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Data-driven pipelines

• indirect (model-based) approach:
data → model + uncertainty → control

• direct (model-free) approach:
direct MRAC, RL, behavioral, …

ID

• episodic & batch algorithms:
collect batch of data → design policy 

• online & adaptive algorithms:
measure → update policy → actuate

well-documented trade-offs concerning
• complexity: data, compute, & analysis
• goal: optimality vs (robust) stability 
• practicality: modular vs end-to-end …

→ gold(?) standard: direct, adaptive,  
    optimal yet robust, cheap, & tractable
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LQR
• cornerstone of 

automatic control

x+ = Ax + B u + d

z = Q1/ 2x + R1/ 2u

K
x

d

u = K x

z

Equivalent LQR formulations :

· J(k) = Eo Q4 + u Ru = X
+

Q * + * kTrkx

· solution to Xt + n = (A + BR)x
+
is Y = A + B2)

+

xo

~ j(k) = [10x)A + BR)
+

(Q + RTRK) (A +BR)
+

xo

· Recall the closed-loop observability Granian : W = z (LA + BK/ %* (Q + KTRK) (A + isn)t
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· W can also be obtained as the unique
positive definite solution to the 3 (A + Bk)

*

W (A +BK) - W + Q + KIRK = 0

Lyapunov equation
:

us equivalent reformulation of J(u) = 10 T Wxo = trace (WXoxT
-

~ covariance of
· yet another reformulation using tr(x

+ Qxy) = +r(Qx+ x+Y) (random) xo

& (k) = tr (Q - P) + to (kTRkY)
side note : as if

where 4 = 20 X+*
T

(state covariance
turns the actual

= [
+ 0 (A +Bul "xoxF)(A +B(c)7)

+ value of xoxoT
does not matter

· recall that the above is the controllability Gramian which for the final result,
and often one

can be calculated uniquely as positive definite solution to
simply sets it to

(A +BR)P(A + B()" - P + xxT = 0 be identity
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LQR
• cornerstone of 

automatic control

•       parameterization
(can be posed as convex SDP,

as differentiable program, as… )

• the benchmark for all data-driven 
control approaches in last decades
but there is no direct & adaptive LQR

x+ = Ax + B u + d

z = Q1/ 2x + R1/ 2u

K
x

d

u = K x

z

indirect

direct

online 
adaptive

offline 
batch
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Contents

1. model-based pipeline with model-free elements
→ data-driven parametrization & robustifying regularization

2. model-free pipeline with model-based elements
→ adaptive method: policy gradient & sample covariance

3. case studies: academic & power systems/electronics
→ LQR is academic example but can be made useful
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Contents

1. regularizations bridging direct & indirect data-driven LQR 
→ story of a model-based pipeline with model-free elements

with Pietro Tesi (Florence) &

Claudio de Persis (Groningen)



9

I I . INDIRECT & DIRECT DATA-DRIVEN LQR
We now review indirect LQR design (formalized as a bi-

level program: least-square SysID followed by model-based
optimal control) as well as a recent direct approach [14]
parameterizing the design by data matrices. The foundation
of both approaches are subspace relations in state-space data.

A. Model-based linear quadratic optimal control
Consider a linear time-invariant (LTI) system

8
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>>:

x(k + 1) = Ax(k) + Bu(k) + d(k)

z(k) =

"
Q1/ 2 0

0 R1/ 2

# "
x(k)
u(k)

# , (1)

where k 2 N, x 2 Rn is the state, u 2 Rm is the control
input, d isadisturbance term, and z is theperformance signal
of interest. We assume that (A, B ) is stabilizable. Finally,
Q 0 and R 0 are weighting matrices. Here, (⌫) and
≺ ( ) denote positive and negative (semi)definiteness.

The problem of interest is linear quadratic regulation
phrased as designing a state-feedback gain K that renders
A + BK Schur and minimizes the H 2-norm of the transfer
function T (K ) := d ! z of the closed-loop system1

x(k + 1)
z(k) =

2

4
A + BK I

Q1/ 2

R1/ 2K 0

3

5 x(k)
d(k) , (2)

where our notation T (K ) emphasizes the dependence of the
transfer function on K . When A + BK is Schur, it holds that

kT (K )k2
2 = trace(QP ) + trace K > RK P , (3)

where P is the controllability Gramian of the closed-loop
system (2), which coincides with the unique solution to the
Lyapunov equation (A + BK )P (A + BK )> − P + I = 0.

We refer to [34] for properties and interpretations of the
H 2-norm. In time domain it corresponds to the energy of the
output z when impulses are applied to all input channels. As
an alternative stochastic interpretation, it is the mean-square
deviation of z when d isawhiteprocesswith unit covariance.
Here, we view the LQR problem as a H 2-optimization
problem as our method is based on the minimization of (3).

As shown in [34, Section 6.4], the controller that mini-
mizes the H 2-norm of T (K ) (henceforth, optimal) is unique
and can becomputed by solving adiscrete-time Riccati equa-
tion [1]. Alternatively, following [35], this optimal controller
can be determined by solving the following program:

minimize
P ⌫I , K

trace(QP ) + trace K > RK P

subject to (A + BK )P (A + BK )> − P + I 0 ,
(4)

1Given a stable p ⇥ m transfer function T (λ ) in the indeterminate λ ,
the squared H 2-norm of T (λ ) is defined as [34, Section 4.4]:

kT k2
2 :=

1
2⇡

Z 2⇡

0
trace(T (ej ✓)0T (ej ✓)) d✓

The LQR problem indeed admits many parameterizations,
and the one in (4) can be turned into a convex semi-definite
program after a change of variables; see [33, Section III.C].

We aim to compute the optimal control in a data-driven
setting when (A, B ) are unknown, but we have access to a
T -long stream of noisy data. Here noisy means that the data
collected from (1) are generated with a non-zero disturbance
d not necessarily following any particular statistics.

B. Subspace relations in state-space data, ordinary least-
square identification, and certainty-equivalence control

The conventional approach to data-driven LQR is indirect:
first a parametric state-space model is identified from data,
and later on controllers are synthesized based on this model
as in Section II-A. We will briefly review this approach.

Regarding the identification task, consider a T -long time
series of inputs, disturbances, states, and successor states

U0 :=
⇥
u(0) u(1) . . . u(T − 1)

⇤
2 Rm ⇥T ,

D0 :=
⇥
d(0) d(1) . . . d(T − 1)

⇤
2 Rn ⇥T ,

X 0 :=
⇥
x(0) x(1) . . . x(T − 1)

⇤
2 Rn ⇥T ,

X 1 :=
⇥
x(1) x(2) . . . x(T )

⇤
2 Rn ⇥T

satisfying the dynamics (1), that is,

X 1 − D0 =
⇥
B A

⇤ U0
X 0

. (5)

It is convenient to record the data as consecutive time series,
i.e., column i of X 1 coincides with column i + 1 of X 0, but
this is not strictly needed for our developments: the data may
originate from independent experiments. Let for brevity

W0 := U0
X 0

.

We assume that the data is sufficiently rich, that is,

rank W0 = n + m . (6)

The rank condition (6) is an identifiability condition ensuring
that (B, A) can be recovered from data in the noiseless case.
As shown in [15], condition (6) is generically necessary
for data-driven LQR design. In the noiseless case, this rank
condition (6) is satisfied if the input u is persistently exciting
and the pair (B, A) is controllable [30, Corollary 2], thus
reducing to an experiment design condition. Condition (6) is
mild also in case of noisy data; see [16, Section 4.2].

Based on (U0, X 0, X 1) and under the rank condition (6),
an estimate (B̂ , Â) of the system matrices can be obtained
as the unique solution to the ordinary least-squares problem

⇥̂
B Â

⇤
= argmin

B ,A
X 1 −

⇥
B A

⇤
W0 F = X 1W †

0 , (7)

where k · kF denotes the Frobenius norm, and † is the
right inverse. Based on the identified model (7), certainty-
equivalence controllers can be designed, i.e., in problem (4),
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Indirect & certainty-equivalence LQR

• collect I/O data (𝑋଴, 𝑈଴, 𝑋ଵ) with 𝐷଴ unknown  &  PE: rank 𝑈଴
𝑋଴

= 𝑛 + 𝑚                                          

• indirect & certainty-
equivalence LQR
(optimal in MLE setting) least

squares 
SysID

certainty-
equivalent
LQR



10

x

I I . INDIRECT & DIRECT DATA-DRIVEN LQR
We now review indirect LQR design (formalized as a bi-

level program: least-square SysID followed by model-based
optimal control) as well as a recent direct approach [14]
parameterizing the design by data matrices. The foundation
of both approaches are subspace relations in state-space data.

A. Model-based linear quadratic optimal control
Consider a linear time-invariant (LTI) system

8
>><

>>:

x(k + 1) = Ax(k) + Bu(k) + d(k)

z(k) =

"
Q1/ 2 0

0 R1/ 2

# "
x(k)
u(k)

# , (1)

where k 2 N, x 2 Rn is the state, u 2 Rm is the control
input, d isadisturbance term, and z is theperformance signal
of interest. We assume that (A, B ) is stabilizable. Finally,
Q 0 and R 0 are weighting matrices. Here, (⌫) and
≺ ( ) denote positive and negative (semi)definiteness.

The problem of interest is linear quadratic regulation
phrased as designing a state-feedback gain K that renders
A + BK Schur and minimizes the H 2-norm of the transfer
function T (K ) := d ! z of the closed-loop system1
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where our notation T (K ) emphasizes the dependence of the
transfer function on K . When A + BK is Schur, it holds that

kT (K )k2
2 = trace(QP ) + trace K > RK P , (3)

where P is the controllability Gramian of the closed-loop
system (2), which coincides with the unique solution to the
Lyapunov equation (A + BK )P (A + BK )> − P + I = 0.

We refer to [34] for properties and interpretations of the
H 2-norm. In time domain it corresponds to the energy of the
output z when impulses are applied to all input channels. As
an alternative stochastic interpretation, it is the mean-square
deviation of z when d isawhiteprocesswith unit covariance.
Here, we view the LQR problem as a H 2-optimization
problem as our method is based on the minimization of (3).

As shown in [34, Section 6.4], the controller that mini-
mizes the H 2-norm of T (K ) (henceforth, optimal) is unique
and can becomputed by solving adiscrete-time Riccati equa-
tion [1]. Alternatively, following [35], this optimal controller
can be determined by solving the following program:

minimize
P ⌫I , K

trace(QP ) + trace K > RK P

subject to (A + BK )P (A + BK )> − P + I 0 ,
(4)

1Given a stable p ⇥ m transfer function T (λ ) in the indeterminate λ ,
the squared H 2-norm of T (λ ) is defined as [34, Section 4.4]:

kT k2
2 :=

1
2⇡

Z 2⇡

0
trace(T (ej ✓)0T (ej ✓)) d✓

The LQR problem indeed admits many parameterizations,
and the one in (4) can be turned into a convex semi-definite
program after a change of variables; see [33, Section III.C].

We aim to compute the optimal control in a data-driven
setting when (A, B ) are unknown, but we have access to a
T -long stream of noisy data. Here noisy means that the data
collected from (1) are generated with a non-zero disturbance
d not necessarily following any particular statistics.

B. Subspace relations in state-space data, ordinary least-
square identification, and certainty-equivalence control

The conventional approach to data-driven LQR is indirect:
first a parametric state-space model is identified from data,
and later on controllers are synthesized based on this model
as in Section II-A. We will briefly review this approach.

Regarding the identification task, consider a T -long time
series of inputs, disturbances, states, and successor states

U0 :=
⇥
u(0) u(1) . . . u(T − 1)

⇤
2 Rm ⇥T ,

D0 :=
⇥
d(0) d(1) . . . d(T − 1)

⇤
2 Rn ⇥T ,

X 0 :=
⇥
x(0) x(1) . . . x(T − 1)

⇤
2 Rn ⇥T ,

X 1 :=
⇥
x(1) x(2) . . . x(T )

⇤
2 Rn ⇥T

satisfying the dynamics (1), that is,

X 1 − D0 =
⇥
B A

⇤ U0
X 0

. (5)

It is convenient to record the data as consecutive time series,
i.e., column i of X 1 coincides with column i + 1 of X 0, but
this is not strictly needed for our developments: the data may
originate from independent experiments. Let for brevity

W0 := U0
X 0

.

We assume that the data is sufficiently rich, that is,

rank W0 = n + m . (6)

The rank condition (6) is an identifiability condition ensuring
that (B, A) can be recovered from data in the noiseless case.
As shown in [15], condition (6) is generically necessary
for data-driven LQR design. In the noiseless case, this rank
condition (6) is satisfied if the input u is persistently exciting
and the pair (B, A) is controllable [30, Corollary 2], thus
reducing to an experiment design condition. Condition (6) is
mild also in case of noisy data; see [16, Section 4.2].

Based on (U0, X 0, X 1) and under the rank condition (6),
an estimate (B̂ , Â) of the system matrices can be obtained
as the unique solution to the ordinary least-squares problem

⇥̂
B Â

⇤
= argmin

B ,A
X 1 −

⇥
B A

⇤
W0 F = X 1W †

0 , (7)

where k · kF denotes the Frobenius norm, and † is the
right inverse. Based on the identified model (7), certainty-
equivalence controllers can be designed, i.e., in problem (4),
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⇤
= argmin

B ,A
X 1 −

⇥
B A

⇤
W0 F = X 1W †

0 , (7)

where k · kF denotes the Frobenius norm, and † is the
right inverse. Based on the identified model (7), certainty-
equivalence controllers can be designed, i.e., in problem (4),

I I . INDIRECT & DIRECT DATA-DRIVEN LQR
We now review indirect LQR design (formalized as a bi-

level program: least-square SysID followed by model-based
optimal control) as well as a recent direct approach [14]
parameterizing the design by data matrices. The foundation
of both approaches are subspace relations in state-space data.

A. Model-based linear quadratic optimal control
Consider a linear time-invariant (LTI) system

8
>><

>>:

x(k + 1) = Ax(k) + Bu(k) + d(k)

z(k) =

"
Q1/ 2 0

0 R1/ 2

# "
x(k)
u(k)

# , (1)

where k 2 N, x 2 Rn is the state, u 2 Rm is the control
input, d isadisturbance term, and z is theperformance signal
of interest. We assume that (A, B ) is stabilizable. Finally,
Q 0 and R 0 are weighting matrices. Here, (⌫) and
≺ ( ) denote positive and negative (semi)definiteness.

The problem of interest is linear quadratic regulation
phrased as designing a state-feedback gain K that renders
A + BK Schur and minimizes the H 2-norm of the transfer
function T (K ) := d ! z of the closed-loop system1

x(k + 1)
z(k) =

2

4
A + BK I

Q1/ 2

R1/ 2K 0

3

5 x(k)
d(k) , (2)

where our notation T (K ) emphasizes the dependence of the
transfer function on K . When A + BK is Schur, it holds that

kT (K )k2
2 = trace(QP ) + trace K > RK P , (3)

where P is the controllability Gramian of the closed-loop
system (2), which coincides with the unique solution to the
Lyapunov equation (A + BK )P (A + BK )> − P + I = 0.

We refer to [34] for properties and interpretations of the
H 2-norm. In time domain it corresponds to the energy of the
output z when impulses are applied to all input channels. As
an alternative stochastic interpretation, it is the mean-square
deviation of z when d isawhiteprocesswith unit covariance.
Here, we view the LQR problem as a H 2-optimization
problem as our method is based on the minimization of (3).

As shown in [34, Section 6.4], the controller that mini-
mizes the H 2-norm of T (K ) (henceforth, optimal) is unique
and can becomputed by solving adiscrete-time Riccati equa-
tion [1]. Alternatively, following [35], this optimal controller
can be determined by solving the following program:

minimize
P ⌫I , K

trace(QP ) + trace K > RK P

subject to (A + BK )P (A + BK )> − P + I 0 ,
(4)

1Given a stable p ⇥ m transfer function T (λ ) in the indeterminate λ ,
the squared H 2-norm of T (λ ) is defined as [34, Section 4.4]:

kT k2
2 :=

1
2⇡

Z 2⇡

0
trace(T (ej ✓)0T (ej ✓)) d✓

The LQR problem indeed admits many parameterizations,
and the one in (4) can be turned into a convex semi-definite
program after a change of variables; see [33, Section III.C].

We aim to compute the optimal control in a data-driven
setting when (A, B ) are unknown, but we have access to a
T -long stream of noisy data. Here noisy means that the data
collected from (1) are generated with a non-zero disturbance
d not necessarily following any particular statistics.

B. Subspace relations in state-space data, ordinary least-
square identification, and certainty-equivalence control

The conventional approach to data-driven LQR is indirect:
first a parametric state-space model is identified from data,
and later on controllers are synthesized based on this model
as in Section II-A. We will briefly review this approach.

Regarding the identification task, consider a T -long time
series of inputs, disturbances, states, and successor states

U0 :=
⇥
u(0) u(1) . . . u(T − 1)

⇤
2 Rm ⇥T ,

D0 :=
⇥
d(0) d(1) . . . d(T − 1)

⇤
2 Rn ⇥T ,

X 0 :=
⇥
x(0) x(1) . . . x(T − 1)

⇤
2 Rn ⇥T ,

X 1 :=
⇥
x(1) x(2) . . . x(T )

⇤
2 Rn ⇥T

satisfying the dynamics (1), that is,

X 1 − D0 =
⇥
B A

⇤ U0
X 0

. (5)

It is convenient to record the data as consecutive time series,
i.e., column i of X 1 coincides with column i + 1 of X 0, but
this is not strictly needed for our developments: the data may
originate from independent experiments. Let for brevity

W0 := U0
X 0

.

We assume that the data is sufficiently rich, that is,

rank W0 = n + m . (6)

The rank condition (6) is an identifiability condition ensuring
that (B, A) can be recovered from data in the noiseless case.
As shown in [15], condition (6) is generically necessary
for data-driven LQR design. In the noiseless case, this rank
condition (6) is satisfied if the input u is persistently exciting
and the pair (B, A) is controllable [30, Corollary 2], thus
reducing to an experiment design condition. Condition (6) is
mild also in case of noisy data; see [16, Section 4.2].

Based on (U0, X 0, X 1) and under the rank condition (6),
an estimate (B̂ , Â) of the system matrices can be obtained
as the unique solution to the ordinary least-squares problem

⇥̂
B Â
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that (B, A) can be recovered from data in the noiseless case.
As shown in [15], condition (6) is generically necessary
for data-driven LQR design. In the noiseless case, this rank
condition (6) is satisfied if the input u is persistently exciting
and the pair (B, A) is controllable [30, Corollary 2], thus
reducing to an experiment design condition. Condition (6) is
mild also in case of noisy data; see [16, Section 4.2].

Based on (U0, X 0, X 1) and under the rank condition (6),
an estimate (B̂ , Â) of the system matrices can be obtained
as the unique solution to the ordinary least-squares problem
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where k · kF denotes the Frobenius norm, and † is the
right inverse. Based on the identified model (7), certainty-
equivalence controllers can be designed, i.e., in problem (4),
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where k 2 N, x 2 Rn is the state, u 2 Rm is the control
input, d isadisturbance term, and z is theperformance signal
of interest. We assume that (A, B ) is stabilizable. Finally,
Q 0 and R 0 are weighting matrices. Here, (⌫) and
≺ ( ) denote positive and negative (semi)definiteness.
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A + BK Schur and minimizes the H 2-norm of the transfer
function T (K ) := d ! z of the closed-loop system1

x(k + 1)
z(k) =

2

4
A + BK I

Q1/ 2

R1/ 2K 0

3

5 x(k)
d(k) , (2)

where our notation T (K ) emphasizes the dependence of the
transfer function on K . When A + BK is Schur, it holds that
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where P is the controllability Gramian of the closed-loop
system (2), which coincides with the unique solution to the
Lyapunov equation (A + BK )P (A + BK )> − P + I = 0.

We refer to [34] for properties and interpretations of the
H 2-norm. In time domain it corresponds to the energy of the
output z when impulses are applied to all input channels. As
an alternative stochastic interpretation, it is the mean-square
deviation of z when d isawhiteprocesswith unit covariance.
Here, we view the LQR problem as a H 2-optimization
problem as our method is based on the minimization of (3).
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The LQR problem indeed admits many parameterizations,
and the one in (4) can be turned into a convex semi-definite
program after a change of variables; see [33, Section III.C].
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setting when (A, B ) are unknown, but we have access to a
T -long stream of noisy data. Here noisy means that the data
collected from (1) are generated with a non-zero disturbance
d not necessarily following any particular statistics.

B. Subspace relations in state-space data, ordinary least-
square identification, and certainty-equivalence control

The conventional approach to data-driven LQR is indirect:
first a parametric state-space model is identified from data,
and later on controllers are synthesized based on this model
as in Section II-A. We will briefly review this approach.

Regarding the identification task, consider a T -long time
series of inputs, disturbances, states, and successor states

U0 :=
⇥
u(0) u(1) . . . u(T − 1)

⇤
2 Rm ⇥T ,

D0 :=
⇥
d(0) d(1) . . . d(T − 1)

⇤
2 Rn ⇥T ,

X 0 :=
⇥
x(0) x(1) . . . x(T − 1)

⇤
2 Rn ⇥T ,

X 1 :=
⇥
x(1) x(2) . . . x(T )

⇤
2 Rn ⇥T

satisfying the dynamics (1), that is,

X 1 − D0 =
⇥
B A

⇤ U0
X 0

. (5)

It is convenient to record the data as consecutive time series,
i.e., column i of X 1 coincides with column i + 1 of X 0, but
this is not strictly needed for our developments: the data may
originate from independent experiments. Let for brevity

W0 := U0
X 0

.

We assume that the data is sufficiently rich, that is,

rank W0 = n + m . (6)

The rank condition (6) is an identifiability condition ensuring
that (B, A) can be recovered from data in the noiseless case.
As shown in [15], condition (6) is generically necessary
for data-driven LQR design. In the noiseless case, this rank
condition (6) is satisfied if the input u is persistently exciting
and the pair (B, A) is controllable [30, Corollary 2], thus
reducing to an experiment design condition. Condition (6) is
mild also in case of noisy data; see [16, Section 4.2].

Based on (U0, X 0, X 1) and under the rank condition (6),
an estimate (B̂ , Â) of the system matrices can be obtained
as the unique solution to the ordinary least-squares problem

⇥̂
B Â

⇤
= argmin

B ,A
X 1 −

⇥
B A

⇤
W0 F = X 1W †

0 , (7)

where k · kF denotes the Frobenius norm, and † is the
right inverse. Based on the identified model (7), certainty-
equivalence controllers can be designed, i.e., in problem (4),

I I . INDIRECT & DIRECT DATA-DRIVEN LQR
We now review indirect LQR design (formalized as a bi-

level program: least-square SysID followed by model-based
optimal control) as well as a recent direct approach [14]
parameterizing the design by data matrices. The foundation
of both approaches are subspace relations in state-space data.

A. Model-based linear quadratic optimal control
Consider a linear time-invariant (LTI) system
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where k 2 N, x 2 Rn is the state, u 2 Rm is the control
input, d isadisturbance term, and z is theperformance signal
of interest. We assume that (A, B ) is stabilizable. Finally,
Q 0 and R 0 are weighting matrices. Here, (⌫) and
≺ ( ) denote positive and negative (semi)definiteness.

The problem of interest is linear quadratic regulation
phrased as designing a state-feedback gain K that renders
A + BK Schur and minimizes the H 2-norm of the transfer
function T (K ) := d ! z of the closed-loop system1
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where our notation T (K ) emphasizes the dependence of the
transfer function on K . When A + BK is Schur, it holds that

kT (K )k2
2 = trace(QP ) + trace K > RK P , (3)

where P is the controllability Gramian of the closed-loop
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We refer to [34] for properties and interpretations of the
H 2-norm. In time domain it corresponds to the energy of the
output z when impulses are applied to all input channels. As
an alternative stochastic interpretation, it is the mean-square
deviation of z when d isawhiteprocesswith unit covariance.
Here, we view the LQR problem as a H 2-optimization
problem as our method is based on the minimization of (3).

As shown in [34, Section 6.4], the controller that mini-
mizes the H 2-norm of T (K ) (henceforth, optimal) is unique
and can becomputed by solving adiscrete-time Riccati equa-
tion [1]. Alternatively, following [35], this optimal controller
can be determined by solving the following program:
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We assume that the data is sufficiently rich, that is,

rank W0 = n + m . (6)

The rank condition (6) is an identifiability condition ensuring
that (B, A) can be recovered from data in the noiseless case.
As shown in [15], condition (6) is generically necessary
for data-driven LQR design. In the noiseless case, this rank
condition (6) is satisfied if the input u is persistently exciting
and the pair (B, A) is controllable [30, Corollary 2], thus
reducing to an experiment design condition. Condition (6) is
mild also in case of noisy data; see [16, Section 4.2].
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where k · kF denotes the Frobenius norm, and † is the
right inverse. Based on the identified model (7), certainty-
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X 1 = AX 0 + BU0 + D0

Direct approach from subspace relations in data

• PE data: rank 𝑈଴
𝑋଴

= 𝑛 + 𝑚 

• subspace 
relations

• data-driven LQR LMIs by substituting 

 certainty equivalence by neglecting noise      :
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Indirect                            vs                           direct

= X
. [Yoy

+
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~ minimize trace (Q4) + trace (KTRRPI - solution 6 is not unique
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· pick least norm solution
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+
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Equivalence: direct + xxx  indirect
• direct approach

• indirect 
approach

→ optimizer has  

nullspace

→ orthogonality
    constraint

equivalent constraints:
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Convex reformulation of the control design problem

2
[ trace (R* XPKIR"2)
② can be pushed

↳ Reloc to constraint

can be via epigraph ⑪ remove P= XoY
eliminated formulation

③ substitute Y = GP or 6 = Y .↑" us R = lo6 = HoYp-1⑤ interpret 28 :
as Schur complements

minimize trace (Q4) + trace (x)
2 . 9 /

4
,
X

,
4 XnYP YiX1 - P + I : 0

[53] 20
X- R * UrYp"44"UoYTUOTR"30
- E d - b a b20

1 = Xo6 = Xoypine P = XoY if a >0

#6 = 0



17

Regularized, direct, & certainty-equivalent LQR

• orthogonality constraint

lifted to regularizer

• equivalent to indirect certainty-equivalent LQR design for     suff. large 

• multi-criteria interpretation:    interpolates control & SysID objectives 

• however, certainty-equivalence formulation may not be robust (?)

•    interpolates between direct & indirect approaches
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Robustness-promoting regularization

• effect of noise entering data:
Lyapunov constraint                                         
becomes

• previous certainty-equivalence regularizer           achieves small 

• robustness-promoting 
regularizer [de Persis & Tesi, ‘21]

for robustness
 should be small
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Performance & robustness analysis

realized cost from regularized design with    & if exact system matrices A and B were known

• SNR (signal-to-noise-ratio)

• relative performance metric

certificate: optimal control problem is always feasible & stabilizing for 
suff. large SNR & relative performance robust

reg.

proof bounds Lyapunov constraint
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FYI: another regularization promoting low-rank

• de-noising of data-matrices
via low-rank approximation

Let PE hold : ranh [Y] = now Proof : (ii) => (i) follows since

The following are equivalent : * = AXo + BUn implies that Ye Spendin

(i) ranh [Yo] = ranh [] = n + m
(i) => (ii) : n rows of [] are depend

due to PE
,
the rows of (nop are independent

(ii) ] unique B & A so that Xn = Axo + BUo
~> J (BA] so that X = [BA] [ **]
us uniqueness due to PE
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Surrogate for low-rank pre-processing

x

trace (QP1 + trace (KTRR4(
minimize

↑, K ,
6

Ace PAcE - P + I < 0

⑧ (E) = [] m X 6 = A + BU = As

new constraint

without Cost I number of non-zero

generality sinceS entries of every
column

ranh of [YoYom
6: of 6 is less than him

① relax new constraint as 116 : /In 1x ; for suitable :

② relax as 1161h = maxxi

③ lift to cost function as a penalty 11611
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𝑙𝟏 regularization as low-rank surrogate

• de-noising of data-matrices
via low-rank approximation
(low rank is equivalent to 
uniqueness of            matrices) 

•      regularizer as surrogate
of pre-processing by low-rank 
approximation: bias solution
towards sparsity ↝ low-rank
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Numerical case study

• case study [Dean et al. ‘19]: discrete-time
marginally unstable Laplacian system
subject to noise of variance 𝜎2 = 0.01 

• take-home message 1: 
regularization is needed !
prior work without regularizer
has no robustness margin

% of stabilizing 
controllers 

median relative
performance error

breaks 
without
regularizer
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Numerical case study cont’d

• take-home message 2: different regularizers promote different 
features: robustness vs. certainty-equivalence (performance)

• take-home message 3: mixed regularization achieves best of both
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Intermediate conclusions… so far

• interpolation of different regularizers 
with high noise: 𝜎2 = 1 (SNR< -5db)

• flexible multi-criteria formulation 
trading off different objectives by 
regularizers (best of all is attainable)

% of stabilizing 
controllers 

median relative
performance error

sweet spot

certainty-equivalence robust

• classification direct vs. indirect 
is less relevant:     interpolates

→ works… but lame:  learning is offline
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Contents

2. data-enabled policy optimization for online adaptation
→ story of a model-free pipeline with model-based elements

with Alessandro Chiuso (Padova), 

Feiran Zhao, Keyou You (Tsinghua),

& Linbin Huang (Zhezjiang)
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Online & adaptive solutions

• shortcoming of separating offline learning & online control
→ cannot improve policy online  &  cheaply / rapidly adapt to changes

• (elitist) desired adaptive solution: direct, online (non-episodic/non-batch) 
algorithms, with closed-loop data, & recursive algorithmic implementation
  

• “best” way to improve policy with new data → go down the gradient !
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Adaptive Control:
Towards a Complexity-Based General Theory*

G. ZAM ES-

Key Words—H control; adaptive control; learning control; performance analysis.

Abstract—Two recent developments are pointing the way to-
wards an input—output theory of H ! l adaptive feedback:
The solution of problems involving: (1) feedback performance
exact optimization under large plant uncertainty on the one
hand (thetwo-disc problem of H ); and (2) optimally fast identi-
fication in H on the other. Taken together, these are yielding
adaptive algorithms for slowly varying data in H ! l . At
a conceptual level, these results motivate a general input—output
theory linking identification, adaptation, and control learning.
In such a theory, the definition of adaptation isbased on system
performance under uncertainty, and is independent of internal
structure, presence or absence of variable parameters, or even
feedback. 1998 IFAC. Published by Elsevier Science Ltd.
All rights reserved.

1. INTRODUCTION

What should the terms ‘‘adaptive’’ and ‘‘learning’’
mean in the context of control?Is it possible to tell
whether or not a black box is adaptive without
knowledge of its internal structure? In design, is it
possible to determine beforehand whether it is ne-
cessary for a controller to adapt and learn in order
to meet performance specifications, or is adapta-
tion a matter of choice? In this overview we shall
describe recent work in the H framework which
provides a means of computing certain kinds of
adaptive controllers, but which also sheds some
light on these more conceptual questions.

Despite the long history of research on adaptive
control, and the considerable practical success of
adaptive strategies associated with the names of
Asström, Ljung, Goodwin, Caines, etc., a satisfac-
tory definition of adaptation has remained elusive.
Onepopular notion isthat adaptation occurswhen
parameters inside a controller vary in response to
changes in the environment. I t has been observed,
at least since the 1950s, that this notion presents

* Received 19 August 1997; received in final form 19 August
1997. The original version of this paper appeared in the pre-
prints of the 2nd IFAC Symposium on Robust Control Design,
which was held in Budapest, Hungary, during 25—27 June 1997.
Thispaper wasrecommended for publication by Editor-in-Chief
Huibert K wakernaak.

- Systems and Control Group, Department of Electrical
Engineering, M cGill University, 3480 University Street,
M ontreal, Que., Canada H3A 2A7. (The author passed away
on August 10, 1997.)

certain difficulties. Controllers with identical
external behavior can have an endless variety
of parametrizations; variable parameters in one
parametrization may be replaced by a fixed para-
meter nonlinearity in another. In most of therecent
control literature there is no clear separation be-
tween the concepts of adaptation and nonlinear
feedback, or between research on adaptive control
and nonlinear stability. This lack of clarity extends
to fields other than control; e.g. in debates as to
whether neural nets do or do not have a learning
capacity; or in theclassical 1960sChomsky vsSkin-
ner argument as to whether children’s language
skills are learned from the environment tabula rasa
style, or to a largeextent are ‘‘built in’’. (How could
one tell the difference anyway?). I t can be argued
that the lack of a conceptual framework for adap-
tive control has inhibited research in this area and
made it difficult to compare alternative designs.

We would like to re-examine these issues in the
light of recent developments linking the theories of
feedback, identification, complexity and time-vary-
ing optimization. The perspective here is actually
not new, having been outlined by theauthor on and
off since the 1970s (Zames, 1976, 1979, 1981, 1989).
However, the key mathematical details have been
worked out only recently, notably in joint work
with Lin et al. (L in et al., 1992; Zames and Wang,
1991; Owen and Zames, 1993). Other results which
havea bearing on thisoverview havebeen obtained
by Dahleh (Tse et al., 1991; Helmicki et al., 1991;
Gu and K hargonekar, 1992; M äkilä and Parting-
ton, 1991; Poolla and Tikku; Tseet al., 1991), to cite
a few representative papers.

Theobjective then isto re-examinethenotionsof
adaptation and learning, on two levels: on the con-
ceptual level to obtain a framework of some degree
of generality; on a more concrete level to get a de-
sign methodology for systems in the H /l ‘‘slowly
time-varying’’ category. The main ideas of the ap-
proach to be outlined here are that:

E Adaptation and learning involve the acquisi-
tion of information about the plant (i.e., object

1161

“adaptive = improve over best control with a priori info”

* disclaimer: a large part of the adaptive control community focuses on stability & not optimality
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Ingredient 1: policy gradient methods
• LQR viewed as smooth program (many formulations)

 

• 𝐽 𝐾  is not convex … 

after eliminating 
(unique) P,
denote this
as 𝐽 𝐾

Fact: policy gradient descent 
 𝐾ା = 𝐾 − 𝜂 ∇𝐽 𝐾  
initialized from a stabilizing 
policy converges linearly to 𝐾∗.
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Abstract
Gradient-based methodshave been widely used for system design and opti-
mization in diverse application domains. Recently, there hasbeen arenewed
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but on the set of stabilizing  gains K , it’s 
   • coercive with compact sublevel sets, 
   • smooth with bounded Hessian, & 
   • degree-2 gradient dominated                                  
       𝐽 𝐾 − 𝐽∗  ≤  𝑐𝑜𝑛𝑠𝑡. ȉ ∇𝐽 𝐾 ଶ
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Insights into the proof
· J(x) is smooth with 118](H11L

: By Taylor or mean-value theorem
:

J(k') = J(k) + 0y(k)T(k' - k) + E1k' - ul? (1)

· gradient dominance : J(M1-JIRA) - En 110 JCM/l * (2)

· gradient descent : 15 = k - n0J(4)
S

(1)

~ J(k") = J(k-yoYm)
= J(R) + +J(r)" (1 ](k) - 4) + E 10y(4/1

= j(x) - (n - (4)110314/11
- 20J(44

1) J (1)
-

ly- [Y2m)J(R)-J14* ) =
JCkt) -JIR

*)
(1- - [ In/J(4-J1k
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Explicit formulae for model-based gradient
· For these results we need the equivalent LQR formulations (see beginning I

J (k)
= to (PQ) + to (RTRKP) where PcO colors (A +Bk)P(A+Bk)"- 4+ X =

= tr (W X) where W>0 solves /ABU) TWIA +BK) -W + Q + KTRK = 0

where X = Xoxot is the initial state covariance
, though its particular value is

irrelevant

· To culculate the gradient , we recognize OJIR1 = to (w(ks · x)
. as you

can see
,
the muth for such = (:· x) : ]

derivatives can get numbersome. For these

reasons ,
we will work with differentials which will simplify the drivations.

The differential dx is the linear part /Jacobian) of the function f(x + dy) - f(x)
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· mathematical preliminaries on differentials
· d To (A) = Tr (dA)

· d (A.B) = dAoB + &B · A

· d(AT) = dAl

· Let J be a function of X .
If d] = Tr(odx) ,

then 0x] = CT

this one is constant
↓ with zero differtial

· Derivation of On J141 : Since d] = dtr(W . X) = fo low · XI

② to obtain dW ,
we evaluate : MT

M -
me

~ (A + BRITEW(A + BK) - GW + SEA +BRTWB + RTR) + 1 ... same term ... )
T

us this is a Lyapunov equationand thus

= DABRIMM (ABC
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-> Hence
,
to (SW· x) = tr (2MTS (A+ in * ((A + Bu(t)")

= P (controllability Gramian)

= to (rz (BTW (A + BR) + RM) · P

~ last
, using

that d] = Tr(dx) => Ex] = CT
,
we obtain

* ](k) = 2 (BTW(A + BR) + RK) · P
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Model-free policy gradient methods
• model-based setting: explicit formulae for ∇𝐽 𝐾  based on 

closed-loop controllability + observability Gramians [Levine & Athans, ‘70]

• model-free 0th order methods constructing two-point gradient estimate 

  from numerous & very long trajectories → extremely sample inefficient

• IMO: policy gradient is a potentially great candidate for direct adaptive 
control but sadly useless in practice: sample-inefficient, episodic, …

relative performance gap 𝜖 = 1 𝜖 = 0.1 𝜖 = 0.01
# trajectories (100 samples) 1414 43850 142865 ~ 𝟏𝟎𝟕 samples

conceptual for a scalar function :of(x) = n (f(x + a) - f(x-el) = Enunifor
fa

in

- can be approximated sampling function ,
but scales very poorly for high dimension
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Ingredient 2: sample covariance parameterization

prior parameterization

• PE condition: full row rank 𝑈଴
𝑋଴

• 𝐴 + 𝐵𝐾 = 𝐵 𝐴 𝐾
𝐼  = 𝐵 𝐴 𝑈଴

𝑋଴
𝐺 = 𝑋ଵ𝐺

• robustness: 𝐺 = 𝑈଴
𝑋଴

ୃ
ȉ   regularization

• dimension of all matrices grows with 𝑡

covariance parameterization

• sample covariance  Λ = ଵ
௧

𝑈଴
𝑋଴

𝑈଴
𝑋଴

ୃ
≻ 0

• 𝐴 + 𝐵𝐾 = 𝐵 𝐴 𝐾
𝐼 = 𝐵 𝐴 Λ𝑉 = ଵ

௧
𝑋ଵ

𝑈଴
𝑋଴

ୃ
𝑉

• robustness for free without regularization

• dimension of all matrices is constant 

      + cheap rank-1 updates for online data

X 1 = AX 0 + BU0U0 =
⇥
u(0) u(1) · · · u(t − 1)

⇤

X 1 =
⇥
x(1) x(2) · · · x(t)

⇤
X 0 =

⇥
x(0) x(1) · · · x(t − 1)

⇤
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Covariance parameterization of the LQR

• state / input sample covariance Λ = ଵ
௧

𝑈଴
𝑋଴

𝑈଴
𝑋଴

ୃ
   &    𝑋ଵ = ଵ

௧
𝑋ଵ

𝑈଴
𝑋଴

ୃ

• closed-loop matrix  𝐴 + 𝐵𝐾 = 𝑋ଵ𝑉  with   
𝐾

−−−−
𝐼

= Λ 𝑉 =
𝑈଴

−−−−
𝑋଴

𝑉

• LQR covariance parameterization
    after eliminating 𝐾 with variable 𝑉,
    Lyapunov eqn (explicitly solvable),
    smooth cost 𝐽(𝑉) (after removing 𝑃),
    & linear parameterization constraint

min
௏,௉≻଴

 trace 𝑄𝑃 + trace 𝑉்𝑈଴
்

𝑅𝑈଴𝑉𝑃

 s. t. 𝑃 = 𝐼 + 𝑋ଵ𝑉 𝑃𝑉்𝑋ଵ
்

, 𝐼 = 𝑋଴𝑉
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Projected policy gradient with sample covariances
• data-enabled policy optimization (DeePO)

   Π௑బ
 projects on parameterization constraint 𝐼 = 𝑋଴𝑉 & gradient ∇𝐽 𝑉

   is computed from two Lyapunov equations with sample covariances
     

• optimization landscape: smooth, 
degree-1 proj. grad dominance 
 𝐽 𝑉 − 𝐽∗ ≤ 𝑐𝑜𝑛𝑠𝑡. ȉ Π௑బ

∇𝐽 𝑉
  

   

• warm-up: offline data & no disturbance

𝑉ା = 𝑉 − 𝜂 Π௑బ
(∇𝐽 𝑉 )

Sublinear convergence for feasible 
initialization  𝐽 𝑉௞ − 𝐽∗  ≤  𝒪(1/𝑘) .

𝐽 𝑉௞ − 𝐽∗

𝐽∗

note: empirically
faster linear rate

case: 4th order system
with 8 data samples
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Online, adaptive, & closed-loop DeePO

    where 𝑋଴,௧ାଵ = 𝑥 0 , 𝑥 1 , … 𝑥 𝑡 , 𝑥(𝑡 + 1)  & similar for other matrices
  

• cheap & recursive implementation: rank-1 update of (inverse) sample   
covariances, cheap computation, & no memory needed to store old data

𝑥ା = 𝐴𝑥 + 𝐵𝑢 + 𝑑

𝑥𝑢

𝑢 = 𝐾௧ାଵ 𝑥

①  update sample covariances:  Λ௧ାଵ  &   ‾𝑋଴,௧ାଵ

②  update decision variable: 𝑉௧ାଵ = Λ௧ାଵ
ିଵ 𝐾௧

𝐼௡

③  gradient descent:  𝑉௧ାଵ
ᇱ = 𝑉௧ାଵ − 𝜂Π ‾௑బ,೟శభ(∇𝐽௧ାଵ 𝑉௧ାଵ )

④  update control gain: 𝐾௧ାଵ = ഥ𝑈଴,௧ାଵ𝑉௧ାଵ
ᇱ

DeePO policy update
Input: (𝑋଴,௧ାଵ, 𝑈଴,௧ାଵ, 𝑋ଵ,௧ାଵ), 𝐾௧

Output: 𝐾௧ାଵ

𝑑

𝐾௧ାଵ
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Underlying assumptions for theoretic certificates

• initially stabilizing controller: the LQR problem parameterized by 
offline data 𝑋଴,௧బ, 𝑈଴,௧బ, 𝑋ଵ,௧బ is feasible with stabilizing gain 𝐾௧బ.

• persistency of excitation due to process noise or probing:       

𝜎 ℋ௡ାଵ 𝑈଴,௧ ≥ 𝛾 ȉ 𝑡 with Hankel matrix ℋ௡ାଵ 𝑈଴,௧

• bounded noise: 𝑑(𝑡) ≤ 𝛿 ∀ 𝑡 → signal-to-noise ratio 𝑆𝑁𝑅 ≔ ⁄𝛾 𝛿

• BIBO: there are ത𝑢, 𝑥̅ such that 𝑢(𝑡) ≤ ത𝑢 & 𝑥 𝑡 ≤ 𝑥̅ 
(∃ common Lyapunov function ?)
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Bounded regret of DeePO in adaptive setting

• average regret performance metric  Regret்  ≔  ଵ
்

∑௧ୀ௧బ
௧బା்ିଵ  𝐽 𝐾௧ − 𝐽∗ 

• comments on the qualitatively expected result:
• analysis is independent of the noise statistics & consistent Regret்→ஶ → 0
• favorable sample complexity: sublinear decrease term matches best

rate 𝒪(1/ 𝑇) of first-order methods in online convex optimization
• empirically observe smaller bias term: 𝒪( ⁄1 𝑆𝑁𝑅ଶ) & not ⁄𝒪(1 𝑆𝑁𝑅)

Sublinear regret: Under the assumptions, there are 𝜈ଵ, 𝜈ଶ, 𝜈ଷ, 𝜈ସ > 0
such that for 𝜂 ∈ (0, 𝜈ଵ] & 𝑆𝑁𝑅 ≥ 𝜈ଶ, it holds that 𝐾௧ is stabilizing &

Regret் ≤
𝜈ଷ

𝑇
+

𝜈ସ

𝑆𝑁𝑅
.
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Comparison case studies
• same case study [Dean et al. ’19] 𝐽 𝐾௧ − 𝐽∗

𝐽∗
• case 1: offline LQR

vs direct adaptive DeePO 
vs indirect adaptive: rls + dlqr
→ adaptive outperforms offline
       

→ direct/indirect rates matching 
     but direct is much(!) cheaper

• case 2: adaptive DeePO
vs 0௧௛ order methods 

relative performance gap 𝜖 = 1 𝜖 = 0.1 𝜖 = 0.01
# long trajectories (100 

samples) for 0௧௛ order LQR 1414 43850 142865

DeePO (# I/O samples) 10 24 48→ significantly less data
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Power systems / electronics case study
• wind turbine becomes 

unstable in weak grids 
with nonlinear oscillations

• converter, turbine, & grid 
are a black box for the 
commissioning engineer

• construct state from time 
shifts (5ms sampling) of 
𝑦 𝑡 , 𝑢(𝑡)  & use DeePO

synchronous generator & full-scale converter 
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Power systems / electronics case study
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… same in the adaptive setting with excitation
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Conclusions
• Summary

• model-based pipeline with model-free block: data-driven LQR parametrization
→  works well when regularized (note: further flexible regularizations available)

• model-free pipeline with model-based block: policy gradient & sample covariance 
→  DeePO is adaptive, online, with closed-loop data, & recursive implementation 

• academic case studies & can be made useful in power systems/electronics

• Future work
• technicalities: weaken assumptions & improve rates
• control: based on output feedback & for other objectives
• further system classes: stochastic, time-varying, & nonlinear
• open questions: online vs episodic? “best” batch size? triggered?
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Papers

2. model-free pipeline with 
model-based elements

1. model-based pipeline with 
model-free elements
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thanks


