caps, or mountain glaciers?

Ice age ice sheets

Ice sheets have waxed an waned in the past. Their extent and volumes are col-
lected in Table 1.2. The Laurentide Ice Sheet that covered most of north-eastern
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Continent Region Area (km2) Total (km2)

Antarctica Subantarctic islands 7’000
Antarctic continent 13’586’310 13’593’310 85.7 %

Greenland Greenland ice sheet 1’726’400 1’726’400 10.9 %

North America Canada 200’806
USA 75’283
Mexico 11 276’100 1.7 %

Asia Russia and former SU states 77’223
Turkey, Iran and Afghanistan 4’000
Pakistan and India 40’000
Nepal and Bhutan 7’500
China (incl. Tibet) 56’481
Indonesia 7 185’211 1.2 %

Africa whole continent 10 10

Europe Iceland 11’260
Svalbard 36’610
Scandinavia 3’174
Alps 2’909
Pyrenees 12 53’967 0.3 %

South America Argentina and Chile 23’328
Peru and Ecuador 1’900
Bolivia, Colombia, Venezuela 680 25’908 0.2 %

Australasia New Zealand 860 860

15’861’766

Table 1.1: Global distribution of glaciated areas (after Knight, 1999)

North America (Hudson Bay; Big Lakes; New York) had a volume similar to to-
day’s Antarctic Ice Sheet, but vanished completely about 10’000 years ago. Also
the ice sheets that covered Scandinavia, Britain and Ireland, the North American
Cordillera (Rocky Mountains) and the Alps melted completely, with some small
mountain glaciers remaining.
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Sea level change

The sea level rose by about 130 m at the end of the last Ice Age (197− 66 m in the
last row in Table 1.2). That was enough to flood for example Beringia, a 1600 km
wide land bridge between Siberia (Asia) and Alaska (North America).

Figure 1.1: Reconstructed and measured relative sea level. The “Meltwater Pulse 1A”
refers to the drainage of late-glacial Lake Agassiz at the margin of the Laurentide
Ice Sheet. (From: http://www.globalwarmingart.com)

The complete disintegration of the present Greenland Ice Sheet would rise sea level
by about 7 m. The Antarctic Ice Sheet has the potential to rise sea level by another
60 m!

Ice sheet Area (106 km2) Volume (106 km3) Sea level (m)

Antarctica 12.5 (13.8) 23.5 (26.0) 59 (66)
Greenland 1.7 (2.3) 2.6 (3.5) 7 (11)
Laurentide 0 (13.4) 0 (29.5) 0 (74)
Cordilleran 0 (2.4) 0 (3.6) 0 (9)
Scandinavian 0 (6.7) 0 (13.3) 0 (34)
Other 0.6 (5.2) 0.2 (1.1) 0.5 (3)

Total 14.9 (43.7) 26.2 (77.0) 66 (197)

Table 1.2: Approximate sizes of ice sheets at present, and during the glacial maximum
(in parentheses). The last column is the equivalent sea level rise represented by the
storage of water in those ice sheets (after Knight, 1999).

Glaciated mountain areas, such as the coastal ranges in Canada/Alaska and the
Himalayas contribute considerably to sea level change at present. Measurements
of glaciers in Alaska show that they currently contribute 0.27 mm a−1 to sea level
rise (Arendt et al., 2002). This mass loss is about equal to the current mass loss

5



Chapter 1 Overview

Ice sheet Accumulation Runoff Calving Bottom
melting

Net
balance

Net Sea
level rise

Gt a−1 Gt a−1 Gt a−1 Gt a−1 Gt a−1 mma−1

Greenland 520± 26 297± 32 325± 33 32± 3 −44± 53 0.05± 0.05
Antarctica 2246± 86 10± 10 2072± 304 540± 26 −376± 384 −0.1± 0.1
Glaciers and
ice caps

688± 109 778± 114 −91± 36 0.3± 0.1

Table 1.3: The mass balance of the Greenland and Antarctic ice sheets and of smaller
glaciers and ice caps (after Hooke, 2005; data from the 2001 IPCC report (Houghton
J.T. et al., 2001). An ice mass loss of 360 Gt corresponds to a sea level rise of 1 mm
(1 Gt = 1012 kg).

Mean Specific Total Mass Sea Level Mean Specific Total Mass Sea Level
Mass Balancea Balancea Equivalenta Mass Balanceb Balanceb Equivalentb

Period (kg m−2 a−1) (Gt a−1) (mm a−1) (kg m−2 a−1) (Gt a−1) (mm a−1)

1960/61 – 2003/04 −283± 102 −155± 55 0.43± 0.1 −231± 82 −182± 64 0.50± 0.18
1960/61 – 1989/90 −219± 92 −120± 50 0.33± 0.14 −173± 73 −136± 57 0.37± 0.16
1990/91 – 2003/04 −420± 121 −230± 66 0.63± 0.18 −356± 101 −280± 79 0.77± 0.22

Table 1.4: Global average mass balance of glaciers and ice caps for different periods,
showing mean specific mass balance ( kg m−2 a−1); total mass balance (Gt a−1); and
Sea Level Equivalent (SLE; mm a−1) derived from total mass balance and an ocean
surface area of 362 · 106 km2. This is Table 4.4 from the 2007 IPCC report (Lemke
et al., 2007). Superscripts a and b indicate mass balances excluding and including
glaciers and ice caps around ice sheets, respectively.

of the Greenland Ice Sheet. For High Mountain Asia, mass loss estimates diverge.
A recent study considering digital elevation models derived from satellite stereo-
imagery of about 92% of the glaciers finds a total mass change equivalent to−0.046±
0.009 mm a−1 (Brun et al., 2017).

Although glaciers and ice caps are the strongest contributors to current eustatic
sea level rise, mass loss from both polar ice sheets accelerates three times faster
(Rignot et al., 2011b). Figure 1.5 clearly shows this non-linear increase. If this
trend continues, the polar ice sheets will dominate sea level rise within the next
decades.
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Figure 1.2: Mass balance estimates for Greenland. The coloured rectangles, following
Thomas et al. (2006), indicate the time span over which the measure- ments apply
and the estimated range, given as (mean + uncertainty) and (mean - uncertainty)
as reported in the original papers. This is Figure 4.18 from the 2007 IPCC report
(Lemke et al., 2007), where the meaning of colors and sources are given.

Figure 1.3: Mass balance estimates for Antarctica and Greenland. (From Van den
Broeke et al., 2011)
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Figure 1.4: Comparison of different mass balance estimates for the Antarctic Ice
Sheet (AIS) and Greenland Ice Sheet (GrIS). (From Van den Broeke et al., 2011)

Figure 1.5: Sea level rise caused by ice loss of the the Antarctic Ice Sheet (AIS) and
Greenland Ice Sheet (GrIS). (From Van den Broeke et al., 2011)
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Mass Loss Partitioning for Ice Sheets and Tidewater Glaciers

The mass balance of tidewater glaciers (glaciers terminating in the ocean) and ice
sheets is affected by mass gain and mass loss at the surface, at the bed and at the
ice-ocean margin. Surface mass balance consists of precipitation, runoff and subli-
mation, whereas the basal mass loss of grounded glaciers can usually be neglected.
At the ice-ocean margin, ice mass is lost in form of iceberg calving or submarine
melt. The relative magnitude of these mechanism is not fully understood and varies
depending on ocean temperature, subglacial discharge and the presence or absence
of a floating ice tongue.

The mass loss of tidewater glaciers and ice sheets is often partitioned into surface
mass loss (mostly melt) and dynamic discharge. Dynamic discharge is the ice mass,
which tidewater glaciers or outlet glaciers of ice sheets transport to the ocean via ice
flow. It does not distinguish between the mass loss process to the ocean (submarine
melt or iceberg calving), but quantifies how much mass passes through a pre-defined
“flux gate” near the ice-ocean margin. The specification of a flux gate is subjective,
often a fjord narrowing is used.

In their current states, the polar ice sheets undergo dynamic thinning, which means
that ice flow acceleration near the margins is not compensated by mass replen-
ishment from the ice sheet interior. Consequently, there exist large longitudinal
stretching and thinning rates in outlet glaciers. Figure 1.6 confirms the dynamic
effect of ice thinning at the polar ice sheets: thinning concentrates at the ice sheet
margins and on fast flowing outlet glaciers. Dynamic thinning can be dramatic, for
example, during some years of its retreat phase, Columbia Glacier in Alaska lost 10
m per year (Rasmussen et al., 2011). Jakobshavn Isbræ even lost 200m between
1880 and 1980 (Khan et al., 2015). Dynamic effects do not only lead to thinning.
For example, the Antarctic Kamb Ice Stream (formerly Ice Stream C), which flows
into the Ross Ice Shelf slowed down about 150 years ago most likely due to hydraulic
processes at its bed. The resulting slow flow inhibits mass transport from the ice
sheet interior to the ocean, which is why ice is “piling up” at the ice stream, i.e. the
ice stream is thickening (1.6).

The dynamic behavior of tidewater glaciers and ice sheet outlet glaciers is complex
and not fully understood. There exists a feedback between ice flow and changes at
grounding and floating ice tongues. This causes hysteresis in the adjustments to
external climatic changes and intrinsic instabilities, which depends on geometrical
characteristics of the glacier. Understanding the link between ice dynamics and
climate forcing is therefore not straightforward and constitutes perhaps the largest
uncertainty for sea level rise predictions.
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Figure 1.6: Ice thickness change for Antarctica and Greenland (inset) from satellite
laser altimeter data. Note dynamic thinning around Southeast and Northwest Green-
land, which concentrates on major fast-flowing outlet glaciers such as Jakobshavn
Isbræ (J), Helheim (H) and Kangerdlugssuaq (K) glaciers. In Antarctica, dynamic
thinning occurs mainly in West Antarctica. Some dynamic thickening can be noticed
in Greenland (Storstrømmen Glacier, S) and on the Kamb Ice Stream in Drainage
Sector E’E” in Antarctica. (From Pritchard et al., 2009)

Observed mass loss partitioning

Both the Antarctic and Greenland Ice Sheets have positive surface mass balances
(Figure 1.7). Consequently, in the absence of dynamic mass loss, both ice sheets
would be gaining mass. For both ice sheets, there are large inter-annual variations.
In Antarctica, surface melt is negligible and variations in surface mass balance are
due to variations in precipitation (see Table 1.3). There exists no overall temporal
trend in surface mass balance variations. In contrast, in Greenland, mass loss is
approximately equally divided between mass balance at the surface and dynamic
discharge to the ocean (van den Broeke et al., 2009). Surface melt is responsible
for part of the variations in surface mass balance as well as the negative trend since
about 2000 (Figure 1.7b).

The dynamic mass loss of both ice sheets has increased since the 1990’s. This has led
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to persistently negative total mass balances from the polar ice sheets. For Antarctica,
the dynamic mass loss is mostly a result of glacier acceleration in West Antarctica
and the Antarctic Peninsula prior to 2005. Equivalently, glacier acceleration since
around 1996 in southeast, west and northwest Greenland is mainly responsible for
increase dynamic mass loss (Van den Broeke et al., 2011).

Figure 1.7: Mass balance estimates for the Antarctic Ice Sheet (AIS) and Greenland
Ice Sheet (GrIS). (From Van den Broeke et al., 2011)
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2
Ice sheet mass balance

2.1 Balance velocity
In the long term, a glacier or ice sheet has to flow fast enough to transport the ice
accumulated upstream to the ablation area. At each location on the surface the rate
of mass gain or mass loss is called the specific balance rate ḃ (in units of kg m−2 a−1).
For our purposes it is often convenient to use the volumetric specific balance rate
ḃi = ḃ/ρi (in units of m3 m−2 a−1 = m a−1; ρi ' 900 kg m−3 is the ice density). The
ice volume flux Qbal along the flow line at position x, and through a section of width
W is

Qbal(x) = W qbal(x) = W

∫ x

0

ḃi(x) dx . (2.1)

Qbal is called the balance flux. One can now define the balance velocity

ubal(x) :=
Qbal

W (x)H(x)
=

1

H(x)

∫ x

0

ḃi(x) dx , (2.2)

where H(x) is the local ice thickness This equation is an expression of the con-
servation of volume, and since glacier ice is a nearly incompressible medium, the
conservation of mass.

z

xL

ḃ(x)

ubalH(x)

Figure 2.1: Schematic diagram illustrating the dependence of horizontal balance ve-
locity on accumulation rate.
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Careful: The concept of balance flux and balance velocity is not necessarily useful.
It is often used as a diagnostic quantity to delineate areas of an ice sheet where
fast flow should occur. The example of Antarctica in Figure 2.2 shows indeed fast
flow towards the big ice shelves (such as Ross, Ronne-Filchner and Amery), but the
details of many ice streams are quite different in reality.

Figure 2.2: Balance velocity map of the Antarctic Ice Sheet. Clearly visible are the
areas of accelerated ice flow towards the coast where ice streams form. Catchment
basin boundaries are in black, grounding lines in red, and ice shelves are dark blue
(from Rignot and Thomas, 2002).

Abbreviations for glaciers: Pine Island (PIG), Thwaites (THW), Smith (SMI), Kohler (KOH), DeVicq

(DVQ), Land (LAN), Whillans (WHI), A-F (A-F), Byrd (BYR), Mulock (MUL), David (DAV), feeding

eastern Cook Ice Shelf (COO), Ninnis (NIN), Mertz (MER), Totten (TOT), Denman (DEN), Scott (SCO),

Lambert/Mellor/Fisher (LAM), Rayner (RAY), Shirase (SHI), Jutulstraumen (JUT), Stancomb-Wills (STA),

Bailey (BAI), Slessor (SLE), Recovery (REC), Support-Force (SUF), Foundation (FOU), Institute (INS), Rutford

(RUT), Carlson (CAR), and Evans (EVA).
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Figure 2.3: Velocity map of the Antarctic Ice Sheet, derived from radar satellite
interferometry. Clearly visible are the areas of accelerated ice flow towards the coast
where ice streams form. (from Rignot et al., 2011a).
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Figure 2.4: Left: Balance velocity map of the Greenland Ice Sheet (from Bamber et
al., 2002). Right: Ice velocities on the Greenland ice sheet at the 2000 m contour
line (from Thomas et al., 2000).
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Figure 2.5: Left: Elevation change rate of the Greenland ice sheet (from Krabill
al., 2000). Right: Mass balance of the interior parts of the Greenland ice sheet in
millimeters per year (from Thomas et al., 2000).
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2.2 Surface profile of an ice sheet
For the inland parts of ice sheets (but not the ice divide) and some parts of wide
glaciers, shearing parallel to the ice surface is the most important contribution to
ice flow. In these places the shallow ice approximation can be used. The only stress
component that contributes to ice deformation is the shear stress parallel to the
surface. The overburden pressure cannot cause ice compaction rates since ice is
incompressible (of course the overburden pressure leads to elastic deformation).

Shear stress

We derive the magnitude of the shear stress in two different ways. Consider the
geometry of Figure 2.6a. The x-axis is parallel to the surface, with an inclination
angle α. The z-axis points upwards, perpendicular to the surface. We are interested
in the shear stress on a plane at depth h and parallel with the surface. The weight
of a column with horizontal extent S = 1 m2 is ρighS, where ρi is the density of ice
and g is the acceleration due to gravity. The component of weight parallel to the
(inclined) plane of interest then is

σ(a)
xz S = ρgh sinαS. (2.3)

and consequently the stress component∣∣σ(a)
xz

∣∣ = ρgh sinα. (2.4)

This is called the driving stress (Deutsch: Hang-Abtriebskraft). For an equilibrium
of forces it has to be balanced by other stresses, such as the basal drag τb.

(a)
z

x h�
��gh�(a)xz (b)

z
x h�h�

�gh�(b)xz �x
Figure 2.6: The shear stress σxz on a plane at depth h below the surface (lower
boundary of shaded region) is derived in two different coordinate systems a) surface
parallel, inclined coordinate system b) coordinate system is aligned with gravity.

We now consider the geometry of Figure 2.6b with a coordinate system where the
x-axis is horizontal and the z-axis is vertical. The column is again of unit cross-
sectional area S = ∆x · W , and the (horizontal) plane of interest is at depths h
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to h + ∆h below the surface. The hydrostatic pressure at this depth (on the right
boundary) is approximately ρgh and varies linearly with depth. Therefore the mean
force on the vertical face on the right is 1

2
ρgh · hW (the second h is due to the area

of the face). Similarly, the mean force on the left face is 1
2
ρg(h+ ∆h)2W . The total

shearing force on the horizontal plane of interest is σ(b)
xz ∆xW . Since the block is

balanced, the sum of all forces is zero

1

2
ρg(h+ ∆h)2 − 1

2
ρgh2 + σ(b)

zx ∆x
!

= 0.

Expanding the first term, neglecting terms of order ∆h2 and using tanα = ∆h/∆x
leads to ∣∣σ(b)

xz

∣∣ = ρgh
dh

dx
= ρgh tanα. (2.5)

This expression is appropriate for a situation in which both the x-axis and the plane
of interest are horizontal, and the glacier surface is sloping.

Notice that the expressions (2.4) and (2.5) are different because of different coordi-
nate systems, and therefore different meaning of σxz. While σ(a)

xz is the shear stress
on an inclined plane, σ(b)

xz is the shear stress on a horizontal plane below an inclined
surface. For small angles α they are almost equal since sinα ∼ tanα ∼ α.

Surface profile of an ice sheet: plastic ice

We consider a steady-state ice sheet on a flat horizontal bed (Fig. 2.1). The stress
at the ice sheet base – a horizontal plane of interest – is (Eq. 2.5)

τb = σ(b)
xz = ρgH

dH

dx
. (2.6)

First we assume the simplest case, namely that the shear stress at the base cannot
exceed a threshold value τ0. This is the case if the ice or substrate at the glacier
base behaves as a perfect-plastic material with yield stress τ0. If the whole base is
at the yield stress τ0, as will be the case if ice accumulates at the surface, Equation
(2.6) can be integrated between x and L

H2 =
2τ0

ρg
(L− x) , (2.7)

which is a parabola (Nye, 1952). The thickness at the center isH0 = (2τ0L/ρg)1/2. If
we use τ0 = 100 kPa(= 0.1 MPa = 1 bar) and the horizontal extent of the Greenland
ice sheet L = 450 km we obtain 3160 m which is about the elevation of Summit.
Notice that no assumption about mass balance has entered this calculation.

We see that typical (shear) stresses in glaciers are of the order 100 kPa. Applying
the concept to a mountain glacier we can get a feeling for typical ice thicknesses: for
α = 5◦ the ice thickness would be 127 m, for α = 10◦ it decreases to 63 m. The next
step is to replace the assumption of perfect plasticity with a flow law for glacier ice.
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Flow velocity

The flow velocity of an ice sheet depends on the ice thickness H and the surface
slope dzs

dx
, which for a flat base is dH

dx
. If the ice is moving over the base with the

basal velocity ub, the velocity at the glacier surface is

us =
2A

n+ 1

(
ρg
dH

dx

)n

Hn+1︸ ︷︷ ︸
ice deformation

+ ub︸︷︷︸
basal motion

(2.8)

This is a vertically integrated form of the force equilibrium equation, complemented
with the famous flow law that Glen published in 1952. Glen’s (and Steinemann’s)
flow law – which will be explained in detail later – is

ε̇ = Aτn. (2.9)

This equation states that the horizontal shear strain rate ε̇ = ε̇xz depends on the n-
th power of the horizontal shear stress τ = σxz = ρgH dH

dx
. The power-law exponent

is an material property and is close to n = 3. The quantity A is a softness parameter
that depends on temperature (and also grain size, water and impurity content, etc.)
and is A = 75.7 MPa−3 a−1 = 2.4× 10−24 s−1 Pa−3 for 0◦C. See Table B1 for values
at colder temperatures.

The horizontal flow velocity at a depth h := H − z below the surface (where z is
the distance above bedrock) is

u(h) = us −
2A

n+ 1

(
ρg
dH

dx

)n

hn+1 or (2.10)

u(h) =
2A

n+ 1

(
ρg
dH

dx

)n (
Hn+1 − hn+1

)
+ ub . (2.11)

These equations are also known as the shallow ice approximation. To obtain the ice
flux Q through a vertical section of unit width W = 1 m (so that we can suppress
W ), we integrate Equation (2.10) over the ice thickness

Q =

∫ H

0

u(h) dh

= usH −
2A

n+ 1

(
ρg
dH

dx

)n ∫ H

0

hn+1 dh

= usH −
2A

(n+ 1)(n+ 2)

(
ρg
dH

dx

)n

Hn+2 (with Eq. 2.8)

=
2A

n+ 2

(
ρg
dH

dx

)n

Hn+2 + ubH . (2.12)
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The flux q through a vertical section of unit width W is given in units of m2 a−1.
The ice flow velocity averaged over depth is

ū =
Q

H
=

2A

n+ 2

(
ρg
dH

dx

)n

Hn+1 + ub (2.13)

In the absence of basal motion, and with the usual assumption n = 3 the depth-
averaged flow velocity is n+1

n+2
= 0.8 = 80 % of the surface flow velocity us = u(H).

If the local ice flux q and the balance velocity qbal agree, the ice sheet is in a steady
state: the ice sheet is fully adjusted to the climate and no changes of geometry over
time occur. Notice that ice sheets and some glaciers never reach a steady state due
to intrinsic instabilities.

Surface profile of an ice sheet: viscous ice

We are now in a position to calculate the shape of an ice sheet. For simplicity we
assume a uniform mass balance rate ḃ (in units of m a−1), and that mass loss is
due to calving at the edge. In a steady state the balance flux through a position
x, qbal(x) = ḃx has to be equal to the volume flux qflow through this cross section.
Setting Equations (2.1) and (2.12) equal, and ignoring basal motion, leads to

ḃx
!

=
2A

n+ 2

(
ρg

∣∣∣∣dHdx
∣∣∣∣)n

Hn+2 . (2.14)

The solution of this differential equation gives the profile

H2+2/n = K
(
L1+1/n − x1+1/n

)
, (2.15)

with

K =
2(n+ 2)1/n

ρg

(
ḃ

2A

)1/n

. (2.16)

At the highest point the variables are x = 0 and H(0) = H0. Therefore we can write
the equation as (

H

H0

)2+2/n

+
(x
L

)1+1/n

= 1. (2.17)

Perfect plasticity corresponds to n→∞, which reduces this equation to the parabola
of Equation (2.7). This solution was first described by Vialov (1958).
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3
Glacier mass balance

3.1 Mass balance terminology
Climate changes lead to changes in the mass budget of a glacier or ice sheet, the
mass balance. The measure for this change is the specific balance rate, which is
defined as the rate at which mass is added to, or removed from a glacier 1. We
designate2 by ḃ the rate of ice accumulation or melting at location x on the glacier
surface. The net balance is defined as the sum of mass gain (accumulation) and
mass loss (ablation) during a certain time span. In practice, the hydrological year –
from 1. October to 30. September – is often used. By definition, the net balance b
is evaluated as the integral of ḃ(x, t) over a time interval t1 to t2

b(x) =

∫ t2

t1

ḃ(x, t) dt . (3.1)

The net balance is the mass gain or loss at a location on the glacier surface. The
function b(x) describes the spatial distribution of mass balance over the glacier
surface. Integrating this function over the glacier surface S leads to the glacier net
balance B

B =

∫
S

b(x) dS . (3.2)

The glacier net balance is also called the total net balance. The glacier net balance is
the sum of accumulation and ablation over the whole glacier surface, and therefore
the volume change of the glacier (almost: some processes within the glacier and
at the base may also contribute to the volume change). Dividing the total mass
balance by the glacier surface gives the average net balance or specific net balance

B̄ =
B

S
. (3.3)

1Different designations and notations are in use. Here we adopt the notation of Cuffey and
Paterson (2010)

2The dot is used to mark a rate. It is part of the symbol, not a time derivative operator.
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The following table gives an overview of the mass balance terms (according to Cuffey
and Paterson, 2010)

English term Symbol Unit Deutscher Ausdruck

(specific) balance rate ḃ kg m−2 a−1 Massenbilanzrate
volumetric balance rate ḃi m a−1 Massenbilanzrate
(specific) net balance b kg m−2 Netto-Massenbilanz
volumetric net balance bi m Netto-Massenbilanz
glacier net balance B kg gesamte Massenbilanz
average net balance B̄ kg m−2 spezifische Nettobilanz
glacier net balance Bi m3 gesamte Massenbilanz
average net balance B̄i m spezifische Nettobilanz

Unfortunately not everybody is using these terms and symbols consistently, but the
concept is simple enough that no confusion should arise.
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Figure 3.1: Variation of the net balance over the course of a balance year. Shown
are accumulation rate ȧ, ablation rate ċ and specific balance rate ḃ = ȧ+ ċ. A graph
similar to this applies for any location on the glacier.
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Figure 3.2: Mass balance data from Griesgletscher (Wallis, Switzerland). Top left:
Map with mass balance stakes indicated, Bottom left: net mass balance 1961-2008,
Right column: balance with respect to elevation (from Glaciological Reports, 2008).
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Figure 3.3: Mass balance data from Silvrettagletscher (Graubünden, Switzerland).
Right column: Winter (dotted), summer (dashed) and total balances (solid) are
shown (from Glaciological Reports, 2008).

25



Chapter 3 Glacier mass balance

3.2 Spatial mass balance variations
Net balance varies widely on a glacier or ice sheet, mainly due to temperature,
precipitation and radiation, but also due to local effects like aspect (shading), wind
redistribution of snow, and avalanches. In the Alps, net balance generally varies
with elevation because both temperature and precipitation show strong elevation
gradients, whereas on ice sheets the distance form the ocean is a dominating factor.

The variation of net mass balance with elevation usually varies from year to year,
as exemplified for Griesgletscher (Fig. 3.2, panels c and d) and Silvrettagletscher
(Fig. 3.3, panels c and d). A good average value is ġ := dḃ(z)/dz = 0.007 −
−0.008 a−1. The elevation of the equilibrium line is currently around 3000−3100 m a.s.l.,
with an important variation between climate regions and due to exposition (Fig. 3.8c).

3.3 Mass balance changes due to climate change
We define climate change as the long term changes of one or more of the climate
variables precipitation, radiation and temperature. Figure 3.4 shows nicely that net
balance is mainly influenced by the summer balance, i.e. the intensity of melting is
more important for the mass balance of a glacier than the amount of snow falls.
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Figure 3.4: Left: Winter, summer and net balance of a stake on Claridenfirn. Right:
Cumulative winter, summer and net balance (from Glaciological Reports, 2008).

The net balance and the average net balance react very differently to a climate
change, as illustrated in Figure 3.5. Initially the glacier is in a steady state, i.e. in
equilibrium with the climate. We assume that the climate changes instantly at time
t0 in Figure 3.5a. The melt rate and the accumulation rate change immediately
everywhere on the glacier. This leads to a corresponding change in balance rate and
net balance. Therefore the net balance rate ḃ reacts immediately and without delay
to the climate shift (Figure 3.5b).

The average net balance is B̄ = 0 before the climate change, when the same amount
of ice is melted as is accumulated over the course of a year. Immediately after t0
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ḃ2

ḃ1

tt0

∆ḃ
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Figure 3.5: After a sudden climate change (e.g. increase in precipitation P and/or
decrease in air temperature T ) the glacier reacts with changes of the net balance rate
ḃ, the glacier length L, and of the average net balance B̄. Plots a) and b) are valid
for any location on the glacier, since we assume the same change of climate at the
time t = t0.

the average net balance is positive or negative until the glacier has reached a new
equilibrium (Figure 3.5c). A climate change only leads to a temporary change of
the average net balance. Before, and long after the climate change the average net
balance is zero.

The glacier length reacts immediately to a climate change, but not jump-like (Figure
3.5c). The length varies until a new equilibrium has been reached. The time needed
for the glacier to reach a new equilibrium after a change in the net balance is called
the reaction time.
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3.4 Length change
A glacier in equilibrium with a given climate has a vanishing total net balance

B =

∫
S

b dS = 0 . (3.4)

A change in climate usually leads to a change in the distribution of the net balance
b(x) everywhere. Consequently the glacier net balance B is different from zero. If
the mass balance change was positive, the glacier will reach a new equilibrium by
extending its ablation area, which means an advance of the terminus (the glacier
gets longer). The additional melt in the new area will compensate the increased
accumulation over the initial area.

To illustrate this principle, we imagine a glacier of constant width, and a net balance
that only varies with x. Initially, the glacier is in equilibrium (steady state), and
has a length L0 ∫ L0

0

b(x) dx = 0, for t < t0. (3.5)

At time t = t0 a step change in climate leads to a change in mass balance ∆b(x).
After a certain time the glacier reaches a new equilibrium at a new length L0 + ∆L∫ L0+∆L

0

(b(x) + ∆b(x)) dx = 0, for t− t0 > τR. (3.6)

The reaction time τR is the time span the glacier needs to adjust to the new net
balance (we will come back to τR later). We rewrite the integral in Equation (3.6)
to elucidate the meaning of the individual terms (using linearity of the integral
operator)

0 =

∫ L0+∆L

0

(b(x) + ∆b(x)) dx

=

∫ L0

0

b(x) dx︸ ︷︷ ︸
0

+

∫ L0

0

∆b(x) dx︸ ︷︷ ︸
∆b̄L0

+

∫ L0+∆L

L0

b(x) dx︸ ︷︷ ︸
b̄t∆L

+

∫ L0+∆L

L0

∆b(x) dx︸ ︷︷ ︸
∆b̄∆L ' 0

. (3.7)

The first term is zero because of Equation (3.5). The second term is the integral of
the mass balance change ∆b(x) over the original length of the glacier. It can also
be written as

∆b̄ :=
1

L0

∫ L0

0

∆b(x) dx (3.8)

The third term is the integral of the original mass balance distribution over the new
length of the glacier. Here we used the definition of the mean net balance at the
terminus

b̄t :=
1

∆L

∫ L0+∆L

L0

b(x) dx (3.9)
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Steady state

EL

Climate shift

EL ∆b

∆b

New steady state

EL

L0 ∆L
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Figure 3.6: In a steady state the glacier is in equilibrium with the climate. The
total mass balance is equal to zero, and the same amount of ice is added in the
accumulation area as is removed by melting in the ablation area. Through a climate
change that balance is destroyed and has to be re-established by a change in geometry,
in this example an extension of the ablation area.
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to write the third term as b̄t∆L. The fourth term is a product of the length change
and the change of the net balance integrated over ∆L. This term is of second
order, and usually negligible compared to the second and third term. With these
simplifications we can now write

L0∆b̄+ b̄t∆L ' 0. (3.10)

This equation expresses the fact, that a change of “input” (L0∆b̄) has to be com-
pensated by a change of “output” (b̄t∆L). To cope with increased mass balance, the
glacier has to extend its ablation area by ∆L.

3.5 Reaction time scales

Jóhannesson volume time scale

How long does it take a glacier to reach a new equilibrium state, after it has been
perturbed by a change in net balance ∆b(x) at time t = t0 ? Equation (3.10) gives a
relation between the change in net balance ∆b and the length increase ∆L. Linked
to the length change is a change in ice volume ∆V . How long will it take to fill up
the newly created volume with the extra mass balance? This time span τv is called
the volume time scale

τv :=
volume change

mass balance change
=

∆V

∆Ḃ
. (3.11)

Observation and results from numerical modeling studies show that during a glacier
advance the geometry of the accumulation area stays almost the same. The increase
of surface elevation in the accumulation area is very small compared to the changes
in the ablation area. Also the shape of a glacier tongue stays almost the same. We
imagine that the whole tongue is shifted down-slope by the distance ∆L to the new
position. The size of the gap that forms at the thickest part of the glacier then gives
a good estimate of the volume difference

∆V ' Hmax∆L. (3.12)

For the volume time scale we therefore get the following approximation

τvJ :=
∆V

∆Ḃ
=

∆V∫ L0

0
∆ḃ(x) dx

' Hmax∆L

L0∆¯̇b
(3.13)

' Hmax∆L

−¯̇bt∆L
with Eq. (3.10)
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Figure 3.7: Cumulative length changes of four different-sized glaciers (length is
given in parentheses) of the Swiss Glacier Monitoring Network. (Data source:
http://glaciology.ethz.ch/swiss-glaciers)
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Figure 3.8: Modeled length changes for different glaciers under the same climate
history. (a) Glaciers on different bedrock slopes β (for a vertical extent of the accu-
mulation area of Z = 400 m). (b) Glaciers with different vertical extents Z of the
accumulation area (for β = 7◦). Values of β and Z are indicated next to curves, the
volume time scale τvH is given in parentheses. (c) The variation of equilibrium line
altitude is shown as thin line, and smoothed with a 5 years running average (wide
line) (From Lüthi and Bauder, 2010).
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This is the Jóhannesson et al. (1989) volume time scale that depends only on two
quantities that are relatively easy to determine

τvJ '
Hmax

(−¯̇bt)
. (3.14)

The mean net balance rate at the glacier tongue ¯̇bt is always negative, so that the
volume time scale is positive.

The volume time scale is the minimum time that the glacier needs to adjust to a
new climate. It is possible that it takes much longer for the glacier to transport the
extra mass to the glacier tongue. However, for most glaciers the relation τR ' τv is
valid.

Application With Equation (3.14) we can estimate the reaction time of typical
Alpine glaciers. Ice thickness is of the order 100 − 200 m (up to 450 m for Gorner-
gletscher, 550 m for Grosser Aletschgletscher). The melt rate at the glacier tongue
is typically 4− 7 m a−1. This gives volume time scales of several decades. Since the
climate is always changing, most glaciers will have a spatial extent that is not in
equilibrium with the current climate.

Harrison volume time scale

The dependence of mass balance upon elevation has not been taken into account
in the derivation of the Jóhannesson volume time scale. To achieve this, we start
by writing the total balance rate as a function of glacier volume V and area A as
Ḃ(V,A, t). The linear expansion around an arbitrary reference state (A′, V ′) with
total balance Ḃ′ = Ḃ(V ′, A′, t) is

Ḃ(V,A, t) = Ḃ(V ′, A′, t) +
∂Ḃ

∂V
(V − V ′) +

∂Ḃ

∂A
(A− A′)

= Ḃ′ +
∂Ḃ

∂V︸︷︷︸
=:ġe

∆V +
∂Ḃ

∂A︸︷︷︸
=:ḃe

∆A , (3.15)

where ∆A = A − A′ and ∆V = V − V ′. To replace ∆A with ∆V , we define the
effective ice thickness H−1

e := ∂A/∂V . Now we can replace ∆A = ∂A/∂V∆V =
∆V/He. Also noting that Ḃ = dV/dt = d(∆V )/dt (in absence of mass changes at
the base), we finally write

d∆V

dt
= ġe∆V + ḃe∆A+ Ḃ′

= ġe∆V +
ḃe
He

∆V + Ḃ′ .
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From this an evolution equation for the glacier volume can be written as

d∆V

dt
=

(
ġe +

ḃe
He

)
∆V + Ḃ′ = − 1

τvH
∆V + Ḃ′ . (3.16)

The term Ḃ′ is a (constant or time-varying) forcing term, and is defined as the total
balance rate on the original geometry. It can be shown (Harrison et al., 2001; Lüthi,
2009) that ġe = ġ = dḃ(z)/dz, and that ḃe = ḃt is the balance rate at the terminus.
The Harrison volume time scale τvH in Equation (3.16) therefore is given by

τvH = −

(
ġ +

ḃt
He

)−1

=
He

(−ḃt)− ġHe

. (3.17)

The effective ice thickness He is about 25% higher than the maximum ice thickness
Hmax (a result probably only valid on a simple geometry; Lüthi, 2009).

The second form of Equation (3.17) makes the relation to τvJ explicit (Eq. 3.14),
and shows that the volume time scale can change sign. Since ḃt is always negative,
the sign depends on the relative magnitude of the terms

∣∣∣−ḃt∣∣∣ and ġHe .

τvH > 0 for (−ḃt) > ġHe ,

τvH < 0 for (−ḃt) < ġHe . (3.18)

Integration of Equation (3.16) allows us to write down the evolution of glacier volume
from one steady state to another under a step change in climate

∆V (t) = Ḃ′ τvH

(
1− e−

t
τv

)
= ∆V∞

(
1− e−

t
τv

)
, (3.19)

with the final volume change ∆V∞ = Ḃ′ τvH . We see that for positive τvH the volume
change (response) is always finite. For negative volume time scale τvH , Equation
(3.19) predicts that the response is unstable. For positive Ḃ′ the glacier grows
without limit, for negative Ḃ′ it decays. The latter behavior is only qualitatively
correct since the assumption of small changes (3.15) breaks down.

From Equation (3.18) we see that the term ḃt is stabilizing glacier response, whereas
the term ġHe is destabilizing (the former leads to positive, the latter to negative
τvH ). This is also intuitively clear: glacier growth is limited through melting at
the terminus. As a glacier extends to lower elevation, the melt area and the rate
of melting at the terminus increase, thus stabilizing the glacier geometry. On the
other hand, the feedback between ice thickness and accumulation (implied by ġ)
can lead to a unlimited growth of a glacier. This is indeed the case for an ice sheet,
which topography is rising into higher and higher elevations, thus increasing solid
precipitation. Since ice sheets rest on roughly horizontal beds, the ablation area
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cannot increase fast enough to cope with the increasing accumulation. The growth
is eventually stopped when the ice sheet reaches the ocean where iceberg calving
provides an efficient mechanism of mass loss.

It is noteworthy (as you will show in homework series 2) that long glaciers have
a shorter reaction time scale than short glaciers (on the same slope!), and steep
glaciers have a shorter reaction time scale than flat glaciers. The reaction time scale
is also inversely proportional to the vertical gradient of mass balance rate ġ.
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Appendix

A
List of Symbols

Latin letters
Symbol Description Units

A softness parameter, a constant in Glen’s flow law MPa−3 a−1

ḃ specific mass balance rate kg m−2 a−1

ḃi specific volumetric mass balance rate m a−1

B(T ) temperature dependence of viscosity
C specific heat capacity J kg−1 K−1

E Young’s modulus of elasticity MPa
g acceleration due to gravity m s−2

ġ vertical gradient of balance rate ∂ḃi/∂z a−1

h vertical coordinate, depth below surface m
H ice thickness m
k heat conductivity W m−1 K−1

n exponent in Glen’s flow law
p pressure MPa
P heat production W
Q heat flux W m−2

q ice flux, water flux m3 s−1

t time (seconds, years) s, a
T temperature ◦C
ubal balance velocity m a−1

u, v, w components of the velocity vector v m a−1

v velocity vector, v = (u, v, w) m a−1

w.eq. water equivalent
x, y, z space coordinates m
x position vector, x = (x, y, z) m
z vertical coordinate, pointing upwards m
zb bedrock elevation m
zELA equilibrium line altitude m
zs surface elevation m

1



Appendix A List of Symbols

Greek letters
Symbol Description Units

α surface slope tanα = dzs
dx

◦

β bed slope tan β = dzb
dx

◦

ε̇ strain rate tensor with components ε̇ij a−1

η shear viscosity MPa · a
γ Clausius-Clapeyron constant [ ∼ 0.074 K MPa−1 ] K MPa−1

κ thermal diffusivity
ν elastic Poisson ratio
ρi density of ice [ 900− 917 kg m−3 ] kg m−3

ρw density of water kg m−3

σe effective uniaxial stress [σe := (3
2
σ

(d)
ij σ

(d)
ij )

1
2 =
√

3τ ] MPa
σm mean stress [σm := 1

3
σkk] MPa

σ stress tensor with components σij MPa

σ(d) stress deviator tensor [σ(d)
ij := σij − 1

3
σkkδij = σij − σmδij] MPa

τ effective shear stress [τ := (1
2
σ

(d)
ij σ

(d)
ij )

1
2 = 1√

3
σe] MPa
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Appendix

B
Useful quantities

Quantity Symbol Value Unit

Mechanical properties

Density of water (0◦C) ρw 999.84 kg m−3

Density of bubble free ice (0◦C) ρi 917 kg m−3

Young modulus of ice E 8.7 · 109 Pa
Shear modulus of ice µ 3.8 · 109 Pa
Poisson ratio of ice ν 0.31
Creep activation energy (<−10◦C) Q 78 kJ mol−1

Thermal properties

Specific heat capacity of water Cw 4182 J K−1 kg−1

Specific heat capacity of ice Ci 2093 J K−1 kg−1

Thermal conductivity of ice (at 0◦C) k 2.1 W m−1 K−1

Thermal diffusivity of ice (at −1◦C) κ 1.09 · 10−6 m2 s−1

Latent heat of fusion (ice/water) L 333.5 kJ kg−1

Depression of melting point (Clausius-Clapeyron constant)
- pure ice and air-free water γp 0.074 K MPa−1

- pure ice and air-saturated water γa 0.098 K MPa−1

Constants

Gravity acceleration g 9.81 m s−2

Triple point temperature Ttp 273.16 K
Triple point pressure ptp 611.73 Pa
Gas constant R 8.31 J mol−1 K−1

Avogadro number NA 6.023 · 1023

Boltzmann constant kb 1.3807 · 10−23 J K−1

Stefan-Boltzmann constant σsb 5.67 · 10−8 W m−2 K−4

Solar constant (radiation) Qsolar 1368 W m−2
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Appendix B Useful quantities

Flow law parameter

T (◦C) A ( s−1 Pa−3) A ( a−1 MPa−3) AP ( s−1 kPa−3) AP ( a−1 MPa−3)

0 2.4 · 10−24 75.7 (6.8 · 10−15) (215)
-2 1.7 · 10−24 53.6
-5 9.3 · 10−25 29.3 (1.6 · 10−15) (50.5)
-10 3.5 · 10−25 11.0 (4.9 · 10−16) (15.5)
-15 2.1 · 10−25 6.62 (2.9 · 10−16) (9.2)
-20 1.2 · 10−25 3.78 (1.7 · 10−16) (5.4)
-30 3.7 · 10−26 1.17 (5.1 · 10−17) (1.6)
-40 1.0 · 10−26 0.315 (1.4 · 10−17) (0.44)
-50 2.6 · 10−27 0.082 (3.6 · 10−18) (0.11)

Table B.1: Flow law parameter A recommended by Cuffey and Paterson (2010), and
the older values AP recommended by Paterson (1999).

It is common to assume that the flow law parameter A can be split into a con-
stant rate factor at a reference temperature A0 and a parameter absorbing the
temperature dependence B(T ) (e.g. Hutter, 1983; Paterson, 1999). At tempera-
tures below −10◦C the rate factor is of Arrhenius type with an activation energy of
about 60 kJ mol−1 (Paterson, 1994). A double exponential fit derived by Smith and
Morland (1981, eq. 21) is often used

B(T ) = 0.9316 exp(0.32769T ) + 0.0686 exp(0.07205T ) , T ≥ −7.65◦C, (B.1)
B(T ) = 0.7242 exp(0.59784T ) + 0.3438 exp(0.14747T ) , T < −7.65◦C, (B.2)

where T is the Celsius temperature. This parameterization is almost identical to
the values given in Table B1 (Paterson, 1999, p. 97).

The rate factor A in Glen’s flow law is also affected by the percentage of water µ
within the ice (Duval, 1977; Paterson, 1999)

A(µ) = (3.2 + 5.8µ) · 10−15 kPa−3 s−1

= (101 + 183µ) MPa−3 a−1 , (B.3)

B.1.
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