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Context & acknowledgements

* collaboration with Claudio dePersis & Pietro Tesi

to develop an explicit version of regularized DeePC
— data-driven & regularized LQR

Pietro Tesi (Florence)
Alessandro Chiuso (Padova)

Claudio de Persis (Groningen)

 extension to adaptive LQR with Feiran Zhao,
Keyou You, Linbin Huang, & Alessandro Chiuso
— data-enabled policy optimization Feiran Zhao (Tsinghua)

Keyou You (Tsinghua)

o ] ) Linbin Huang (Zhejiang)
* revisit old open problems with new perspectives



* indirect (model-based) approach:
data > model + uncertainty — control

Data-driven pipelines =
o /

* direct (model-free) approach:
direct MRAC, RL, behavioral, ...

* episodic & batch algorithms:
collect batch of data — design policy well-documented trade-offs concerning

£ T . « complexity: data, compute, & analysis
» goal: optimality vs (robust) stability
* online & adaptive algorithms:  practicality: modular vs end-to-end ...

measure — update policy — actuate — gold(?) standard: direct, adaptive,
t ‘ optimal yet robust, cheap, & tractable
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LQR d—> x* = Ax+ Bu+d [%

1/ 2 1/ 2
« cornerstone of z= Q"*x+ R"“u
automatic control
u= Kx X
K |
« Ho parameterization %inir}li% trace (QQ P) + trace (K "RK P)
~ 1,

(can be posed as convex SDP,

as differentiable program, as... ) subject to (A -+ BK)P(A + BK)T —P+1=<0

. offli
control approaches in last decades bat

but there is no direct & adaptive LQR

—~anline
adaptive

- the benchmark for all data-driven %
h

indirect




Contents

1. model-based pipeline with model-free elements
— data-driven parametrization & robustifying regularization

2. model-free pipeline with model-based elements
— adaptive method: policy gradient & sample covariance

3. case studies: academic & power systems/electronics
— LQR is academic example but can be made useful



ontents

1.

regularizations bridging direct & indirect data-driven LQR
— story of a model-based pipeline with model-free elements

On the Role of Regularization in Direct Data-Driven LQR Control

Florian Dorfler, Pietro Tesi, and Claudio De Persis

Abstract— The linear quadratic regulator (LQR) problem is a
cornerstone of control theory and a widely studied benchmark
problem. When a system model is not available, the conven-
tional approach to LQR design is indirect, i.e., based on a
model identified from data. Recently a suite of direct data-
driven LQR design approaches has surfaced by-passing explicit
system identification (SysID) and based on ideas from subspace
methods and behavioral systems theory. In either approach, the
data underlying the design can be taken at face value (certainty-
equivalence) or the design is robustified to account for noise. An
emerging topic in direct data-driven LQR design is to regularize
the optimal control objective to account for implicit SysID (in a
least-square or low-rank sense) or to promote robust stability.
These regularized formulations are flexible, computationally

problems when identifying models from data. They facilitate
finding solutions to optimization problems by rendering them
unique or speeding up algorithms. Aside from such numer-
ical advantages, a Bayesian interpretation of regularizations
is that they condition models on prior knowledge [26], and
they robustify problems to uncertainty [27], [28].

An emergent approach to data-driven control is borne
out of the intersection of behavioral systems theory and
subspace methods [29]. In particular, the so-called Funda-
mental Lemma characterizes the behavior of an LTT system
by the range space of matrix time series data [30]. This
perspective gave rise to direct data-driven predictive and

with Pietro Tesi (Florence) &

Claudio de Persis (Groningen)

On the Certainty-Equivalence Approach to Direct Data-Driven LQR
Design

Florian Dorfler ©, Senior Member, IEEE, Pietro Tesi“, Member, IEEE,
and Claudio De Persis “, Member, IEEE

Abstract—The linear quadratic regulator (LQR) problem is a
cornerstone of automatic control, and it has been widely studied
in the data-driven setting. The various data-driven approaches
can be classified as indirect (i.e., based on an identified model)
versus direct or as robust (i.e., taking uncertainty into account)
versus certainty-equivalence. Here, we show how to bridge these
different formulations and propose a novel, direct, and regularized
formulation. We start from indirect certainty-equivalence LQR, i.e.,
least-square identification of state-space matrices followed by a
nominal model-based design, formalized as a bilevel program. We
show how to transform this problem into a single-level, regularized,
and direct data-driven control formulation, where the regularizer
accounts for the least-square data fitting criterion. For this novel
formulation, we carry out a robustness and performance analysis
in presence of noisy data. In a numerical case study, we compare
regularizers promoting either robustness or certainty-equivalence,
and we demonstrate the remarkable performance when blending
both of them.

methods [10], [11], [12], reinforcement learning [13], behavioral meth-
ods [14], and Riccati-based methods [15] in the certainty-equivalence
setting as well as [16], [17], [18] in the robust setting. We remark
that the world is not black and white: a multitude of approaches have
successfully bridged the direct and indirect paradigms, such as identi-
fication for control [19], [20], dual control [21], [22], control-oriented
identification [23], and regularized data-enabled predictive control [24].
In essence, these approaches all advocate that the identification and
control objectives should be blended to regularize each other.

An emergent approach to data-driven control is borne out of the
intersection of behavioral systems theory and subspace methods; see
the recent survey [25]. In particular, a result termed the Fundamen-
tal Lemma [26] implies that the behavior of an LTI system can be
characterized by the range space of a matrix containing raw time
series data. This perspective gave rise to implicit formulations (notably
data-enabled predictive control [24], [27], [28]) as well as the design of
cxplicit feedbac icies these jrec




Indirect & certainty-equivalence LQR

» collect I/0 data (X,, Uy, X;) with D, unknown & PE: rank [g(’] =n+m
0

-7

4O
40

Uo =
Do =

u(1) ...
a1) ...

* indirect & certainty-

equivalence LQR
(optimal in MLE setting)

subject to (A + BK)P(A+ BK)T — P+ 1 =<0

A A

[B A] — arg min
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X, - [B A][
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Recall indirect approach on the board

. 10 data (X,, Uy, X;) with D, unknown & PE: rank lg"] —n+m
0
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Derivation of a direct approach on the board

. 10 data (X,, Uy, X;) with D, unknown & PE: rank lg"] —n+m
0

Up:= u(0) u(1) ... u(T-1) — L > Xo:= x(0) x(1) ... x(T-1)
Do:= d0) d(1) ... o(T -1 K1 = AXo+ Blo* Dol X1= x(1) x@ ... x(T)
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Direct approach from subspace relations in data

. PE data: rank [g(’] —n+m = YK 3G sit. {K} _ {UO} G
0

1 X0
Up:= u(0) u(l) ... u(T=1) —s e Xo:=' x(0) x(1) ... x(T-1)"
Do:= d0) d(1) ... oT-1) _fX1= AXa+ BU+ Do o Xort x(1) x(2) ... x(T)

-l € L )

* subspace . K| — Uo | A+
relations A+BK =B A {[} =18 4] [X()] G|=|(X1 = D)@

- data-driven LQR LMIs by substituting A + BK = (X; — Dy)G
> certainty equivalence by neglecting noise Dy: |A + BK = X G

12



Indirect

VS

direct

minimize
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Equivalence: direct + xxx <~ indirect

* direct approach

— optimizer has

Uo
nullspace ker {Xo}

minimize

P-1KG

subject to

trace (QP) + trace (K ' RK P)

X,GPG'X! —P+1I=0

1] x|

G =

] 1]

\4

equivalent constraints:

U1 K
Xol |1

— orthogonality . (I [)(?Or [)(?OD a_
constraint ol Lo ( X,
 indirect minimize trace (QQP) + trace (KTRKP)
P-IK
approach o o

subject to (A+ BK)P(A+ BK)' —P+1=<0

A] = arg min
B,A

B
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F
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Convex reformulation of the control design problem

minimize  trace (QP) + trace (K ' RK P
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Regularized, direct, & certainty-equivalent LQR

» orthogonality constraint | minimize  trace (QP) + trace (KT RK P)
1t T P-1K,G
M=7—|.° 0 subject to X;GPG'X' —P+1=0
Xo| |[Xo
: ) . K \Uo| A
lifted to regularizer I~ |Xo

 equivalent to indirect certainty-equivalent LQR design for A suff. large

* )\ interpolates between direct & indirect approaches

* multi-criteria interpretation: A interpolates control & SysID objectives

* however, certainty-equivalence formulation may not be robust (?)

17



Robustness-promoting regularization

- effect of noise entering data: A+ BK = (X; — Dy)G
.
Lyapunov constraint X;GPG ' X' —P+1 <0 , for robustness GI7C:
T T should be small
becomes (X1 —Dy)GPG' (X1 —Dy) —P+1=<0

J

- previous certainty-equivalence regularizer ||IIG|| achieves small |G|

minimize trace (QP) + trace (K ' RK P)
P-1,K,G

* robustness-promoting

i . trace (GPG '
regularizer [de Persis & Tesi, ‘21] P (G G )

subjectto X1GPG X{ — P+1=X0

9-14)-

18



Performance & robustness analysis

* SNR (signal-to-noise-ratio) Tmin([Xo Uo))

Omax (DO)
* relative performance metric
realized cost from regularized design with A& P if exact system matrices A and B were known
i i
1 1

— i
__———————— e . ——
—— ----- —— -----
— — ey -— _—
_——— -~y - -,

- -

-
L] -
i e

il T ———————————r—p L el ——--———__-- ———_————__—
—— -

certificate: optimal control problem is always feasible & stabilizing for

"=~ robust

suff. large SNR & relative performance ~ O (SNR_l) + const. £ p } o

proof bounds Lyapunov constraint(X; — Do)GPG' (X1 — Do) —P+1=0



FYI: another regularization promoting low-rank

. . U, Uy |
» de-noising of data-matrices Tiniize XZ _ X?;,
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Surrogate for low-rank pre-processing

vise dm (QP] ¢ fea CRTRKP)
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[, regularization as low-rank surrogate

. : . Uo]  [Uo

* de-noising of data-matrices minimize || | %o | — |Xo

via low-rank approximation ket x| [ X1
(low rank is equivalent to U | i

U
. . subiject to rank | Xo| = rank | ~
uniqueness of (4, B) matrices) ) ’ [X

o 61 rGQUIarlzer as Surrogate minimize  trace (QQP) + trace (KTRKP)
of pre-processing by low-rank |%F=1.G

subject to XlGlDGTXlT —P+1=<0

approximation: bias solution GG i U,
towards sparsity ~ low-rank [I] B [Xo] ¢

22



Numerical case study

» case study [Dean et al. “19]: discrete-time
marginally unstable Laplacian system
subject to noise of variance ¢4 = 0.01

- take-home message 1.
regularization is needed !
prior work without regularizer
has no robustness margin

(1.01

A= 10.01

90 |
80 |
70 |
60 |
50 |

40 |

50 Lbreaks
without

20| regulartZer

10|

0.01 O
1.01 0.01

0.01 1.01

)

B=1

Fo I e aees S oo s S e

median relative
performance error M

% of stabilizing
controllers S

- LIITEE FETRD . SOy NP SUR- S GUse.
5 6 7 8 9 10 20 30 40 50

/\

1e-4
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Numerical case study cont’d

- take-home message 2: different regularizers promote different
features: robustness vs. certainty-equivalence (performance)

o =0.01 c=0.1 oc=20.3 oc=0.7 oc=1
(SNR > 15dB) | (SNR € [5,10]dB) | (SNR € [0,5]dB) | (SNR ~ 0dB) | (SNR < —5dB)
Certainty-equivalence S = 100% S = 100% S = 100% S =97% S = 84%
A=1,p=0) M = 2.5599e-05 M = 0.0026 M = 0.0237 M = 0.1366 M = 0.2596
Robust approach S = 100% S = 100% S =100% S = 100% S = 100%
A=0,p=1) M = 0.0035 M = 0.0074 M = 0.0369 M = 0.2350 M = 0.6270

» take-home message 3. mixed regularization achieves best of both

Mixed regularization S = 100% S = 100% S = 100% S = 100% S = 100%
(A=p=20.5) M = 0.0010 M = 0.0035 M = 0.0235 M = 0.1262 M = 0.2978

24



Intermediate conclusions... so far

* interpolation of different regularizers

sweet spot
with high noise: 62=1 (SNR< -5db) = e ——r
& % of stabilizing 2
o8 | controllers S '
- flexible multi-criteria formulation . /
trading off different objectives by oo &
. . . { ._r.)"
regularizers (best of all is attainable) =/ ;
90 o
» classification direct vs. indirect |
is less relevant: A interpolates o 4 e
go ......... A o performance error M |
N WOrkS . but |ame [Iearning is Ofﬂine] (100 (0.8,0.1) (0.8,0.2) 0.7,0.3) (0.6,04) (O{i:?jsl (0.4,06) (03.07) (02,08 (01,09 (1)
certainty-equivalence robust

25



ontents

2. data-enabled policy optimization for online adaptation
— story of a model-free pipeline with model-based elements

Data-enabled Policy Optimization for the Linear Quadratic Regulator

Feiran Zhao, Florian Dorfler, Keyou You

Abstract—Policy optimization (PO), an essential approach
of reinforcement learning for a broad range of system
classes, requires significantly more system data than indi-
rect (identification-followed-by-control) methods or behavioral-
based direct methods even in the simplest linear quadratic
regulator (LQR) problem. In this paper, we take an initial
step towards bridging this gap by proposing the data-enabled
policy optimization (DeePO) method, which requires only a
finite number of sufficiently exciting data to iteratively solve
the LQR problem via PO. Based on a data-driven closed-
loop parameterization._we are_able_to_directly_compute_the

a considerable gap in the sample complexity between PO
and indirect methods, which have proved themselves to be
more sample-efficient [9], [10] for solving the LQR problem.
This gap is due to the exploration or trial-and-error nature
of RL, or more specifically, that the cost used for gradient
estimate can only be evaluated after a whole trajectory is
observed. Thus, the existing PO methods require numerous
system trajectories to find an optimal policy, even in the
simplest LQR setting.

with Alessandro Chiuso (Padova),

Feiran Zhao, Keyou You (Tsinghua),

& Linbin Huang (Zhezjiang)

Data-Enabled Policy Optimization for Direct
Adaptive Learning of the LQR

Feiran Zhao, Florian Dorfler, Alessandro Chiuso, Keyou You

Abstract—Direct data-driven design methods for the linear
quadratic regulator (LQR) mainly use offline or episodic data
batches, and their online adaptation has been acknowledged as an
open problem. In this paper, we propose a direct adaptive method
to learn the LQR from online closed-loop data. First, we propose
a new policy parameterization based on the sample covariance
to formulate a direct data-driven LQR problem, which is shown
to be equivalent to the certainty-equivalence LQR with optimal
non-asymptotic guarantees. Second, we design a novel data-
enabled policy optimization (DeePO) method to directly update
the policy, where the gradient is explicitly computed using only
a batch of persistently exciting (PE) data. Third, we establish its
global convergence via a projected gradient dominance property.
Importantly, we efficiently use DeePO to adaptively learn the
LQR by performing only one-step projected gradient descent
per ple of the closed-loop system, which also leads to an
explicit recursive update of the policy. Under PE inputs and for
bounded noise, we show that the average regret of the LQR cost
is upper-bounded by two terms signifying a sublinear decrease
in time ()(1/:/7) plus a hias ccaling_inverselv with cional-ta-

U

=
Controller

Fig. 1. An illustration of episodic approaches, where h* = (zo, uo, ..., Zpi)

denotes the trajectory of the i-th episode.

Controller

t: time step

Fig. 2. An illustration of indirect and direct adaptive approaches in closed-
loop, where f; is some explicit function.

26




Online & adaptive solutions

* shortcoming of separating offline learning & online control
— cannot improve policy online & cheaply / rapidly adapt to changes

Adaptive Control:
Towards a Complexity-Based General Theory*

G. ZAMES-

‘adaptive = improve over best control with a priori info”

* (elitist) desired adaptive solution: direct, online (non-episodic/non-batch)
algorithms, with closed-loop data, & recursive algorithmic implementation

* “best” way to improve policy with new data — go down the gradient !

* disclaimer: a large part of the adaptive control community focuses on stability & not optimality 27



Ingredient 1: policy gradient methods

* LQR viewed as smooth program (many formulations)
minimize trace (QP) + trace (K "RK P) \
P-1K

subject to (A+ BK)P(A+ BK)' —P+1=<0

J

* J(K) is not convex ...

Annual Review of Cantrd, Rabdics and
Autonamaus Sydems

Bin Hu," Kaiging Zhang,?® NaLi,* Mehran M esbahi,®
Maryam Fazel ® and Tamer Bagar’

after eliminating
(unique) P,
denote this

as /(K)

but on the set of stabilizing gains X, it’s
 coercive with compact sublevel sets,
« smooth with bounded Hessian, &
» degree-2 gradient dominated

Fact: policy gradient descent
KT =

initialized from a stabilizing

policy converges linearly to K~.

K —nVJ(K)

J(K) = J* < const. - ||[VJ(K)|I

28




Insights into the proof
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Explicit formulae for model-based gradient
@}/m Jr\/&%& TL)L{,O}B e VLQQOQ HML e,g,lfufoa,&mﬁ LQQ (;VOWJQHOVd 6566 L‘éﬁfw\i» )

3““: w (PR) + | PTRET)  whe PO slxs (N B PlARI) -, X

= by (W X)L ohee WO seloes  [ABOTY (ABl) -~V 1 Q £ ETRL = ()

W\/WQ Xs XOXOT 1S HAL ‘\V\CBQ,Q %Mﬁ C,OUOLH&V{(,&) H/«ouﬁf/\ if\9 F&F?‘(‘quad\ Oaﬂug N
irelo Oy,
o 19 e ake {lu SW&I@/&) Loe_ ﬁwgvﬁzﬂ VJ“L) - ;1 fr (\JU()'_X)
. jfl b o soh "Ll )
C?UTWO\HU\% v O wbersome . Tor fluse
Q LDOTL_ oiFh JE{&WQV\Q\OQS (Nlm:(',]/\ (,)I@ glLFQJB Hv( 0&“‘0“&[901&,

asons , Lt W i

ﬂu VK&%SM*(MFM f/& 1S “’UL @V\E«V Var‘]’ (5@@‘91\0»\) %JMN guthIO'A Mxx 0{X> ~@C<)

L0y qou @ kP




o wgthem otiead VKQIW\IM&F{PS 0 V{ﬂjw”‘*&/;
o ATe (N = Tr (dA)
. o (MD) = oAkt ABCA
o ol (A7) = A"

ne : I‘F ol = T (C(‘AA thgn Uy \ < C—T
o Lot Sb& o Bu o Cv& X 5 T ) / : J}J L
) okl zere D/L//Q/v;,é

«»Dmm% % QU B g A dbe (oK) s fr [ x)
@ o bl W W eonlpals 1 717

a ——____

A (/#1@%)75(,0 (AfBVL) N +QEFAT@TWE N KTRI +(,,.SQM PU\M\-_)T

A=) Um's IS O Lén«‘?uv\ou QQ{DLOLHOV\ &M{/{ flos
(#+Bx)" (MrnT) [ArBw)

o

W t
oW f =



S S S M RS M WS S S WS S S S S S S S S S B B S S S B S S S S S s E—

—————————————————————————————————————————————————————————————————

~ Mo ) ks Lo x): b (2172 (A+80) X ((mgk)*f)

= ? ( CDV\MQ{\QP&I/% G)ﬂw}aq)

= b e (eTw (hrBk) £RR) Y

. .

e e e o e o o e S S e S S B S B B B EEe B B B B B S B B Eae Eae o



- o O S S O BN BN RN BEE DEE EEE GEE BEE B GEn BEn B GEE BEn BN BEn BEn GEm BEn BEn BN BEn BEn SN GEn BEn G GEn BEe SN GEn BEn G GEn BEn S GEn Ban SN BEn BEn SN GEn Ban S BEn B G e e e e e e e



Model-free policy gradient methods

 model-based setting: explicit formulae for VJ(K) based on
closed-loop controllability + observability Gramians [Levine & Athans, ‘70]

« model-free 0t order methods constructing two-point gradient estimate

Cp\/\u@w& gbr o Scalor &W\LFOM: vl (x) = gl_u; W(”E £x- e)) = Q,Uv; [: il 2%{ vy el

- \OQ QAPPT@X‘\W\O\\{{Vt %MP&V\S guvwgw‘oh ] buﬂ( Q@JQ> W(‘j rcﬂor% fbfh ’hlﬁ[/;;{]w N

from numerous & very long trajectories — extremely sample inefficient

relative performance gap e=1 e =0.1 e = 0.01
# trajectories (100 samples) 1414 43850 142865 |~ 107 samples

* IMO: policy gradient is a potentially great candidate for direct adaptive
control but sadly useless in practice: sample-inefficient, episodic, ...



Ingredient 2: sample covariance parameterization

Xo= x(0) x(1) --- x(t—-1)
Up= u(0) u(1) -+ ult=1) — X;= AXo+ BUp|
— Xq1= x(1) x(2) --- x(1)

prior parameterization covariance parameterization
« PE condition: full row rank Yo - 1 [Uo] [Uo]"

X, * sample covariance A=?[XO] Xo] > 0

_ K] _ Uol ~» _
A+BK =[B A]H_[B A][XO]G—XlG .

A+BK=[BA][II{] [B AIAV =2 X, ]V

robustness: & = | reguianization . robustness for free without regularization

dimension of all matrices grows with ¢t

dimension of all matrices is constant

+ cheap rank-1 updates for online data
35



Covariance parameterization of the LQR

. . Ugl [Uo]" —
state / input sample covariance A = z O] [ 0] & X = lX1
t [ Xol 1 Xp t

Qe la

* closed-loop matrix ASB%V with

 LQR covariance parameterization

after eliminating K with variable V,
Lyapunov eqgn (explicitly solvable),
smooth cost (V) (after removing P),
& linear parameterization constraint

UO]T

Xo
K U,

| = AV = |—-|V
I X,
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Projected policy gradient with sample covariances

» data-enabled policy optimization (DeePO)

V=V =l (V1)

[ projects on parameterization constraint I = X,V & gradient VJ/(V)

Xo

iIs computed from two Lyapunov equations with sample covariances

« optimization landscape: smooth, 10°
degree-1 proj. grad dominance |

JW) —J* < const.- ||z (V)|

JWi) =)

J

note: empirically |
faster linear rate

» warm-up: offline data & no disturbance 5|
: : case: 4" order system
Sublinear convergence for feasible with 8 data samples |
initialization J(V*) —J* < 0(1/k) . 0 100 200 300 400

k

500



Online, adaptive, & closed-loop DeePO

R e »| DeePO policy update

d — xT = Ax+ Bu+d —+----» Input: (Xo 41, Uot+1, X1,641)s Ki

(D update sample covariances: Ay & Xgr41

u X . | K,
(2) update decision variable: V,,; = A7}, p ]
n

(3) gradient descent: Vi, = Viyq — UHXO,t+1(V]t+1(Vt+1))
(4) update control gain: K11 = Uy r41Visn
Output: K; 4

U=Kqx*— K

where Xy .1 = [x(0),x(1), ... x(t), x(t + 1)] & similar for other matrices

* cheap & recursive implementation: rank-1 update of (inverse) sample
covariances, cheap computation, & no memory needed to store old dat?g



Underlying assumptions for theoretic certificates

* initially stabilizing controller: the LQR problem parameterized by
offline data (X, Uot,, X1, ) is feasible with stabilizing gain K, .

 persistency of excitation due to process noise or probing:

g(}[nH(Uo,t)) >y -/t with Hankel matrix 3,41 (Uo ;)

* bounded noise: ||[d(t)|| <6 vVt — signal-to-noise ratio SNR :==y/6

 BIBO: there are i, x such that [[lu(®)|| <u & |lx(O)| < x

39



Bounded regret of DeePO in adaptive setting

» average regret performance metric Regret; := %Zi‘fg:_l (J(K:) —])

Sublinear regret: Under the assumptions, there are v{,v,,v3,v, > 0
such that forn € (0,v;] & SNR = v,, it holds that {K,} is stabilizing &

Regret, < —2 4+ —%
egre S — .
ST = T T JSNR

« comments on the qualitatively expected result:
 analysis is independent of the noise statistics & consistent Regret;_, = 0
« favorable sample complexity: sublinear decrease term matches best
rate O(1/VT) of first-order methods in online convex optimization

 empirically observe smaller bias term: O(1/SNR?) & not O(1/VSNR)
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Comparison case studies

» same case study [Deanetal.19] 107 |;

- case 1: offline LQR I 9 N I R Indirect |
vs direct adaptive DeePO 103+ & Offline

vs indirect adaptive: ris + diqr

— adaptive outperforms offline

— direct/indirect rates matching 104 ¢
but direct is much(!) cheaper

50 100 150 200

e case 2 adaptive DeePO relative performance gap e=1 e=0.1 e =0.01
# long trajectories (100
vs 0" order methods samples) for 0t order LQR 1414 43850 200
N significantly less data DeePO (# 1/O samples) 10 24 48

41



Power systems / electronics case study

inputs
+l %ﬁ i data-driven
roi’i+< ref L controller
Lg qu

QE

_—

synchronous generator & full-scale converter

outputs

grid

wind turbine becomes
unstable in weak grids
with nonlinear oscillations

converter, turbine, & grid
are a black box for the
commissioning engineer

construct state from time

shifts (5ms sampling) of
(y(t),u(t)) & use DeePO
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Power systems / electronics case study

oscillation probe &
observed collect data l activate DeePO
AN AN
4 N
| | I
0.96 : : :
| | ! with DeePO (100 iterations)
’50'94 : ! ! / with DeePO (1 iteration)
o I I |
o | AN 54 a0 )]
: | | A A AL e
2 09 ! ! ! )
Q I I I¥ \/ \/ v \V VWW‘T
® 0.88 - ! ! r -
= | | I
S oss | : : J _
| | ; ; without DeePO
I T N ! . .
0 2 4 6 8 10 12
time [s]
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. same In the adaptive setting with excitation

oscillation probe &

observed collect data l activate DeePO
A N
A A—

0.96 I
: with adaptive DeePO

0.94 I ‘

0.92 / T A ‘

0.9 \/v V v V‘V‘V‘

0.88 - i
|

0.86 I

without DeePO
0.84
0 2 4 6 8 10 12

time [s]
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Conclusions

« Summary

« model-based pipeline with model-free block: data-driven LQR parametrization
— works well when regularized (note: further flexible regularizations available)

* model-free pipeline with model-based block: policy gradient & sample covariance
— DeePO is adaptive, online, with closed-loop data, & recursive implementation

« academic case studies & can be made useful in power systems/electronics

* Future work
 technicalities: weaken assumptions & improve rates
« control: based on output feedback & for other objectives
* further system classes: stochastic, time-varying, & nonlinear
« open questions: online vs episodic? “best” batch size? triggered?
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Papers

model-based pipeline with
model-free elements

On the Role of Regularization in Direct Data-Driven LQR Control

Florian Dorfler, Pietro Tesi, and Claudio De Persis

Abstract— The linear quadratic regulator (LQR) problem is a
cornerstone of control theory and a widely studied benchmark
problem. When a system model is not available, the conven-
tional approach to LQR design is indirect, i.e., based on a
model identified from data. Recently a suite of direct data-
driven LQR design approaches has surfaced by-passing explicit
system identification (SysID) and based on ideas from subspace
methods and behavioral systems theory. In either approach, the

data underlying the design can be taken at face value (certainty-

problems when identifying models from data. They facilitate
finding solutions to optimization problems by rendering them
unique or speeding up algorithms. Aside from such numer-
ical advantages, a Bayesian interpretation of regularizations
is that they condition models on prior knowledge [26], and
they robustify problems to uncertainty [27], [28].

An emergent approach to data-driven control is borne

On the Certainty-Equivalence Approach to Direct Data-Driven LQR
Design

Florian Dorfler @, Senior Member, IEEE, Pietro Tesi
and Claudio De Persis

Abstract—The linear quadratic regulator (LQR) problem is a
cornerstone of automatic control, and it has been widely studied
in the data-driven setting. The various data-driven approaches
can be classified as indirect (i.e., based on an identified model)
versus direct or as robust (i.e., taking uncertainty into account)
versus certainty-equivalence. Here, we show how to bridge these
different formulations and propose a novel, direct, and regularized
formulation. We start from indirect certainty-equivalence LQR, i.e.,
least-square identification of state-space matrices followed by a
nominal model-based design, formalized as a bilevel program. We
show how to transform this problem into a single-level, regularized,
and direct data-driven control formulation, where the regularizer
accounts for the least-square data fitting criterion. For this novel
formulation, we carry out a robustness and performance analysis
in presence of noisy data. In a numerical case study, we compare
regularizers promoting either robustness or certainty-equivalence,
and we demonstrate the remarkable performance when blending
both of them.

, Member, IEEE,
, Member, IEEE

methods [10], [11], [12], reinforcement learning [13], behavioral meth-
ods [14], and Riccati-based methods [15] in the certainty-equivalence
setting as well as [16], [17], [18] in the robust setting. We remark
that the world is not black and white: a multitude of approaches have
successfully bridged the direct and indirect paradigms, such as identi-
fication for control [19], [20], dual control [21], [22], control-oriented
identification [23], and regularized data-enabled predictive control [24].
In essence, these approaches all advocate that the identification and
control objectives should be blended to regularize each other.

An emergent approach to data-driven control is borne out of the
intersection of behavioral systems theory and subspace methods; see
the recent survey [25]. In particular, a result termed the Fundamen-
tal Lemma [26] implies that the behavior of an LTI system can be
characterized by the range space of a matrix containing raw time
series data. This perspective gave rise to implicit formulations (notably
data-enabled predictive control [24], [27], [28]) as well as the design of
cxplicit feed ici i it

out_of the intersection _of behavioral svstems_theory _and

model-free pipeline with
model-based elements

Data-enabled Policy Optimization for the Linear Quadratic Regulator

Feiran Zhao, Florian Dorfler, Keyou You

Abstract— Policy optimization (PO), an essential approach
of reinforcement learning for a broad range of system
classes, requires significantly more system data than indi-
rect (identification-followed-by-control) methods or behavioral-
based direct methods even in the simplest linear quadratic
regulator (LQR) problem. In this paper, we take an initial
step towards bridging this gap by proposing the dat bled
policy optimization (DeePO) method, which requires only a
finite number of sufficiently exciting data to iteratively solve
the LQR problem via PO. Based on a data-driven closed-

loop parameterization, we are able to_directly compute_the

a considerable gap in the sample complexity between PO
and indirect methods, which have proved themselves to be
more sample-efficient [9], [10] for solving the LQR problem.
This gap is due to the exploration or trial-and-error nature
of RL, or more specifically, that the cost used for gradient
estimate can only be evaluated affer a whole trajectory is
observed. Thus, the existing PO methods require numerous
system trajectories to find an optimal policy, even in the

simplest LQR setting.

Data-Enabled Policy Optimization for Direct
Adaptive Learning of the LQR

Feiran Zhao, Florian Dorfler, Alessandro Chiuso, Keyou You

Abstract—Direct data-driven design methods for the linear
quadratic regulator (LQR) mainly use offline or episodic data
batches, and their online adaptation has been acknowledged as an
open problem. In this paper, we propose a direct adaptive method
to learn the LQR from online closed-loop data. First, we propose
a new policy parameterization based on the sample covariance
to formulate a direct data-driven LQR problem, which is shown
to be equivalent to the certainty-equivalence LQR with optimal
non-asymptotic guarantees. Second, we design a novel data-
enabled policy optimization (DeePO) method to directly update
the policy, where the gradient is explicitly computed using only
a batch of persistently exciting (PE) data. Third, we establish its
global convergence via a projected gradient dominance property.
Importantly, we efficiently use DeePO to adaptively learn the
LQR by performing only one-step projected gradient descent
per ple of the closed-loop system, which also leads to an
explicit recursive update of the policy. Under PE inputs and for
bounded noise, we show that the average regret of the LQR cost
is upper-bounded by two terms signifying a sublinear decrease

i

U
System (4, B)
Policy

Controller

K' i: iteration

Fig. 1. An illustration of episodic approaches, where h* = (zq, uo, . . ., Tpi )
denotes the trajectory of the i-th episode.

(A0, Br)

Controller

K, =
Solver(Ay, By)

Indirect t: time step

Fig. 2. An illustration of indirect and direct adaptive approaches in closed-
loop, where f; is some explicit function.
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